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A radiomics‑based model 
for predicting prognosis of locally 
advanced gastric cancer 
in the preoperative setting
Jaeseung Shin1, Joon Seok Lim1, Yong‑Min Huh1, Jie‑Hyun Kim2, Woo Jin Hyung3, 
Jae‑Joon Chung4, Kyunghwa Han1 & Sungwon Kim1*

This study aims to evaluate the performance of a radiomic signature‑based model for predicting 
recurrence‑free survival (RFS) of locally advanced gastric cancer (LAGC) using preoperative 
contrast‑enhanced CT. This retrospective study included a training cohort (349 patients) and an 
external validation cohort (61 patients) who underwent curative resection for LAGC in 2010 without 
neoadjuvant therapies. Available preoperative clinical factors, including conventional CT staging 
and endoscopic data, and 438 radiomic features from the preoperative CT were obtained. To predict 
RFS, a radiomic model was developed using penalized Cox regression with the least absolute 
shrinkage and selection operator with ten‑fold cross‑validation. Internal and external validations 
were performed using a bootstrapping method. With the final 410 patients (58.2 ± 13.0 years‑old; 
268 female), the radiomic model consisted of seven selected features. In both of the internal and the 
external validation, the integrated area under the receiver operating characteristic curve values of 
both the radiomic model (0.714, P < 0.001 [internal validation]; 0.652, P = 0.010 [external validation]) 
and the merged model (0.719, P < 0.001; 0.651, P = 0.014) were significantly higher than those of the 
clinical model (0.616; 0.594). The radiomics‑based model on preoperative CT images may improve RFS 
prediction and high‑risk stratification in the preoperative setting of LAGC.

Gastric cancer is the fourth most common cancer and third leading cause of cancer-related deaths  worldwide1,2. 
Complete R0 resection with subsequent adjuvant chemotherapy is effective on patients with locally advanced 
gastric cancer (LAGC)3. However, recurrence after complete resection occurs in up to 30–40% of patients within 
5  years4–6. Recently, neoadjuvant chemotherapy is widely recommended in international western guidelines for 
advanced gastric cancer patients because of its potential benefits, including early treatment of micrometastases, 
delivery of higher dose chemotherapy before surgery, and an improved down-staging change of the primary 
 tumor3. Higher R0 resection rate and survival can be achieved with neoadjuvant chemotherapy followed by 
curative  surgery7,8. As evidence supporting neoadjuvant chemotherapy accumulates, identification of patients 
as neoadjuvant candidates becomes important.

CT is the modality of choice for preoperative clinical staging of gastric cancer; however, studies have reported 
limitations regarding staging accuracy and risk  stratification9. Due to intrinsic limitations of CT spatial resolu-
tion in distinguishing gastric wall layers, tumor staging is suboptimal. Preoperative CT-based node staging is 
also limited because size-based differentiation of small lymph nodes (LNs) with micrometastasis from large 
reactive LNs is  difficult10. Hence, there is a growing need to use biomarkers in conjunction with abdominal CT 
to predict the prognosis of LAGC.

Radiomics has emerged as a promising tool for discovering new imaging biomarkers by converting digital 
medical images into high-dimensional quantitative  features11–13. Its potential capacity to capture useful infor-
mation and increase diagnostic and prognostic power has been demonstrated in lung, prostate, brain, liver, and 
colorectal  cancers14. Although several  studies15–17, they were limited by the small sample size and lack of valida-
tion. Recently, a large retrospective  study18 demonstrated that the radiomics signature had good performance in 
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predicting prognosis and survival benefit of adjuvant chemotherapy. However, the study included a considerable 
number of gastric cancer cases with early stage or distant metastasis, which limited the risk stratification of 
patients with LAGCs who are subject to preoperative chemotherapy.

This study aimed to develop and validate a radiomics-based prognostic model for recurrence-free survival 
(RFS) using preoperative contrast-enhanced CT in LAGC. Moreover, we assessed the value added by radiomic 
signatures when integrated with clinical profiles in the preoperative setting and whether the radiomics model 
can perform risk stratification for tumor recurrence.

Results
The total radiomics quality  score11 was 15 (adherence rate 15/36, 41.7%) in 16 domains (Supplementary Table S1).

