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Purpose: The purpose of this study was to evaluate the predictive performance of 
ultrasonography (US)-based radiomics for axillary lymph node metastasis and to compare it with 
that of a clinicopathologic model.
Methods: A total of 496 patients (mean age, 52.5±10.9 years) who underwent breast cancer 
surgery between January 2014 and December 2014 were included in this study. Among them, 
306 patients who underwent surgery between January 2014 and August 2014 were enrolled 
as a training cohort, and 190 patients who underwent surgery between September 2014 and 
December 2014 were enrolled as a validation cohort. To predict axillary lymph node metastasis 
in breast cancer, we developed a preoperative clinicopathologic model using multivariable 
logistic regression and constructed a radiomics model using 23 radiomic features selected via 
least absolute shrinkage and selection operator regression. 
Results: In the training cohort, the areas under the curve (AUC) were 0.760, 0.812, and 0.858 
for the clinicopathologic, radiomics, and combined models, respectively. In the validation cohort, 
the AUCs were 0.708, 0.831, and 0.810, respectively. The combined model showed significantly 
better diagnostic performance than the clinicopathologic model.
Conclusion: A radiomics model based on the US features of primary breast cancers showed 
additional value when combined with a clinicopathologic model to predict axillary lymph node 
metastasis.
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Introduction

Axillary lymph node metastasis is an important prognostic factor in patients with breast cancer [1]. 
Sentinel lymph node biopsy is the standard method for diagnosing axillary lymph node metastasis in 
patients with non-palpable lymph nodes and for determining whether axillary lymph node dissection 
is indicated in these patients [2]. Although sentinel lymph node biopsy is less invasive than axillary 
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lymph node dissection, patients still report symptoms such as 
numbness, pain, and restricted movement [3]. Sentinel lymph node 
biopsy also has a false-negative rate of 5% to 10% [4]. In patients 
with suspicious axillary lymph nodes on ultrasonography (US), US-
guided fine-needle aspiration is commonly used to confirm axillary 
lymph node metastasis and to evaluate the need for neoadjuvant 
chemotherapy [5]. US assessment and US-guided fine-needle 
aspiration may have the potential to replace sentinel lymph node 
biopsy in planning the surgical approach; however, the diagnostic 
performance of these methods has not been found to be satisfactory 
[6-9]. 

Several nomograms have been published for the preoperative 
prediction of axillary lymph node metastasis. These include clinical 
factors and post-biopsy information, such as patient age, tumor size, 
tumor location, multiplicity, tumor type, and receptor status. Previous 
studies have also associated several US features of primary tumors 
with axillary lymph node metastasis [10,11]. Recently, magnetic 
resonance imaging-based radiomics features extracted from primary 
tumors showed high predictive performance for axillary lymph node 
metastasis [12-15]. However, fewer studies have been conducted 
on US-based radiomics than on magnetic resonance imaging-based 
radiomics [16-18]. In the few studies that have been published, 
US-based radiomic features have displayed good diagnostic 
performance, but these results were not validated in a separate 
cohort [16,17]. A well-established radiomics model may be able to 
assist or even replace US assessment with fine-needle aspiration or 
sentinel lymph node biopsy in the planning of the surgical approach.

Thus, the purpose of this study was to evaluate the preoperative 
predictive performance of US-based radiomics for axillary lymph 
node metastasis and to compare it with the predictive performance 
of a clinicopathologic model.

Materials and Methods

This retrospective study was approved by the institutional review 
board of Severance Hospital (Seoul, Korea). The requirement for 
informed consent was waived. 

Patient Population
Between January 2014 and December 2014, 793 patients 
underwent surgery for breast cancer at our institution. The exclusion 
criteria were as follows: (1) 175 patients with ductal carcinoma in 
situ, (2) 51 patients with masses larger than 4 cm at preoperative 
US that could not be fully included in a single standard US image, (3) 
21 patients who underwent re-operation or surgery for recurrence, 
(4) 20 patients referred to our institution after excisional biopsy 
at an outside clinic, (5) 17 patients with non-mass lesions with 

uncertain boundaries due to vague regions of interest, and (6) 13 
patients who underwent neoadjuvant chemotherapy without initial 
histological confirmation of the axillary lymph nodes. After exclusion, 
496 patients (mean age, 52.5±10.9 years) with breast cancer were 
included in our study. Among them, 306 patients who underwent 
surgery between January 2014 and August 2014 were enrolled 
as the training cohort, and 190 patients who underwent surgery 
between September 2014 and December 2014 were enrolled as the 
validation cohort (Fig. 1). 

