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INTRODUCTION

Insect microbiomes affect the nutrient cycling, provide pro-
tection from parasites and pathogens, and modulate immune 
responses. Cockroach microbiomes consist of horizontally 
transmitted microbes and vertically transmitted symbionts. 
The diversity of these microbiomes can vary depending on de-
velopmental stage, diet, and rearing practices [1]. In a recent 
study, laboratory-reared and field-collected Blattella germanica 

presented distinct microbiomes, although they shared the 
same core bacterial taxa, which appear to differ depending on 
the location and diet [2]. However, no significant microbiome 
differences resulting from changes in diet have been observed 
in Periplaneta americana, although this species has been found 
to present microbiome differences due to environmental fac-

tors [3].
Forty-seven species are included in the genus Periplaneta [4], 

and we maintain 3 species of the genus Periplaneta in our labo-
ratory, i.e., P. americana, P. japonica, and P. fuliginosa. P. ameri-

cana originated in Africa and is very common worldwide [4]. 
This species measures approximately 4 cm in length [7] and is 
often found in commercial buildings [5]. Periplaneta fuliginosa 
is another species of African origin and measures 3 cm in 
length. This species is widely distributed across the southeast-
ern United States and Japan [6]. Periplaneta japonica, which 
measures 2.5 cm in length, originated in the Japan and is 
freeze tolerant [7].

As the features of each species differ within the genus Peri-

planeta, we expected that there would also be differences 
among Periplaneta microbiomes. Hence, we conducted a study 
to establish a microbiome that minimized the aforementioned 
differences, which may have been because of diet and environ-
mental factors. The laboratory-reared cockroaches used in this 
study were reared for many generations under the same labo-
ratory conditions to minimize the differences resulting from 
diet and environmental factors. Then, we analyzed the cock-
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roach microbiomes using 16S rDNA-targeted high-throughput 
sequencing to compare the 3 cockroach species.

MATERIALS AND METHODS

Cockroach collection and rearing conditions
Individuals of 3 species of cockroaches, P. americana, P. ja-

ponica, and P. fuliginosa, were collected in Yongsan, Seoul, and 
Incheon, respectively. P. americana and P. fuliginosa individuals 
have been maintained in the laboratory of the Arthropods of 
Medical Importance Bank of Yonsei University College of 
Medicine in Seoul, Korea, since 1998, while P. japonica indi-
viduals have been reared since 2017. The cockroaches used in 
this study were reared for many generations under the same 
laboratory conditions to minimize the potential influence of 
environmental factors and diet. In addition, all the cockroach-
es used in this study were in the adult stage. A total of 40 cock-
roaches were reared separately in a plastic box (27×34×19 
cm) maintained at 25˚C. The cockroaches were fed Purina Rat 
Chow (Nestle Purina PetCare, St Louis, Missouri, USA), con-
taining crude protein, crude fat, crude fiber, crude ash, calci-
um, and phosphorus, and were supplied tap water ad libitum. 
Male adult cockroaches (not non-reproductive), one month 
after the last instar, were used. Sampling was performed 2 days 
after starving.

DNA extraction
The surface of each cockroach was sterilized using alcohol. 

The cockroaches (n=6 of each species) were then frozen with 
liquid nitrogen and individually crushed using a mortar and 
pestle, and their DNA was extracted. Total DNA was extracted 
using the NucleoSpin DNA Insect Kit (Macherey-Nagel, 
Düren, Germany) following the instructions of the manufac-
turer. The DNA extracted from each sample was eluted in 20 µl 
of elution buffer. All processing and sequencing procedures 
were conducted at a clean bench, under a sterilized hood, and 
in a DNA-free room. DNA concentrations were quantified us-
ing an ND-1000 Nanodrop system (Thermo-Fisher Scientific, 
Waltham, Massachusetts, USA). The extracted DNA was stored 
at −80˚C in a deep freezer.

Next-generation sequencing
The 16S rDNA V3–V4 region was amplified by PCR using 

forward (5’-TCGTCGGCAGCGTCAGATGTGTATAAGAGA-
CAGCCTACGGGNGGCWGCAG-3’) and reverse primers 

(5’-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGAC-
TACHVGGGTATCTAATCC-3’) [8,9], utilizing an Illumina 
MiSeq V3 cartridge (San Diego, California, USA) with 600 cy-
cles. A limited-cycle amplification step was performed to add 
multiplexing indices and Illumina sequencing adapters. The li-
braries were normalized, pooled, and sequenced on the Illu-
mina MiSeq V3 cartridge platform following the manufactur-
er’s instructions.

