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INTRODUCTION

Alzheimer’s disease (AD) is a progressive 
neurodegenerative disease and is the most leading cause 
of dementia (1). Mild cognitive impairment (MCI) is often 
considered a prodromal stage of AD, but patients with 
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MCI are heterogeneous with different rates of progression 
toward AD (2). The criteria of the National Institute of 
Neurological Disorders and Stroke-Alzheimer Disease and 
Related Disorders (3) and the National Institute on Aging 
and Alzheimer’s Association guideline (4) have highlighted 
the use of neuroimaging for the diagnosis and prognosis of 
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AD. However, traditional imaging biomarkers from structural 
MRI such as atrophy have limited value because they are 
not specific for neurodegeneration due to AD, and atrophy 
occurs as a later event in AD progression (5, 6).

Radiomics is the process of converting image data to 
mineable data for extraction of quantitative radiomics 
phenotypes using data characterization algorithms. The 
underlying hypothesis for radiomics is that these features 
(i.e., shape, first-order, and second-order [texture] features) 
have the potential to discover hidden information that 
is inaccessible with single-parameter approaches such as 
volume, and may reflect genomic, cellular, and metabolic 
information (7). Although previous radiomics studies in the 
neuroradiology field have mostly focused on neuro-oncology 
(8-11), recently there has been a growing number of studies 
that performed radiomics analyses on MCI and AD. These 
studies have demonstrated promising results in differential 
diagnosis (12-17) and prediction of cognitive conversion in 
MCI and AD patients (18-21). 

Radiomics research has shown great promise for 
personalized clinical decision making (22). However, the 
fact that radiomics research is currently performed for 
academic purposes without clinical translation can be partly 
attributed to insufficient strategies for imaging biomarker 
translation, which requires methodology standardization 
for reproducibility and evaluation of clinical-biomarker 
correlation and biomarker-outcome correlation (23). 
Recently, a radiomics quality score (RQS) was proposed to 
assess the quality of studies (22). Previous studies have 
assessed RQS in the oncology (24, 25) or neuro-oncology 
fields (26), but to the best of our knowledge, the quality 
of science in radiomics research studies in MCI and AD is 
unknown. There is a need to assess the quality of current 
radiomics studies to provide a roadmap for improvement in 
future researches.

Therefore, the purpose of our study was to evaluate the 
quality of reporting of radiomics in MCI and AD studies 
using RQS. We intended to promote the quality of reporting 
of radiomics in MCI and AD studies and increase the 
reliability of radiomics for the diagnosis and prognostic 
biomarkers of MCI and AD in the clinical setting. 

MATERIALS AND METHODS

Systematic Search Strategy and Study Selection
All original research papers using radiomics analysis 

published up until March 11, 2020 were searched from 

PubMed MEDLINE (n = 133) and EMBASE (n = 224) 
databases using the following search term: (“cognitive 
impairment” OR “Alzheimer” OR “dementia”) AND (“radiomic” 
OR “texture” OR “radiogenomic”). A total of 357 candidate 
articles were searched, and the retrieved articles were 
screened for eligibility. After removing 99 duplicate articles, 
219 articles were further excluded for the following reasons: 
non-radiomics studies (n = 130), conference abstracts (n = 
65), technical notes (n = 8), review articles (n = 7), not in 
the field of interest (n = 6), non-human subject studies (n = 2), 
and non-brain images (n = 1). Of the remaining 40 articles, 
studies using less than 10 radiomics features (n = 7), 
studies with main text in languages other than English (n = 
6), and studies assessing only correlation without results of 
diagnostic or prognostic performance (n = 1) were excluded. 
Finally, 26 articles were included in analysis (Fig. 1).

Analysis of Method Quality Based on RQS
The RQS score consisted of 16 components. The reviewers 

performed RQS evaluation according to six domains as 
previously reported (Supplementary Table 1) (25, 26). Prior 
to the evaluation, a research meeting was held to educate 
the reviewers on the RQS system. 