Clinicopathologic Data Acquisition
US examinations were performed by 10 radiologists using two 
different ultrasound machines (iU22, Phillips Medical Systems, 
Bothell, WA, USA; LOGIQ E9, GE Healthcare, Milwaukee, WI, USA) 
with linear array transducers. If a patient underwent multiple US 
examinations prior to surgery, we selected the US examination 
taken at the time at which a suspicious mass was detected at our 
institution. The median interval between the initial US examination 
and surgery was 15 days (range, 2 to 335 days). A radiologist (E.K.K.) 
retrospectively reviewed the US images and collected data regarding 
mass size, tumor location, multiplicity in a single breast, and skin-to-
tumor distance.

We reviewed post-biopsy pathologic reports to investigate cancer 
type (ductal, lobular, or other) and estrogen receptor, progesterone 
receptor, human epidermal growth factor receptor 2 (HER2), and 
Ki67 status. Mixed ductal and lobular cancer, mucinous cancer, 
invasive micropapillary carcinoma, tubular carcinoma, and other 
mixed types were classified as "other" with regard to cancer 
type. Estrogen receptor and progesterone receptor positivity were 
defined as immunoreactivity of 1% or higher for tumor cell nuclei, 
and Ki67 positivity was defined as immunoreactivity of 14% or 
higher. In cases of equivocal HER2 overexpression, an amplification 
ratio of 2 or higher on fluorescence in situ hybridization testing 
was considered to indicate HER2 positivity. We also collected data 
from electronic medical records regarding whether each patient 
underwent neoadjuvant chemotherapy, and we obtained information 
regarding lymphovascular invasion and histologic grade from 
postoperative pathologic reports; these data were used for baseline 
comparison of clinicopathologic features between the training and 
validation cohorts. In the development of the clinicopathologic 
model, these variables were excluded because we aimed to develop 
the model in a preoperative setting. The standard reference for 
lymph node status was based on the results of sentinel lymph node 
biopsy or axillary lymph node dissection. In patients who received 
neoadjuvant chemotherapy, we instead referred to the results of 
fine-needle aspiration before starting treatment.
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Extraction of Radiomic Features 
A radiologist with 1 year of experience in breast imaging (S.E.L.) 
selected one axial image among the US images of each breast mass 
and cropped the image to remove the space used for informative 
text. After the image was resampled to a pixel size of 0.2 mm, 
a region of interest along the mass margin was imaged semi-
automatically using MIPAV software version 8.0.2 (NIH, Bethesda, 
MD, USA; open-source, https://mipav.cit.nih.gov) and converted into 
mask files for feature extraction by the same radiologist. Another 
resident radiologist (Y.S.), a third-year resident, independently 
performed segmentation of 50 randomly-chosen masses to evaluate 
interobserver reproducibility. 

A radiologist with 4 years of experience in data science (S.K.) 
extracted features from the mask files using Pyradiomics software 
(version 2.0.0, open-source, https://pyradiomics.readthedocs.io/
en/latest). A total of 444 radiomic features were extracted from 
the original and derived (wavelet-transformed) images. For each 
radiomic feature of the 50 randomly-selected masses, the intraclass 
correlation coefficient was calculated between two radiologists, 
and 39 features with coefficients of less than 0.75 were excluded. 
For the remaining 405 radiomic features, z-score normalization was 
applied to standardize the values. Features with Spearman correlation 

coefficients greater than 0.95 were represented by a single feature 
that showed the widest range among clustered features through the 
hierarchical clustering process. In total, 125 features were selected 
to optimize reproducibility and redundancy. They consisted of 40 
features from the original images (4 shape features, 10 first-order 
features, 15 gray-level co-occurrence matrix features, 4 gray-level 
run-length matrix features, 5 gray-level size-zone matrix features, 
and 3 gray-level dependence matrix features) and 85 features from 
the wavelet-filtered images. Image processing was performed using 
ITK Python packages (version 4.13.2, open-source, https://itk.org/
ITK/resources/software.html). Fig. 2 shows the process from US 
image acquisition to radiomics model development.