Study population characteristics. A total of 410 patients (mean age, 58.2 ± 13.0 years; 268 men) was 
included in the final study population, with 349 patients (mean age, 58.3 ± 12.6 years; 232 men) in the training 
cohort and 61 patients (mean age, 57.3 ± 15.0 years; 40 men) in the validation cohort (Fig. 1). There was no sig-
nificant difference between training and validation cohorts in recurrence, sex, age, carcinoembryonic antigen, 
carbohydrate antigen 19-9, T stage, N stage, differentiation, Lauren classification, and lymphovascular invasion 
(Table 1). In the training cohort, recurrences occurred in 95 of 349 patients (27.2%) and the 1-, 2-, and 5-year 
cumulative global RFS rates were 92.2%, 85.7%, and 75.1% (95% confidence interval (CI) [89.4, 95.1], [82.1, 
89.5], [70.6, 80.0]), respectively. In the validation cohort, recurrences occurred in 21 of 61 patients (33.3%) and 
the 1-, 2-, and 5-year cumulative global RFS rates were 86.0%, 76.5, and 64.1% (95% CI [77.5, 95.5], [66.1, 88.6], 
[52.2, 78.6]), respectively. Nodular extramural infiltration in CT showed significant difference between the two 
cohorts (Table 1).

In the final study population of 410 patients, R0 gastrectomy with D2 lymphadenectomy was successfully per-
formed with 140 (34.1%) total gastrectomy and 270 (64.1%) subtotal gastrectomy. TNM stage III patients repre-
sented 49.5% (203/410) while TNM stage II and I represented 36.8% (151/410) and 14.4% (59/410), respectively. 
Overall, 74.1% of the patients received adjuvant chemotherapy (stage III, 94.6%; stage II, 68.2%; stage I, 15.3%).

Feature selection and radiomics signature building. The interobserver and interslice intraclass cor-
relation coefficient (ICC) ranges were 0.491–1.000, and 0.360–0.965, respectively. Therefore, 240 features with 
ICC > 0.75 on both interobserver and interslice reproducibility were used for the further analysis.

In the least absolute shrinkage and selection operator (LASSO) Cox regression model, a value of tuning 
parameter lambda (λ) = 0.077 with log (λ) = − 2.58 was selected by ten-fold cross-validation to minimize partial 
likelihood deviance values among 240 features. The optimal tuning parameter resulted in seven non-zero coef-
ficients (Supplementary Fig. S1). The radscore was calculated as follows:

Figure 1.  Flowchart for patient selection in training cohort and validation cohort.
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Model construction and radscore performance evaluation. Performance of the clinical, radiomics, 
and merged models were evaluated. Among preoperative clinical factors, Tumor depth on CT (CT-Depth) and 

Radscore = (−8.661705× original_shape_Sphericity)

+ (−1.974956× original_glcm_Imc1)

+ (1.033112× original_glcm_Imc2)

+ (−0.517325× original_glszm_SmallAreaEmphasis)

+ (1.670901× wavelet.LH_glcm_Idmn)

+ (5.198918× 10−5
× wavelet.LH_gldm_GrayLevelNonUniformity)

+ (−9.272848× 10−9
× wavelet.HL_glszm_LargeAreaHighGrayLevelEmphasis).

Table 1.  Patient characteristics in the training and validation cohorts. SD, standard deviation; CEA, 
carcinoembryonic antigen; CA, carbohydrate antigen; LV invasion, lympho-vascular invasion.

Training (n = 349) Validation (n = 61) p value

Recurrence (%) 95 (27.2) 21 (33.3) 0.249

Sex (female, %) 117 (33.5) 25 (41.0) 0.259

Age (mean ± SD) 58.3 ± 12.6 57.3 ± 15.0 0.601

CEA (elevated, %) 33 (9.5) 4 (6.6) 0.466

CA 19–9 (elevated, %) 35 (10.0) 9 (13.8) 0.271

Conventional CT features

Size (mean ± SD) 47.3 ± 24.9 50.0 ± 19.8 0.347

Tumor depth : Nodular 
extramural (n, %) 138 (39.5) 12 (19.7) 0.003

cN2 – 3 (n, %) 80 (22.9) 9 (14.8) 0.153

Borrmann type 4 (n, %) 31 (8.9) 8 (13.1) 0.299

Endoscopy data

Differentiation (n, %) 0.801

Well/moderate 126 (36.1) 21(34.4)

Poorly/undifferentiated 223 (63.9) 40 (65.6)

Location (n, %) 0.127

Upper 57 (16.3) 14 (23.0)

Middle 103 (29.5) 10 (16.4)

Lower 180 (51.6) 34 (55.7)

Whole 9 (2.6) 3 (4.9)

Borrmann type 4 (n, %) 11 (3.1) 4 (6.6) 0.191

Surgical pathology data

T stage (n, %) 0.607

T2 94 (26.9) 10 (16.4)

T3 113 (32.4) 21 (34.4)

T4a 140 (40.1) 30 (49.2)

T4b 2 (0.6) 0 (0.0)