Two reviewers (with six and nine years of experience in 
radiology, respectively) independently scored the articles 
for each of the six domains using RQS (Supplementary 
Materials). If disagreement occurred between the two 
reviewers, a final decision was made through a consensus. 

In addition, additional topics of RQS were discussed by the 
two reviewers and a consensus was reached for evaluation 
with consideration to the characteristics of AD and MCI 
researches (Supplementary Materials). RQS was scored 
according to the consensus reached for the following topics: 
‘image protocol quality’ (domain 1), automatic segmentation 
for ‘multiple segmentation’ (domain 2), issues for ‘validation’ 
(domain 2), ‘comparison with the gold standard’ (domain 3), 
and ‘potential clinical utility’ (domain 3). 

Statistical Analysis
The characteristics of articles were reviewed. If the article 

got at least one point from each item (0–16 items), it 
was defined as having a basic adherence to RQS for that 
item. Basic adherence to RQS for 0–16 items was counted. 
Basic adherence rate (%) was calculated as proportion of 
the number of articles with basic adherence to number of 
total articles. RQS score was described as mean scores and 
standard deviation using descriptive statistics for each 
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item. Percentage of the ideal score (%) was defined as 
percentage of mean score to ideal score for each item. Total 
RQS score (-8 to 36) was counted for all articles. 

In addition, subgroup analysis was performed to 
determine whether the reporting quality improved over 
time (publications before January 1, 2019 [n = 18] and 
after January 1, 2019 [n = 8]). According to normality 
test results, either Student’s t test or the Mann-Whitney’s 
U-test was applied for comparison. A p value < 0.05 was 
considered statistically significant. All statistical analyses 
were performed using R (version 4.0.2; R Foundation for 
Statistical Computing).

RESULTS

Characteristics of the 26 Included Radiomics Studies 
in MCI and AD

The characteristics of the 26 included radiomics studies 
(12-17, 19-21, 27-43) are summarized in Table 1, Figure 2, 
and Supplementary Table 2. The median number of subjects 
in the included articles was 204 (range 86–460). Journal 
type included 10 clinical journals (38.5%), 9 imaging 
journals (34.6%), and 7 computer science/neuroscience 
journals (26.9%). Radiomics analysis was performed 
to evaluate a diagnostic biomarker (50%), prognostic 

biomarker (42.3%), or both (7.7%). The purposes of the 
studies included differential diagnosis (42.3%), prediction 
of conversion to dementia (42.3%), or both (7.7%). There 
was no study that assessed molecular/genomic classification 
or response to treatment. Radiomics analysis of MCI or AD 
was mainly performed on brain MRI (84.6%), followed by 
PET (7.7%), or both (7.7%). Of 24 studies with MRI, 21 
studies (87.5%) used only T1-weighted images and the 
remaining 3 (12.5%) used T1-weighted images combined 
with other sequences such as fluid-attenuation inversion 
recovery or quantitative susceptibility mapping for feature 
extraction. Automatic segmentation (76.9%) was more 
frequently performed than manual segmentation (23.1%). 
Hippocampal analysis (46.2%) was most frequently used, 
followed by miscellaneous segmentation (23.1%), white 
matter and/or gray matter segmentation (19.2%), and 
whole brain region segmentation (11.5%). Only one study 
performed external validation (3.8%). Of the 26 studies, 
16 studies (61.5%) used an open source database (14 from 
Alzheimer’s Disease Neuroimaging Initiative [ADNI] and two 
from Open Access Series of Imaging Studies [OASIS]) and 
the remaining 10 studies (38.5%) used data from a single 
institute. In terms of magnetic strength, 10 studies (41.7%) 
utilized a 3.0 Tesla (T) magnet, 10 studies (41.7%) utilized 
1.5T, 3 studies (12.5%) utilized both 1.5T and 3T, and 1 

Articles identified through searching (n = 357)
MEDLINE (n = 133)
EMBASE (n = 224)

Articles on radiomics studies in cognitive
impairment and dementia

(n = 40)

Articles after duplicates removed
(n = 259) Excluded (n = 219)