Statistical Analysis
Finally, we selected radiomic features using penalized logistic 
regression under the least absolute shrinkage and selection operator 
(LASSO) model with 5-fold cross-validation in the training cohort. 
A rad-score was computed via a linear combination of the selected 
features weighted by each coefficient. The area under the curve (AUC) 
was calculated in the training cohort using the selected features 
with a 95% confidence interval (CI). A preoperative clinicopathologic 
model was established using multivariable logistic regression with 

Fig. 1. Patient selection criteria for the 
training and validation cohorts. 

793 Patients with breast cancer underwent surgery between
January 2014 and December 2014

496 Patients with breast cancer 

175 Patients with ductal carcinoma
in situ

51 Patients with cancer 4 cm or 
larger

21 Patients who underwent surgery 
for recurrence

20 Patients who underwent 
excisional biopsy

17 Patients with nonmass lesion 
showing uncertain boundaries

13 Patients who received 
neoadjuvant chemotherapy 
without cytologic confirmation 
of axillary lymph node were 
excluded

Training cohort

306 Patients underwent surgery between
January and August 2014

Validation cohort

190 Patients underwent surgery between
September and December 2014
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Fig. 2. Overview of workflow in the 
radiomics study. US, ultrasonography; 
GLCM, gray-level co-occurrence 
matrix features; GLRLM, gray-level 
run-length matrix features; GLSZM, 
gray-level size-zone matrix features; 
GLDM, gray-level dependence matrix 
features; LASSO, least absolute 
shrinkage and selection operator.
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the variables that had P-values less than 0.05. We calculated the 
predictive performance levels of the clinicopathologic and combined 
clinicopathologic-radiomics models to evaluate the incremental 
value of the radiomic model via the Delong test for two receiver 
operating characteristic curves. Performance was independently 
evaluated in the validation cohort. Differences in clinicopathologic 
characteristics between the training and validation cohorts were 
assessed using the Mann-Whitney U test and the chi-square test.

Statistical analyses were performed using R software version 3.6.1 
(R Foundation for Statistical Computing, Vienna, Austria; http://
www.R-project.org). P-values of less than 0.05 were considered to 
indicate statistical significance. 

Results

Patient Characteristics
The clinicopathologic characteristics of the patients in the training 
and validation cohorts are summarized in Table 1. Lymph node 
positivity was present in 30.1% (92 of 306) of the patients in the 
training cohort and in 32.1% (61 of 190) of those in the validation 
cohort, which did not constitute a statistically significant difference 
(P=0.689). Similarly, no significant difference was observed between 
the training and validation cohorts for any other factor. 

Clinicopathologic Predictors and Performance
Based on multivariable logistic regression, the independent 
preoperative clinicopathologic factors identified as predictors of 
axillary lymph node metastasis were mass size on US, tumor location 
(outer, medial, or subareolar), tumor type (ductal, lobular, or other), 
and multiplicity (Table 2). Age, skin-to-tumor distance, distance from 
the nipple, and receptor status showed no significant association 
with lymph node metastasis. The predictive performance of the 
clinicopathologic model was moderate, with AUC values of 0.760 
(95% CI, 0.703 to 0.817) in the training cohort and 0.708 (95% CI, 
0.630 to 0.786) in the validation cohort.

Radiomics Model Development and Comparison
Of the 125 features that were originally chosen, 23 were selected in 
the training cohort using the LASSO logistic regression model (Table 
3, Fig. 3). Among the 23 radiomics features, 'first order_kurtosis' 
was a dominant feature in our radiomics model, as it was associated 
with the highest value of the coefficient. A clinicopathologic model 
was developed with four factors: tumor size, location, subtype, and 
multiplicity. The predictive performance of the radiomics model was 
comparable to that of the clinicopathologic model, with AUCs of 
0.812 (95% CI, 0.760 to 0.864) in the training cohort and 0.831 
(95% CI, 0.773 to 0.889) in the validation cohort. The radiomics 

model showed significantly better predictive performance than the 
clinicopathologic model in the validation cohort (P=0.013) (Table 4).