N stage (n, %) 0.785

N0 126 (32.6) 20 (32.7)

N1 70 (22.0) 10 (16.4)

N2 70 (20.1) 12 (19.7)

N3a 55 (16.5) 12 (19.7)

N3b 28 (8.8) 7 (11.5)

Differentiation (n, %) 0.066

Well/moderate 122 (35.0) 14 (23.0)

Poorly/undifferentiated 227 (65.0) 47 (77.0)

Lauren classification (n, %) 0.119

Intestinal 175 (50.1) 24 (39.3)

Diffuse/mixed 174 (49.8) 37 (60.7)

LV invasion (positive, %) 154 (44.1) 26 (42.6) 0.827

Borrmann type 4 (n, %) 25 (7.2) 7 (11.5) 0.246
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Tumors classified as Borrmann type 4 on CT (CT-Type 4) were identified as independent factors for predicting 
RFS using backward stepwise approach (Table 2).

The radscore prognostic accuracy on time-dependent receiver operating characteristic curves as measured 
by area under the curves at 1, 2, and 5 years were 0.719, 0.748, and 0.733 in training and 0.795, 0.824, and 0.878, 
in validation cohorts, respectively (Fig. 2).

The integrated area under the receiver operating characteristic curves (iAUC) values for RFS prediction in 
the internal validation were: 0.616, 95% CI [0.570, 0.663] in clinical; 0.714, 95% CI [0.667, 0.759] in radiomic; 
and 0.719, 95% CI [0.674, 0.764] in merged models. In external validation, the iAUC values were: 0.584, 95% CI 
[0.544, 0.636] in clinical; 0.652, 95% CI [0.628, 0.674] in radiomic; and 0.651, 95% CI [0. 630, 0.673] in merged 
models, respectively (Table 3).

The radiomic model showed higher iAUC values than the clinical model in both internal (iAUC differ-
ence = 0.098, p < 0.001) and external validations (iAUC difference = 0.056, p = 0.010). Similarly, the merged model 
showed higher iAUC values than the clinical model in both internal (iAUC difference = 0.102, p < 0.001) and 
external validations (iAUC difference = 0.057, p = 0.014) (Table 3).

Radscore‑based risk stratification. The patients were classified into low- and high-risk groups based on 
radscore cutoffs (1.116) selected from the training set using maximally selected log-rank statistics. In both train-
ing and validation cohorts, high-risk patients showed significantly lower RFS than low-risk patients. RFS hazard 
ratios, hazard ratios were 4.209 (95%CI [2.787, 6.357], p < 0.001) and 22.061 (95%CI [5.571, 87.36], p < 0.001) in 
training and validation cohorts, respectively (Fig. 3). Examples of patients with high and low risk by the radscore 
are shown in Fig. 4.

To assess the ability of radiomics to predict early recurrence, patients who underwent follow-up for more 
than two years were divided into two groups based on recurrence within two years. There was a significant dif-
ference in the radiomic scores between these two groups in both training (0.96 ± 0.50 vs. 0.56 ± 0.59; p < 0.001) 
and validation cohorts (1.20 ± 0.41 vs. 0.76 ± 0.33; p = 0.014). When patients were dichotomized according to 
CT-Size, CT-Depth, and CT-Type4, and adjuvant chemotherapy, the Kaplan–Meier curves of the high- and low-
radscore groups showed a p value < 0.05 in the validation group (Figures S4–S7). However, the Kaplan–Meier 
curves for RFS of the high- and low-radscore groups were not significantly different in the CT-LN ( +) group of 
the validation cohort (p = 0.233) (Fig. 5).

Table 2.  Preoperative clinical factors for predicting tumor recurrence-free survival. HR, hazard ratio; CI, 
confidence interval; CEA, carcinoembryonic antigen; CA, carbohydrate antigen. *The multivariate regression 
model was built using backward stepwise approach with Akaike information criteria. †  Statistically significant.

Clinical feature

Univariate analysis Multivariate analysis*

HR (95% CI) p value HR (95% CI) p value

Age
 ≤ 60 Reference

 > 60 1.326 (0.875–2.012) 0.184

Sex
Male Reference

Female 1.189 (0.773–1.828) 0.431

CEA
 < 5 U/ml Reference

 ≥ 5 U/ml 1.557 (0.828–2.927) 0.169

CA 19–9
 < 37 U/ml Reference

 ≥ 37 U/ml 2.143 (1.189–3.863) 0.011†

CT-Size
 ≤ 4 cm Reference

 > 4 cm 2.469 (1.513–4.030)  < 0.001†

CT-Depth
Nodular extramural infiltration ( −) Reference Reference

Nodular extramural infiltration ( +) 2.103 (1.385–3.194)  < 0.001† 1.899 (1.237–2.915) 0.003†