  - Non-radiomics articles (n = 130)
  - Conference abstracts (n = 65)
  - Technical notes (n = 8)
  - Review article (n = 7)
  - Not in field of interest (n = 6)
  - Non-human subject study (n = 2)
  - Non-brain image (n = 1)

Excluded (n = 14)
  - Studies using less than 10 radiomics features (n = 7)
  - Main text in language other than English (n = 6)
  - Radiomics study assessing only correlations (n = 1)

Studies finally included in analysis
(n = 26)
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Fig. 1. Flow chart of the study selection process.
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study (4.2%) utilized 2.0T.

Basic Adherence Rate of the Reporting Quality according 
to the Six Key Domains

The basic adherence rates to the RQS for a total of 16 
items are documented in Table 2. In domain 1, 25 studies 
(96.2%) used well-documented image protocols or public 
datasets. Two studies (7.7%) performed imaging at two 
time scans to evaluate the stability of radiomics features 
(36, 41). There was no study that performed a phantom 
study. Automatic segmentation was performed in 20 studies 
(76.9%).

In domain 2, 14 studies (53.8%) performed feature 
reduction or adjustment of multiple testing. In 14 studies 
(53.8%), validation was missing. In seven studies (26.9%) 
(15, 19-21, 30, 41, 42), validation was done by randomly 
splitting an open source dataset such as the ADNI database 
into training and test sets. In the remaining 5 studies 
(19.2%), validation was executed based on a dataset from 
the same institute (14, 16, 17, 40, 43).

In domain 3, only 3 studies (11.5%) executed multivariate 
analysis with non-radiomics features (19, 38, 39). Studies 
included either clinical and/or genotypes in addition to 
radiomics features for diagnostic and prognostic models. Only 
1 study (3.8%) earned 1 point in the biologic correlation 
component (42). Only 3 studies (11.5%) compared radiomics 
with the “gold standard” method (such as hippocampal 
volume or clinical risk factors) (19-21). There was no study 
that addressed the “clinical utility” component. 

In domain 4, 18 studies (69.2%) used discrimination 
statistics, such as receiver operating characteristic curve 
or area under the curve with their statistical significance, 
or a resampling method, such as bootstrapping or cross-
validation. Six of the 18 studies (33.3%) used both 
discrimination statistics and a resampling method (19, 21, 
28, 29, 38, 43). There was no study using either cut-off 
analysis or calibration statistics. 

In domain 5, there was no prospective study or report 
on the cost-effective analysis. Lastly, in domain 6, 17 
studies (65.4%) made either 1 of 4 categories (scan, region 
of interest, code, representative region of interest with 
calculated radiomics feature) publicly available. Only one of 
those made all four components publicly available (37). 

Assessment of the RQS
For the 26 radiomics studies, the mean overall RQS score 

was 3.6 ± 6.6, which was 9.9% of the ideal score (Table 2, 

Table 1. Characteristics of the 26 Included Radiomics Studies
Article Characteristics No. of Articles*

No. of subjects 204 (range 86–460)
Journal type

Clinical journal 10 (38.5)
Imaging journal 9 (34.6)
Computer science/neuroscience journal 7 (26.9)

Biomarker
Diagnostic 13 (50)
Prognostic 11 (42.3)
Diagnostic and prognostic 2 (7.7)
Predictive 0 (0)

Topics in MCI and AD 
Differential diagnosis 13 (50)†

Prediction of cognitive conversion 13 (50)†

Molecular/genomic classification 0 (0)
Response to treatment 0 (0)

Imaging type
MRI 22 (84.6)
PET 2 (7.7)
MRI and PET 2 (7.7)

Sequence used for feature extraction in MRI studies‡

T1WI 21 (87.5)
T1WI + FLAIR or T1WI + QSM 3 (12.5)

Segmentation
Automatic 20 (76.9)
Manual 6 (23.1)

Anatomy 
Hippocampus 12 (46.2)
White matter and/or gray matter 5 (19.2)
Whole brain 3 (11.5)
Miscellaneous 6 (23.1)