To evaluate the incremental value of the radiomics model, we 
developed a combined model using the radiomics score and the four 
aforementioned clinicopathologic factors. The AUC of the combined 
model was 0.858 (95% CI, 0.814 to 0.902) in the training cohort, 
which was significantly better than the performance of the 
clinicopathologic model alone (AUC, 0.760; P=0.007). 

When we applied these models to the validation cohort, the 

Table 1. Clinicopathologic characteristics of the training and 
validation cohorts

Training cohort 
(n=306)

Validation cohort 
(n=190)

P-value

Axillary LN metastasis 92 (30.1) 61 (32.1) 0.689

Age (y) 50 (45-60) 52 (46-59) 0.307

Mass size on US (mm) 16 (11-22) 16 (11-23) 0.663
Skin-to-tumor distance 
(mm)

6 (4-8) 7 (4-9) 0.238

Distance from nipple (cm) 3 (2-5) 3 (2-4) 0.603

Tumor location 0.147

Outer 182 (59.4) 126 (66.3)

Medial 109 (35.6) 60 (31.6)

Center 15 (4.9) 4 (2.1)

Tumor type 0.443

Ductal 255 (83.3) 156 (82.1)

Lobular 8 (2.6) 9 (4.7)

Othera) 43 (14.1) 25 (13.2)

Multiplicity 68 (22.2) 48 (25.3) 0.447

ER-positive 235 (65.3) 145 (76.3) 0.913

PR-positive 142 (46.4) 87 (45.8) 0.926

HER2-positive 39 (12.8) 25 (13.2) 0.891

Ki67-positive 106 (34.6) 78 (41.1) 0.153
Neoadjuvant 
chemotherapy

39 (12.7) 33 (17.4) 0.190

Histologic gradeb) 267 157 0.236

1 76 (28.5) 55 (35.0)

2 134 (50.2) 66 (42.0)

3 57 (21.3) 36 (22.9)

Lymphovascular invasionc) 20 (7.5) 11 (7.0) >0.99
Values are presented as number (%) or median (interquartile range).
LN, lymph node; US, ultrasonography; ER, estrogen receptor; PR, progesterone 
receptor; HER2, human epidermal growth factor receptor 2.
a)Includes mixed ductal and lobular cancer (in the training and validation cohorts, 
n=17 and n=5, respectively), mucinous cancer (n=7 and n=9, respectively), tubular 
carcinoma (n=9 and n=7, respectively), invasive micropapillary carcinoma (n=5 and 
n=2, respectively), and others (n=5 and n=2, respectively). b)Analyzed in patients 
who did not receive neoadjuvant chemotherapy. c)Analyzed in patients who did not 
receive neoadjuvant chemotherapy.
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AUC of the combined model was 0.810 (95% CI, 0.745 to 0.876). 
The combined model performed significantly better than the 
clinicopathologic model in the prediction of axillary lymph node 
metastasis (AUC, 0.708; P=0.048) (Table 4, Fig. 4).

Discussion

We developed a radiomics model consisting of 23 features selected 
using LASSO logistic regression and a preoperative clinicopathologic 

Table 2. Preoperative clinicopathologic predictors of axillary lymph node metastasis
Metastasis (-) Metastasis (+) Univariable P-value Multivariable P-value Estimate

Age (y) 50 (44-60) 51 (45-60) 0.863

Mass size on US (mm) 14 (10-20) 19 (14-26) <0.001 <0.001a) 0.072

Skin-to-tumor distance (mm) 6 (4-9) 5 (4-8) 0.297

Distance from nipple (cm) 3 (2-5) 3 (2-5) 0.980

Tumor location

Outer 118 64

Medial 84 25 0.030 0.018a) -0.733

Subareolar 12 3 0.243 0.143 -1.024

Tumor type

Ductal 172 83

Lobular 6 2 0.655 0.751 -0.296

Otherb) 36 7 0.036 0.027a) -1.101

Multiplicity 30 38 <0.001 <0.001a) 1.450

ER-positive 165 70 0.847

PR-positive 102 40 0.501

HER2-positive 21 18 0.021 0.629

Ki67-positive 66 40 0.034 0.757
Values are presented as median (interquartile range) or number.
US, ultrasonography; ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2.
a)Variables used in the clinicopathologic model. b)Includes mixed ductal and lobular cancer, mucinous cancer, invasive micropapillary carcinoma, tubular carcinoma, and other 
mixed types.