CT-LN status
cN0 or cN1 Reference

cN2 or cN3 1.696 (1.079–2.666) 0.022†

CT-Borrmann type
Type 1,2, or 3 Reference Reference

Type 4 2.646 (1.539–4.549)  < 0.001† 2.174 (1.247–3.789) 0.006†

Endoscopy-Location

Upper Reference

Middle 2.059 (0.938–4.518) 0.072

Lower 2.057 (0.973–4.349) 0.059

Whole 5.155 (1.686–15.764) 0.004†

Endoscopy-Histological grade
Well or moderate Reference

Poorly differentiated 1.328 (0.841–2.097) 0.224

Endoscopy-Borrmann type
Type 1,2, or 3 Reference

Type 4 1.884 (0.764–4.645) 0.169
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Discussion
To predict prognosis for RFS in patients with LAGC using preoperative CT, we identified the radscore consisting 
of seven radiomic features and verified its value through external validation. In preoperative setting, the radscore 
was an independent prognostic factor in both training and validation cohorts and showed good RFS predict-
ing performance in LAGC and outperformed the clinical model alone. The merged model showed significantly 
higher prognostic performance than the clinical model, indicating that the radiomic model added value to the 
clinical model-based prediction. The results support the clinical application of radiomics in providing additional 
information for LAGC-treatment decision-making in the preoperative setting, without any additional invasive 
procedure. Moreover, the high performance of radiomic model on risk-stratification may help in selecting can-
didates for investigational treatments.

Even though pathologic TNM stage is still the most reliable prognostic factor for long-term outcomes of 
gastric  cancer19,20, such data can only be obtained after the completion of surgery. Preoperative treatment could 
alter the pathologic stage, therefore, development of non-invasive biomarkers that provide guidance for adjust-
ing the therapeutic approach is essential for LAGC. Several studies have recently highlighted the prognostic 
potential of texture analysis or radiomics in patients with gastric  cancer15,18,21. A large-scale retrospective study 
demonstrated that radiomics signature has more prognostic value than clinicopathological  features18. However, 
their study population included a considerable proportion of patients with early stage gastric cancer or distant 
metastatic stage. Early gastric cancer is known to have an excellent prognosis without needing chemotherapy and 
the AGC with distant metastasis is known to require systemic chemotherapy without resection  surgery22,23. We 
targeted LAGC since a variety of treatments have been proposed but gray zones persist in treatment determina-
tion. Our study revealed that radiomics had higher prognostic performance than the clinical model, suggesting 
that radiomics could be a practical imaging biomarker for patients with LAGC in a preoperative setting. However, 
the merged model did not perform better than the radiomics model. This might be attributed to the possibility 

Figure 2.  Survival receiver operating characteristic curves at 1, 2, and 5 years with the radscore, (A) in training 
cohort and (B) in validation cohort. R software (version 3.3.2, https ://www.r-proje ct.org) was used to draw.

Table 3.  Model performances measured by iAUC for prediction of recurrence-free survival. iAUC, the 
integrated area under the receiver operating characteristic curve; CI, confidence interval. *Comparison with 
clinical model. † Statistically significant.

Model

Internal validation External validation

iAUC (95% CI) iAUC Difference* p value iAUC (95% CI) iAUC Difference* p value

Clinical 0.616
(0.570, 0.663) – – 0.594

(0.544, 0.636) – –

Radiomic 0.714
(0.667, 0.759) 0.098  < 0.001† 0.652

(0.628, 0.674) 0.056 0.010†

Clinico-radiomic 0.719
(0.674, 0.764) 0.102  < 0.001† 0.651

(0.630, 0.673) 0.057 0.014†

https://www.r-project.org
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that most characteristics of the clinical model (mainly based on conventional imaging characteristics), were 
already reflected in the radscore.

The usefulness of neoadjuvant chemotherapy in LAGC is still controversial. Large-scale phase III trials in 
Europe have reported that perioperative chemotherapy has survival benefits over surgical treatment  alone24,25. 
However, in the majority of cases in these studies, a proper lymphadenectomy was not performed during the 
surgery. Furthermore, a lack of information about initial tumor staging before treatment could lead to selection 
 bias10. In Korea and Japan, D2 lymphadenectomy is generally performed along with gastrectomy in resectable 
advanced gastric cancer, therefore the usefulness of neoadjuvant chemotherapy has not been concluded  yet22,23. 
This controversy could be resolved through risk stratification, i.e., by identifying gastric cancer cases with a high 
risk of recurrence. In our study, radscore was successfully dichotomized into high- and low-risk groups, and 