External validation
Performed 1 (3.8)
Not performed 25 (96.2)

Studies using open source dataset 
ADNI 14 (53.8)
OASIS 2 (7.7)
Non-open source (institutional dataset) 10 (38.5) 

Magnetic field strength (tesla)‡

1.5 10 (41.7)
3.0 10 (41.7)
2.0 1 (4.2)
1.5 and 3.0 3 (12.5)

*Numbers in parentheses are percentages, †Two studies overlapping 
in both differential diagnosis and prediction of conversion to 
dementia were classified as prognostic purpose, ‡Data analyzed in 
studies with MRI. AD = Alzheimer’s disease, ADNI = Alzheimer’s 
Disease Neuroimaging Initiative, FLAIR = fluid-attenuated inversion 
recovery, MCI = mild cognitive impairment, OASIS = Open Access 
Series of Imaging Studies, QSM = quantitative susceptibility 
mapping, T1WI = T1-weighted image
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Fig. 3). The lowest score was -7, and the highest score was 
16, which was 44.4% of the ideal score. When considering 
each domain, the mean score and percentage of the ideal 
score was lowest in domain 2 (feature selection and 
validation) and highest in domain 1 (protocol quality and 
stability in image and segmentation).

Neither feature selection nor validation was executed 
in 8 studies (30.8%) (29, 31-36, 38), and 1 of these 8 
studies had the lowest RQS (34). The study with the highest 
score achieved the ideal score in protocol quality, multiple 
segmentation, feature reduction or adjustment of multiple 
testing, non-radiomics features (cox model analysis 
including clinical factors), comparison to “gold standard,” 
and discrimination analysis using C-statistics (19). 

Subgroup Analysis
The results of the subgroup analysis according to the 

publication date is shown in Supplementary Table 3. The 
mean overall RQS was significantly higher in recently 
published studies after January 1, 2019 than studies 
published before January 1, 2019 (8.1 vs. 0.8, p = 0.006).  
A statistically significant increase was seen in the validation 
component in domain 2 (3 vs. -5, p = 0.035).

DISCUSSION

Radiomics research in MCI and AD is rapidly growing, 
and a comprehensive evaluation of the quality of science 
and reporting at present is critical to ensure progress in 
the field. This study evaluated radiomics studies in MCI 
and AD for their quality in the science and reporting using 
RQS. The basic adherence rate and percentage of ideal RQS 
were 27.6% and 9.9%, respectively. In terms of validation, 
radiomics studies were particularly insufficient (3.8%) 

Fig. 2. Summary chart of the radiomics studies, according to the (A) number of published studies on radiomics in the AD research 
field, (B) topics in cognitive impairment and dementia, (C) segmentation method, (D) anatomy, and (E) usage of open source 
dataset. ADNI = Alzheimer’s Disease Neuroimaging Initiative, GM = gray matter, Misc = miscellaneous, OASIS = Open Access Series of Imaging 
Studies, WM = white matter
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in performing external validation. None of the studies 
addressed potential clinical utility nor did they perform 
calibration statistics. Also, none of the studies performed 

either prospective study nor cost-effectiveness analysis, 
resulting in a low level of evidence. Our study indicates that 
the overall quality was suboptimal in radiomics studies in 

Table 2. Radiomics Quality Score according to the Six Key Domains

Basic Adherence 
Rate (%)

Mean Score 
(Mean ± Standard 

Deviation)

Percentage 
of the Ideal Score (%)

Total 16 items (ideal score 36) 115 (27.6) 3.6 ± 6.6 9.9
Domain 1-protocol quality and stability in image and segmentation 
  (0 to 5 points)

47 (45.2) 2.5 ± 1.0 50

Protocol quality (2 points) 25 (96.2) 1.6 ± 0.6 80.8
Test-retest (1 point) 2 (7.7) 0.1 ± 0.3 7.7
Phantom study (1 point) 0 (0) 0 0
Multiple segmentation (1 point) 20 (76.9) 0.8 ± 0.5 80.8