Fig. 3. Radiomics feature selection using the least absolute 
shrinkage and selection operator (LASSO) logistic regression 
model in the training cohort.  
A. The area under the receiver operating characteristic curve (AUC) 
was plotted versus log (λ). Dotted vertical lines were drawn at the 
optimal values by using the minimum criterion and 1 standard error 
(SE) of the minimum criterion (1-SE criterion) according to 5-fold 
cross-validation.
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model consisting of four factors (tumor size, location, subtype, and 
multiplicity) to predict axillary lymph node metastasis in patients 
with breast cancer. As combination with the US-based radiomics 
model significantly improved the predictive performance of the 
clinicopathologic model, the radiomics model can be said to provide 
additional value in the prediction of axillary lymph node metastasis. 
This result implies that US-based intratumoral characteristics 
of primary breast cancer, represented by radiomic features, are 
associated with axillary lymph node metastasis, although this 
has not been clearly identified in the context of US features such 
as shape, margin, echogenicity, or orientation [10]. In the future, 
this model may help identify patients who need sentinel lymph 
node biopsy or axillary dissection before surgery, and it could even 
potentially indicate which patients require aspiration or core-needle 
biopsy of lymph nodes at the staging workup.
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Fig. 3. B. LASSO coefficient profiles of the 125 features were shown. A coefficient profile plot was produced against the log (λ) sequence. A 
vertical line was drawn at the value selected at which optimal λ resulted in 23 nonzero coefficients.

Table 3. Radiomics features selected via LASSO logistic regression
Feature Coefficient

Intercept -1.014046390

Shape_Elongation -0.232204952

Firstorder_TotalEnergy 0.056019024

Firstorder_Kurtosis -0.530412652

Firstorder_Maximum -0.012711923

Firstorder_RootMeanSquared -0.118752125

GLRLM_RunLengthNonUniformity 0.315401837

GLRLM _ShortRunEmphasis -0.281044343

GLSZM_ZoneVariance -0.011315798

GLSZM_LargeAreaLowGrayLevelEmphasis -0.001872964

GLSZM_LowGrayLevelZoneEmphasis 0.305594347

GLSZM_SmallAreaEmphasis -0.226977032

Wavelet.LH_firstorder_Kurtosis 0.059095450

Wavelet.LH_firstorder_Median -0.241255217

Wavelet.LH_firstorder_Skewness -0.235081848

Wavelet.LH_GLCM_Correlation 0.234716517

Wavelet.LH_GLCM_Imc 1 0.012029529

Wavelet.LH_GLSZM_LargeAreaHighGrayLevelEmphasis -0.037115355

Wavelet.HL_GLCM_Imc 1 0.059703461 

Wavelet.HH_firstorder_Median -0.319908947

Wavelet.HH_GLCM_Imc 1 0.066029891

Wavelet.LL_GLRLM_LongRunLowGrayLevelEmphasis 0.097798404
Wavelet.LL_GLDM_SmallDependenceLowGrayLevel
Emphasis 

0.009686394

Wavelet.LL_GLDM_DependenceEntropy 0.193182701
LASSO, least absolute shrinkage and selection operator; GLRLM, gray-level run-
length matrix; GLSZM, gray-level size-zone matrix; GLCM, gray-level co-occurrence 
matrix; GLDM, gray-level dependence matrix.

Table 4. Comparison of predictive performance between the 
models in the training and validation cohorts

AUC (95% CI)

Training cohort Validation cohort

Clinicopathologic model 0.760 (0.703-0.817) 0.708 (0.631-0.786)

Radiomics model 0.812 (0.760-0.864) 0.831 (0.773-0.889)

P-valuea) 0.184 0.013

Combined model 0.858 (0.814-0.902) 0.810 (0.745-0.876)