Figure 3.  Kaplan–Meier curves and risk tables for recurrence-free survival (RFS) from (A) the training 
(n = 349) and (B) validation (n = 61) cohorts. Patients were stratified on the basis of the cutoff (radscore = 1.164) 
to maximize log-rank statistic. The radiomics score significantly stratified the patients into low- and high-risk 
groups for RFS in the training cohort (p < 0.001; log-rank test) and the validation cohort (p < 0.001; log-rank 
test). Shaded areas represent 95% confidence intervals. R software (version 3.3.2, https ://www.r-proje ct.org) was 
used to draw.

https://www.r-project.org
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verified by external validation. Therefore, radscore could offer guidance for therapeutic strategies depending 
on recurrence risk, thereby improving the clinical outcome. Particularly, LAGC patients classified as high-risk 
based on the radscore may be ideal candidates for neoadjuvant treatment, given that its potential benefits out-
weigh the morbidity risk and higher treatment cost. However, since patients with neoadjuvant treatment were 
not included in this study, its efficacy could not be assessed using radscore. Further study is required to evaluate 
the correlation between radscore and response to neoadjuvant therapy.

We evaluated the characteristics and applicability of the radscore in various clinical conditions. The radscore 
showed successful risk stratification in each subgroup dichotomized according to tumor size, tumor depth, or 
Borrmann types on preoperative CT. This indicates that the radscore could provide a more sophisticated risk 
stratification independent of known clinical prognostic factors. The radscore might help predict prognosis of 
LAGC, regardless of the outcome of current preoperative clinical staging. Interestingly, the radscore could sig-
nificantly distinguish patients into two risk groups, only in the clinically LN negative subgroup, but not in the 
clinically LN positive subgroup. However, the number of patients with LN stage 2 or over on CT in the validation 
cohort was too small (n = 9) to have statistical power. Moreover, clinical N staging by preoperative CT is very 
limited in LAGC  patients10, even though relatively satisfactory sensitivity and specificity have been reported 
for ≥ pN2  stage26, which was used as the cutoff in our study. Although the targets of radiomics were limited to 
primary tumors, and since metastatic LN was not included in this radiomics analysis, it is needed further study 
to confirm the prognostic power of the radscore in the LN positive group.

Among the seven features in the radscore, the sphericity, which is selected from the shape features, quantifies 
the roundness of the shape of the tumor region relative to a circle. Any lesion with low sphericity could be associ-
ated with a flat or infiltrative tumor, which has been regarded as Borrmann type 4. Two gray level co-occurrence 

Figure 4.  Patients with locally advanced gastric cancer whose recurrence risk was stratified into high and low 
risk by the radscore cutoff 1.16. (A) Computed tomography (CT) images on portal venous phase, (B) tumor 
segmentation in a 52-year-old woman with nodular extramural infiltration on CT whose radscore was 0.98, 
low risk group. Preoperative carcinoembryonic antigen (CEA) and carbohydrate antigen (CA) 19–9 was within 
the normal limit. Surgical pathology revealed tumor-node-metastasis (TNM) stage IIb with T4a and N0. There 
was no tumor recurrence during 96 months after surgery. (C) CT images on portal venous phase, (D) tumor 
segmentation in a 67-year-old man without nodular extramural infiltration on CT whose radscore was 1.66, 
high risk group. Preoperative CEA and CA 19–9 was within the normal limit. Surgical pathology revealed TNM 
stage IIIc with T4a and N3a. Liver metastasis occurred at 12 months after surgery.



8

Vol:.(1234567890)

Scientific Reports |         (2021) 11:1879  | https://doi.org/10.1038/s41598-021-81408-z

www.nature.com/scientificreports/

matrix (GLCM)-related features in the radscore, informational measure of correlation 1 (IMC1) and IMC2, 
measure the complexity of the texture  patterns27. Selected Small-Area-Emphasis of gray level size zone matrix 
features (GLSZM) measures the distribution of small size zones, with a greater value indicative of smaller size 
zones and finer  textures27. These GLCM and GLSZM features have specific mathematical formula measuring 
different aspects of textural heterogeneity within the tumor, e.g. tissue necrosis. These GLCM- or GLSZM-based 
texture features reflecting the interaction between neighboring pixels have shown better quantification of tumor 
texture and heterogeneity than histogram-based  features28. In addition, three features from the wavelet decom-
positions of original images are also included in our radscore. By focusing on different frequency ranges within 
the tumor, features from wavelet decompositions might be able to reveal the characteristics of tumors that did 
not appear in the original image.