Domain 2-feature selection and validation (-8 to 8 points) 26 (50.0) -1.2 ± 5.5 -15.4
Feature reduction or adjustment of multiple testing (-3 or 3 points) 14 (53.8) 0.2 ± 3.1 7.7
Validation (-5, 2, 3, 4, or 5 points) 12 (46.2) -1.2 ± 4.2 -24.6

Domain 3-biologic/clinical validation and utility (0 to 6 points) 7 (6.7) 0.4 ± 0.8 7.7
Non-radiomics features (1 point) 3 (11.5) 0.1 ± 0.3 11.5
Biologic correlations (1 point) 1 (3.8) 0.0 ± 0.2 3.8
Comparison to “gold standard” (2 points) 3 (11.5) 0.2 ± 0.7 11.5
Potential clinical utility (2 points) 0 (0) 0 0 

Domain 4-model performance index (0 to 5 points) 18 (69.2) 0.9 ± 0.7 18.5
Cut-off analysis (1 point) 0 (0) 0 0
Discrimination statistics (2 points) 18 (69.2) 0.8 ± 0.7 46.2
Calibration statistics (2 points) 0 (0) 0 0 

Domain 5-high level of evidence (0 to 8 points) 0 (0) 0 0 
Prospective study (7 points) 0 (0) 0 0 
Cost-effectiveness analysis (1 point) 0 (0) 0 0 

Domain 6-open science and data (0 to 4 points) 17 (65.4) 0.8 ± 0.8 19.2

Overall

Protocol quality and feature reproducibility

Feature selection and validation

Biological/clinical validation and utility

Model performance index

High level of evidence

Open science and data

-20                0               20               40               60               80              100

Actual RQS score Gap from the ideal RQS score

Fig. 3. RQS assessment results according to the six key domains. RQS = radiomics quality score
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MCI and AD, requiring significant improvement. 
Radiomics research in MCI and AD manifest characteristics 

that differ from those of neuro-oncology radiomics 
research, and some of these characteristics provide certain 
advantages. First, radiomics studies in MCI and AD were 
highly dependent on the ADNI dataset (comprising 53.8% 
of the radiomics studies), proving the profound impact of 
ADNI in MCI and AD research. The well-labeled high-quality 
open source database from ADNI provided a relatively 
high basic adherence rate (65.4%) in the open science 
and data domain for the radiomics research, proving the 
strength of its database framework. These results differ 
from the previous studies that assessed the quality of 
reporting and science of radiomics studies in oncology 
or neuro-oncology and revealed substantially lower basic 
adherence rates (3.9% and 5.9%, respectively) in the open 
science and data domain (25, 26). However, most radiomics 
studies using the ADNI dataset used only the ADNI dataset 
without true external validation. Since the MRI protocol 
in ADNI is strictly controlled and relatively homogeneous, 
future studies performing external validation with either 
an independent institutional or another open source 
dataset are warranted to validate the true performance of 
a radiomics model and to gain clinical significance (44). 
Second, due to the well-developed automatic segmentation 
tools for neurodegenerative diseases, the basic adherence 
rate for multiple segmentation was relatively high (76.9%). 
This seems to be an advantage in radiomics studies in MCI 
and AD in contrast to those in oncology, where there is still 
an insufficiency of validated automatic segmentation tools. 

On the other hand, there is also vast room for 
improvement in future radiomics studies in MCI and AD 
compared to those in neuro-oncology. First, unlike the 
radiomics studies in neuro-oncology, which implemented 
molecular or genomic classification with a rate of 49% 
(26), radiomics studies in MCI and AD have not yet 
performed molecular or genomic classification (45). 
Previous studies have already shown associations 
between apolipoprotein E genotype, the most robust AD 
susceptibility gene (45), and hippocampal atrophy (46, 
47), and radiomics may have the potential to predict the 
apolipoprotein genotype, which must be explored in future 
studies. Second, the basic adherence rates of domain 2 
(feature selection and validation), domain 3 (biological/
clinical validation and utility), and domain 4 (model 
performance index) were all considerably lower than those 
reported for neuro-oncology or oncology researches. 