Bioinformatics and statistics
Bioinformatics analyses were performed following the 

methods described in our previous study [8]. The EzBioCloud 
database (https://www.ezbiocloud.net/) [8] was used for the 
taxonomic assignment using BLAST 2.2.22, and pairwise 
alignments were generated to calculate the similarity [10,11]. 
All the described analyses were performed using BIOiPLUG, a 
commercially available ChunLab bioinformatics cloud plat-
form for microbiome research (https://www.bioiplug.com/) 
[8]. The reads were normalized to 43,000 to perform the anal-
yses. Determination of Shannon, phylogenetic, and Pielou in-
dexes; unweighted pair group method with arithmetic mean 
(UPGMA) clustering; principal coordinates analysis (PCoA); 
permutational multivariate analysis of variance (PERMANO-
VA); linear discriminant analysis (LDA); and effect size (LEfSe) 
analysis were performed according to the previous study [8].

RESULTS

The average numbers of read counts assigned to P. ameri-

cana, P. japonica, and P. fuliginosa were 49,905 reads corre-
sponding to 897 operational taxonomic units (OTUs), 56,565 
reads corresponding to 955 OTUs, and 58,013 reads corre-
sponding to 878 OTUs, respectively. The rarefaction curve of 
all the samples formed a plateau (Supplementary Fig. S1). The 
number of OTUs was not significantly different among the 3 
cockroach species. There were no significant differences in the 
phylogenetic diversity between species, although it was higher 
for P. americana than for P. japonica as well as P. fuliginosa. In 
contrast, the Pielou and Shannon index values were signifi-
cantly higher for P. americana than for P. japonica and P. fuligi-

nosa (Fig. 1, P=0.004).
UPGMA cluster analysis showed that the cockroaches were 

organized according to species: P. japonica and P. fuliginosa 
were clustered earlier and then joined the P. americana (Fig. 
2A). The results of PCoA showed that although all 3 groups 
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Fig. 1. Box plots showing alpha diversity (measurement of spe-
cies richness, abundance, and equity within a habitat unit) of Peri-
planeta americana, Periplaneta japonica, and Periplaneta fuligino-
sa. (A) Pielou diversity (equity). (B) Shannon diversity. Bar indicates 
median, and hinge represents lower and upper quartiles. *Krus-
kal-Wallis test, P<0.005.
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Fig. 2. (A) Unweighted pair group method with arithmetic mean 
clustering. (B) Principal coordinates analysis depicting differences 
in the taxonomic compositions of the bacterial communities 
among Periplaneta americana, Periplaneta japonica, and Peripla-
neta fuliginosa.

0.25
0.20
0.15
0.10
0.05

0
-0.05
-0.10
-0.15
-0.20
-0.25
-0.30

Principal coordinates analysis

P=0.001 (Permanova)

-0.25 -0.20 -0.10 0.10 0.20 0.30 0.400

Periplaneta japonica
Periplaneta fuliginosa

Periplaneta americana

B

A

clustered together, P. americana samples were more tightly 
clustered than the P. japonica or P. fuliginosa samples were 
(P=0.001) (Fig. 2B). Moreover, a significant difference among 
the 3 cockroach species with respect to microbiome composi-
tion was detected using PERMANOVA [14].

With respect to the bacterial taxa present in the 3 cockroach 
species at the species level (Supplementary Data Set S1), less 
than 1% of the OTUs in P. americana accounted for 57.1% of 
all the microbial species present in P. americana. However, bac-
terial species not included in the aforementioned 1% were 
more abundant in P. americana than in either P. japonica or P. 

fuliginosa. The endosymbiont Blattabacterium CP001429_s ac-
counted for 63.1% and 57.3% of all the OTUs in P. japonica 
and P. fuliginosa, respectively (Fig. 3A). In P. japonica, the endo-
symbiont Blattabacterium_uc was also present. P. americana 
lacked Blattabacterium. P. japonica and P. fuliginosa had many 

OTUs in common, and presented similar microbial species 
compositions (Fig. 3A).

An LEfSe analysis was performed to identify significant dif-
ferences in bacterial abundance among the cockroach species. 
The taxa with high LDA scores in P. americana were Desulfovi-

brio_g2_uc, Dysgonomonas_JN680577_s, and Serratia marces-
cens. In P. japonica, Blattabacterium_CP001429_s and Enterococ-

cus faecium presented high LDA scores. Finally, Pediococcus_uc 

was the species with the highest LDA score in P. fuliginosa (Fig. 
3B). When the bacterial communities in P. japonica and P. fu-
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liginosa were compared without P. americana, Blattabacterium_
uc and Lactobacillus_uc were found to be highly abundant in P. 
japonica, while Parabacteroides_uc and Enterobacillus tribolii were 
highly abundant in P. fuliginosa, and were the species with the 
highest LDA scores (Fig. 3C).