This study has several limitations. First, it was a retrospective study with a relatively small sample size; how-
ever, the number was similar to those in previous radiomic  studies29,30. Moreover, external validation with cohort 
from the spatially separate hospital was performed to overcome this limitation. Future study with a larger sample 
for both training and validation is required for a robust prediction model. Second, the recurrence rate in the train-
ing cohort was 27.2%, imbalanced data. Any approach to rebalance the dataset was not performed to preserve 
representative of the clinical situation. In addition, in this study, LASSO Cox regression was performed to build 
the radscore, instead of machine learning technique. Third, the proportion of cases with nodular infiltration 
on CT was different between the training and validation cohorts, presumably due to different scale and clinical 
settings of the two spatially separate hospitals. Nevertheless, the radscore showed significant risk stratification 
in both cohorts. Fourth, since only patients who did not receive neoadjuvant chemotherapy were included, the 
benefits of neoadjuvant therapy in high versus low radscore groups could not be evaluated. Further study in a 
large prospective cohort, randomized by neoadjuvant chemotherapy status is needed to integrate this technology 
into clinical practice. Fifth, clustering for radiomics features to remove redundancy was not performed before 
model building and highly correlating features (Supplementary Fig. S2), such as IMC1 and IMC2, were included. 
These features were linear combined in the radscore and the effect of redundancy might be small. Sixth, images 
from different machines or manufacturers of CT were included in the training cohort and fourteen patients were 
excluded with poor quality of CT. To minimize variability from different CT scanners, we used a uniform acquisi-
tion protocol and resampled the images into the same pixel spacing. Moreover, the validation was performed on 
the cohort from a different hospital. Standardized protocol for different CT scanners is required for future study 
and application of radiomics prediction model in clinical setting. Seventh, feature extraction was performed 
from a single slice with the largest lesion, similar to the previous  study18. Although tumor evaluation on a single 

Figure 5.  Kaplan–Meier survival analysis of recurrence-free survival according to the radiomics score classifier 
in subgroups of the training and validation cohorts. (A) Training cohort, lymph node (LN) stage 0 or 1 on CT 
(n = 269). (B) Training cohort, LN stage 2 or over on CT (n = 80). (C) Validation cohort, LN stage 0 or 1 on CT 
(n = 52). (D) Validation cohort, LN stage 2 or over on CT (n = 9). R software (version 3.3.2, https ://www.r-proje 
ct.org) was used to draw.

https://www.r-project.org
https://www.r-project.org
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CT section might not be representative of the entire tumor  characteristics31, previous studies reported that two-
dimensional features showed prognostic performance comparable with three-dimensional segmentations in 
non-small cell lung cancer and rectal  cancer32,33. However, there is still controversy whether two-dimensional 
segmentation can replace recommended three-dimensional segmentation which allows comprehensive assess-
ment of whole tumor. Lastly, the tumors were outlined semi-automatically, which may be time-consuming and 
user-dependent in terms of selecting the slice containing the largest area of the tumor and region of interest 
placement. To reduce variability in these processes, only features with excellent inter-slice and inter-reader ICCs 
were included for analysis. In future studies, automated 3D tumor segmentation based on deep learning would 
allow further automation of the workflow, minimize user bias, and enable larger studies.

In conclusion, radiomic signature based on preoperative CT images is a possible preoperative imaging bio-
marker that can improve RFS prediction of the preoperative clinical profile in LAGC. The ability of radiomic 
signatures to identify high-risk LAGC patients may be helpful in selecting appropriate candidates for neoadjuvant 
therapy.

Methods
Study population. This retrospective study was approved by the Institutional Review Board of Severance 
Hospital (Protocol no. 4-2019-0062) and the requirement to obtain written informed consent was waived. All 
methods described in this manuscript were performed in accordance with the approved guidelines and regula-
tions.

From January 1, 2010 to December 31, 2010, consecutive patients with LAGC (pT2–4) underwent curative 
surgery without neoadjuvant therapy at a tertiary hospital, which is overlapped with the population of the pre-
vious  study34. For external validation, consecutive patients from another tertiary hospital were collected with 
the same enrollment criteria. Patients were excluded if they had double primary cancer, histology other than 
adenocarcinoma, less than 6 months of follow-up, endoscopic clipping, and history of endoscopic mucosal 
resection. Patients with poor quality CT images, including slice thickness more than 5 mm or pixel size larger 
than 1.0 mm × 1.0 mm were also excluded. After CT image analysis, patients with no identifiable lesion on their 
CT scans were excluded. The final training and validation cohorts consisted of 349 and 61 patients, respectively 
(Fig. 1).