P-valueb) 0.008 0.048
AUC, area under the receiver operating characteristic curve; CI, confidence interval.
a)Comparison between the clinicopathologic model and the radiomics model. 
b)Comparison between the clinicopathologic model and the combined model.
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In our preoperative clinicopathologic model, multivariable logistic 
regression was used to identify tumor size, tumor location, tumor 
type, and multiplicity as predictors of axillary lymph node metastasis; 
these factors have similarly been shown to be predictive factors in 
previous studies [19]. Based on previous reports, we also added 
skin-to-tumor distance and the distance from the nipple in the 
analysis; however, these were not found to be predictive factors 
in our study [10,20]. Our preoperative clinicopathologic model 
did not include histologic grade or lymphovascular invasion of the 
tumor, since this information is obtained after surgery. Instead, data 
regarding tumor type and hormone receptor status were included, 
because they could be readily obtained from biopsy results. The 
internationally-validated nomogram developed by the Memorial 
Sloan-Kettering Cancer Center from nine variables (age, tumor size, 
type, location, lymphovascular invasion, nuclear grade, multifocality, 
estrogen receptor status, and progesterone receptor status) showed 
slightly higher predictive performance (AUC of 0.71-0.78) than our 
preoperative clinicopathologic model [21,22]. Because histologic 
grade and lymphovascular invasion are known to be influential 
factors, this could be a reason for the slightly lower performance 
exhibited by our model.

Although the radiomics model performed significantly better 
than the preoperative clinicopathologic model in the prediction of 
axillary lymph node metastasis in the validation cohort, it did not 
exhibit statistically higher performance than the clinicopathologic 

model in the training cohort. Since radiomic features are developed 
from intratumoral characteristics only, this model did not contain 
clinical characteristics or extratumoral information such as posterior 
shadowing, echogenic halo, or peritumoral distortion beyond the 
region of interest. Thus, the radiomics model may complement 
the clinicopathologic model, as the combined model significantly 
improved the predictive performance of the clinicopathologic model.

Among the few published studies that have used US-based 
radiomics to predict axillary lymph node metastasis in patients with 
breast cancer, two have not been verified with a validation cohort, 
and overfitting remained a problem for those studies [16,17,23]. 
Recently, Yu et al. [18] analyzed 426 patients (300 in a training 
cohort and 126 in a validation cohort) and found the combined 
model to have additional value over the clinical model. In that 
study, the dominant radiomic feature was first-order kurtosis, which 
aligned with our results. The conclusion of that study was also 
consistent with ours; however, its clinical model consisted of age, 
mass size, and US-reported lymph node status, and the known 
predictors of tumor location and multiplicity were not included in its 
analysis [18]. Additionally, more than 40% of patients in the study 
by Yu et al. [18] were found to have axillary lymph node metastasis, 
which was higher than the percentage observed in our study (30.8%, 
153 of 496). The incidence of axillary metastases in patients with 
invasive breast cancer was previously reported to be 30%-40%, 
but this value has decreased gradually because the size of detected 

Fig. 4. Receiver operating characteristic curves of the training and validation cohorts. 
A. In the training cohort, the areas under the curve (AUC) were 0.760, 0.812, and 0.858 for the clinicopathologic, radiomics, and combined 
models, respectively. B. In the validation cohort, the AUC values were 0.708, 0.831, and 0.810, respectively.
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breast cancer has decreased since regular cancer screening has 
been established [24-26]. The relatively low proportion of patients 
with axillary lymph node metastasis in the present study may be a 
reflection of clinical practice, which may have been facilitated by our 
use of two different US machines operated by 10 radiologists.

This study has several limitations, the most notable of which is its 
retrospective single-institution design. Future multicenter studies, 
ideally with prospective data collection obtained via population-
based screening, are warranted to confirm our findings. Second, we 
utilized the results of fine-needle lymph node aspiration in the 72 
patients who received neoadjuvant chemotherapy, since surgical 
pathology is affected by chemotherapy. Fine-needle aspiration has 
been found to have high diagnostic performance, but it may still 
be lower than that of surgical biopsy. Third, we could not include 
information regarding the palpability of axillary lymph nodes in the 
clinicopathologic model; although most nodes were specified as 
non-palpable (478 of 496; 96.4%) or palpable (15 of 496; 3.0%), a 
few (3 of 496; 0.6%) were not identified on the electronic medical 
records. We also tried to focus on the clinicopathologic features of 
primary breast tumors. Finally, we utilized images obtained from 
different US systems and radiologists. Radiomic features have 
been reported to be affected by vendor dependency and operator 
dependency, which may have affected our results.

In conclusion, a radiomics model based on the US features of 
primary breast cancers showed additional value in the prediction of 
axillary lymph node metastasis when combined with a preoperative 
clinicopathologic model.
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