DISCUSSION

Previous studies have shown that microbiomes may differ 
based on the diets or rearing conditions of their hosts [1]. The 
cockroaches used in this study had lived for many generations 
under the same conditions, and it was, therefore, assumed that 
other variables, such as diet, temperature, or humidity, would 
not strongly affect the microbiome.

We evaluated the microbiomes of the 3 cockroach species to 
determine whether there was any difference among their bac-
terial profiles. The results indicated that species richness did 
not differ between cockroach species, but abundance and eq-
uity were higher in P. americana than in P. japonica or P. fuligi-
nosa. This means that the richness is the same with the same 
food and environment, but abundance and equity are expect-
ed to be the highest in P. americana, which is the largest in size.

A previous study had shown that the microbiome of P. 

americana was resilient and stable when the cockroach under-
went a dietary shift [3]. In addition, no significant phylum-lev-
el differences were reported in the observed microbiomes 
among the 3 P. americana groups (i.e., diet with 6 foods, mixed 
diet, and starvation diet). Furthermore, no differences were 
found among the 3 P. americana groups with respect to either 
alpha or beta diversity, although differences in microbiome 
composition that were attributable to environmental factors 
were observed [3]. Similarly, in this study, assuming P. ameri-
cana is stable with regard to dietary shifts, we observed the dif-
ferences in microbial composition attributable to environ-
mental factors at the phylum level (Supplementary Fig. S2).

With respect to the species composition, OTUs (over 1%) in 
P. americana accounted for the greatest diversity among the 3 
cockroach species. Previous studies reported the presence of 
Blattabacterium in P. americana, contrasting with the findings 
on our laboratory-reared individuals [13]. However, despite 
the lack of Blattabacterium, this strain had no problem with re-
production or growth. In a previous study, wood-feeding dic-
tyopteran insects had significantly reduced the numbers of 
Blattabacterium, resulting in nutrients gained by other means 
[14]. Therefore, it is possible that the microbiome of the P. 

americana strain reared in our laboratory may have adapted to 
the laboratory-related environmental conditions. In P. japonica 
and P. fuliginosa, Blattabacterium CP001429_s accounted for 
more than half of all OTUs. In addition, we observed that 
many OTUs were present in the microbiomes of P. japonica 
and P. fuliginosa. Nonetheless, the differences among the 3 
cockroach species with respect to OTU composition were 
identified from the results of the UPGMA and PCoA clustering 
analyses. We confirmed that P. japonica and P. fuliginosa clus-
tered before P. americana. In combination with the species 
composition results, these results suggest that P. japonica and P. 
fuliginosa have more similar bacterial compositions compared 
to that of P. americana. As mentioned earlier, P. americana re-
mained resilient and stable despite a dietary shift [3], and P. 

japonica and P. fuliginosa are expected to have a similar bacterial 
composition because of the same diet.

P. americana exhibited higher abundance than P. japonica 
and P. fuliginosa. We expected that the species were more prev-
alent because P. americana is larger than P. japonica or P. fuligi-

nosa. Dysgonomonas species, which were present in P. ameri-
cana, may cause gastroenteritis in immunocompromised hu-
mans [15]. Dysgonomonas is common in cockroaches [18], and 
unclassified Dysgonomonas species were also present in P. ja-

ponica and P. fuliginosa. Serratia marcescens has been found to 
be associated with hospital-acquired infections and is an op-
portunistic pathogen that is often involved in urinary tract and 
wound infections [17]. Blattabacterium_CP001429_s was pres-
ent in P. fuliginosa, but it was more specific to P. japonica. En-

terococcus faecium can live in the gastrointestinal tract of both 
humans and animals, although it can cause endocarditis [18]. 
P. fuliginosa had many OTUs in common with P. japonica, but 
Pediococcus_uc was more abundant in all 3 cockroach species. 
Nevertheless, the PCoA and UPGMA analyses showed differ-
ent clustering results, and P. fuliginosa showed a substantial 
number of OTUs in common with P. japonica, although differ-
ences were found between the 2.

In future studies, differences between P. japonica and P. fuligi-

nosa with regard to diet and environmental shifts should also 
be assessed to determine which species characteristics are de-
termined by bacteria. Furthermore, this information will be 
beneficial for identifying species-specific cockroach features.

In conclusion, we compared the microbiomes of 3 Peripla-

neta species and found differences in the bacterial composi-
tion of their microbiomes despite being reared under the same 
conditions for many generations.
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