Clinical, laboratory, endoscopic, and pathological data were retrieved from patients’ electronic medical 
records, including serum levels of carcinoembryonic antigen, carbohydrate antigen 19–9, tumor location and 
size, differentiation, lymphovascular invasion, Lauren type, and tumor-node-metastasis (TNM) stage. The TNM 
staging was reclassified according to the eighth edition of the American Joint Committee on Cancer/ Union for 
International Cancer Control staging system. The following clinical factors were integrated in the preoperative 
clinical model: Age (≤ 60 vs. > 60 years); Sex (male vs. female); levels of serum carcinoembryonic antigen (< 5 
vs. ≥ 5 U/ml) and carbohydrate antigen 19–9 (< 37 vs. ≥ 37 U/ml); endoscopy result including tumor location 
(upper vs. middle vs. lower), histological grade from biopsy tissue (well or moderate vs. poorly differentiated), 
Borrmann type (type 4 vs. others) (Table 2).

After surgical resection, all patients were followed up at our institution for 6.5 to 109.2 months (median 
follow-up: 71.5 months) through December 2018 according to our institutional  protocol35. The RFS was defined 
from the date of surgery to recurrence at any site (event) or the last follow-up date (censored).

CT image acquisition. CT scans were performed with a 16- or 64-channel multidetector CT scanner 
(Somatom Sensation 16 and Sensation 64; Siemens Medical Solutions, Forchhein, Germany; and Lightspeed 
VCT, GE Healthcare, Milwaukee, WI, USA). Images were acquired from the diaphragm level to the symph-
ysis pubis with detector collimations of 16 × 0.75  mm (Somatom Sensation 16, Simens Medical Solutions), 
64 × 0.6 mm (Somatom Sensation 64, Simens Medical Solutions), or 64 × 0.625 mm (Lightspeed VCT, GE health-
care). Other scanning parameters were as follows: tube current 160 mAs (Somatom Sensation 16 and Sensation 
64, Siemens Medical Solutions) and 100–300 mAs of Automated tube current modulation with a noise index 
of 15 (AutomA; Lightspeed VCT, GE Healthcare); tube voltage 120 kVp; table speed, 24 mm per rotation; and 
gantry rotation time, 0.5 s. The details regarding the acquisition parameters of CT image are presented in Sup-
plementary materials (Supplementary Table S2). For gastric distention, either gas distention with two packs of 
effervescent granules or water distention with 1 L of water was introduced. Scanning was performed during 
portal phases, as determined with bolus tracking and automated triggering technique after intravenous admin-
istration of 120–150 mL of nonionic contrast materials (300mgI/mL) using an automatic injector at a rate of 
4 ml/second. The amount of contrast medium per patient was determined by the total body weight. Axial and 
coronal images were reconstructed with 3-mm-thick sections and a 3 mm interval with filtered back projection 
algorithm. From the Picture Archiving and Communication System (Centricity, GE Medical Systems, Milwau-
kee, WI, USA), portal venous phase CT images were retrieved for qualitative image review and radiomic feature 
extraction because the tumor tissue was well differentiated from the adjacent normal gastric tissue.

CT image analysis. Preoperative CT images were independently reviewed by two board-certified abdomi-
nal radiologists with more than 10 years of subspecialty experience, who arrived at a consensus in cases with 
discrepancy. The CT imaging characteristics analyzed were tumor depth, LN status, tumor size, and Borrmann 
type. CT-Depth was categorized into nodular or less than nodular extramural infiltration groups—one of the 
major discriminating factors for predicting recurrence of AGC in a previous  study34. LN involvement on CT 
(CT-LN) was categorized into two groups, N0–1 and N2–3, as multidetector CT might be useful for selecting 
candidates for neoadjuvant therapy with ≥ pN2  disease26. LNs were considered metastatic if they had a short-
axis diameter > 8 mm. Tumor size (CT-Size) was measured as the longest diameter on the axial or coronal plane. 
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Tumors were classified as CT-Type4 when infiltrative stomach cancer showed no definite ulceration or mass 
formation on preoperative  CT34.

Radiomics feature extraction. A 4th year radiology resident (J.S.) selected one axial image among the 
CT images that depicted the largest area of the lesion, under the inspection of an abdominal radiologist (J.S.L., 
16-year experience). The CT images were resampled by pixel spacing 1.0 mm × 1.0 mm using the BSpline inter-
polator of Insight Segmentation and Registration Toolkit (ITK) package (https ://www.itk.org). A free-form 
region of interest (ROI) was drawn along the margins of the tumor using semi-automatic methods aided by the 
CT attenuation threshold, measured using an open-source application, Medical Image Processing, Analysis, and 
Visualization (MIPAV) (https ://mipav .cit.nih.gov). Each selected image and ROI were thoroughly checked by 
another abdominal radiologist (J.S.L.) with 16-year subspecialty experience. Disagreements about the ROI were 
resolved by consensus-based discussion. The radiologists were blinded to the clinical and histopathologic data, 
except for information on the diagnosis of gastric cancer and the general location of the tumor (upper, middle, 
lower, or whole) based on findings of the preoperative endoscopy, since we were not evaluating the detection 
ability.

Pyradiomics (version 2.0.0), the open-source python package, was used to extract radiomics features, includ-
ing shape-based features, first-order features, and texture features (Supplementary Table S3). The original CT 
image was decomposed into four decompositions (low–high, high-high, high-low, low-low subbands) using 
two-dimensional coiflet wavelets, and radiomic features except for shape features were extracted from the wavelet 
transformed images. Finally, 438 tumor imaging quantifying features were obtained (94 features from original 
image and 86*4 features from the wavelet transformed images). Detailed information in radiomics feature extrac-
tion process can be found in Supplementary materials.

Inter‑observer and inter‑slice agreement for selected features. Another board-certified abdomi-
nal radiologist (S.K.) with 5  years of subspecialty experience drew ROIs in 30 randomly selected lesions to 
analyze inter-observer reproducibility. The radiologist was blinded to the clinical and histopathological data 
except for the general location of the tumor. Inter-observer agreement was evaluated by the ICC based on a 
two-way random effect model. As only one slice with the largest section of the lesion was selected to draw ROI, 
inter-slice agreement among extracted features was calculated using ICC with 30 randomly chosen images of 
three consecutive slices including the largest section in the middle. The features with both inter-observer and 
inter-slice ICC greater than 0.75, which were suggested to be categorized into good to excellent  reproducibility27, 
were included in subsequent analyses.

Feature selection and radiomics signature building. The LASSO Cox  regression36 was used to select 
the most prognostically useful texture features. Then, a multiple-feature based radiomics signature, namely the 
radscore, was constructed for predicting survival in the training cohort. Ten-fold cross-validation in the training 
set was performed to optimize hyperparameters for model generalizability.

Model construction and radscore performance assessment. All available clinical factors in the pre-
operative setting were included in the clinical model building (Supplementary materials). In the training cohort, 
the clinical model for predicting RFS was built using the multivariable Cox proportional hazards model with 
a backward stepwise approach based on the Akaike information criteria. The radiomic model was built using 
radscore in a univariate Cox model. The radscore was incorporated into preoperative clinical model to build a 
merged clinico-radiomic model to evaluate the potential value of the radscore. The performances of the three 
models were evaluated in the external validation cohort using the  iAUCs37 with 1000 bootstrap resamples.

Radscore‑based risk stratification. The potential association of radscore with RFS was assessed in 
training and validation cohorts using Kaplan–Meier survival analysis. The patients were stratified into high- 
and low-radscore groups, using a maximally selected log-rank statistic-based  threshold38. The threshold value 
determined in the training cohort was applied to the validation cohort. Differences in survival distributions 
between the two groups were compared using log-rank tests. Subgroup analyses according to CT-Size, CT-LN, 
CT-Depth, CT-Type4, and adjuvant chemotherapy were performed to determine if there was any survival differ-
ence between the high- and low-radscore groups.

Statistical analyses. Continuous variables were described using mean ± standard deviation and/or median 
with interquartile range and compared using independent t-tests. Categorical variables were compared using 
chi-squared or Fisher’s exact tests. RFS was assessed by the Kaplan–Meier method, and differences in survival 
distributions between groups were compared using log-rank tests. The multivariate Cox proportional hazards 
model with backward stepwise approach was used to identify independent clinical prognostic factors for RFS. 
Outcomes were expressed as hazard ratios and 95% CIs. To quantify the discrimination performance, iAUC val-
ues and their differences between models were calculated using a bootstrapping method (resampled 1000 times) 
in training (for internal validation) and validation cohorts (for external validation). 95% CIs for iAUC values 
and differences were computed by the percentile  method39. The iAUC difference was considered statistically sig-
nificant if the 95% CI of the iAUC difference did not include zero. A p-value of < 0.05 was considered statistically 
significant. Statistical analyses were performed using open source R software (version 3.3.2, https ://www.r-proje 
ct.org/, Supplementary materials). In addition, the radiomics quality score by Lambin et al.11 was evaluated to 
assess the overall quality of the study in a standardized form.

https://www.itk.org
https://mipav.cit.nih.gov
https://www.r-project.org/
https://www.r-project.org/
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Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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