Specifically, the basic adherence rates for domain 2, domain 
3, and domain 4 were 50.0%, 6.7%, and 23.1%, which 
were all substantially lower than previously reported basic 
adherence rates of 81.4%, 39.2%, and 45.1% for the neuro-
oncology radiomics research (26). In domain 2, the basic 
adherence rate for feature selection was 53.8%, which 
was substantially lower than previous reported rates of 
94.1% and 96.1% for the neuro-oncology and oncology 
researches, respectively (25, 26). Since radiomics represent 
complex high-dimensional data with relatively small 
samples (“large-p, small-n” data), feature reduction or 
adjustment of multiple testing is a necessary process when 
understanding the nature of radiomics to avoid overfitting 
(48). Also, the basic adherence rate of the validation in 
domain 2 was 46.2%, which was also lower than previous 
reported rates of 68.6% and 70.1% in neuro-oncology and 
oncology researches, respectively, with a mean RQS score 
below zero (-1.2 ± 4.2). There was no type of validation 
in 14 studies (53.8%). Moreover, external validation was 
conducted in only one study (3.8%). In order for radiomics 
studies to be translated into clinical practice, external 
validation is a crucial process for generalizing the radiomics 
model. Also, with regard to domain 3, radiomics research 
can achieve a higher clinical impact by integrating non-
radiomics features and comparing the performance of 
radiomics to the “gold standard” in MCI and AD; however, 
the current adherence rates for both are as low as 11.5%. 
There is also potential for improvement in the use of cut-
off analysis and calibration statistics in domain 4. These 
are important for the application of a radiomics model, 
and further emphasize the utility of radiomics in clinical 
settings. Considering the fact that processes such as 
feature reduction and validation (especially from the same 
institute) from domain 2, multivariable analysis with non-
radiomics features and comparison to “gold standard” from 
domain 3, and discrimination/calibration statistics from 
domain 4 are relatively simple processes that can be easily 
integrated into the radiomics pipeline, we speculate that 
future studies may achieve higher technical and clinical 
impact by adhering to these aspects. 

We applied the six key domains designed in previous 
researches, that support the integration of the RQS (25, 26). 
There are several more key domains that require significant 
improvement. Regarding the technical validation in domain 
1, only 2 studies (7.6%) conducted test-retest (37, 42) 
and no studies performed a phantom study, indicating 
overall insufficiency of data supporting the precision or 
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technical bias. Technical validation is warranted in future 
studies performing radiomics analysis. In domain 6, only 1 
study (3.8%) (37) provided the code in open source, and 
majority of the studies did not provide clear definitions of 
the radiomics calculation. For standardization of radiomics 
features and the reproducibility of the radiomics technique, 
multi-center trials are needed, and the releasing of the 
code in open source can accelerate the development of the 
radiomics field. 

It should be noted that RQS is an expert opinion and 
not a reporting guideline. The suggested RQS may be too 
idealistic to be qualified (i.e., the phantom study and 
multiple imaging acquisitions) in clinical settings. Also, the 
scoring system when using an open source dataset such as 
ADNI or OASIS is unclear. Nonetheless, pursuit for a higher 
quality of reporting is inevitable for the future clinical 
application of radiomics approaches. The recently published 
radiomics studies showed significantly higher RQS than 
formerly published studies, which suggests that the quality 
of science may be further improved in future studies. 

There are several limitations in our study. First, there were 
a relatively small number of articles in MCI and AD radiomics 
research. We decided to focus on this specific field because 
there seemed to be an urgent need to review the overall 
quality of the rapidly increasing radiomics researches, and 
to provide a roadmap for future studies to improve the 
methodology and reporting. Second, adherence to several 
components in the RQS is rarely possible in MCI and AD 
studies (for example, the ‘biological correlations’ component 
in domain 3 due to limited histologic confirmation (49) and 
‘cut-off analyses’ in domain 4), which may have lowered 
the overall RQS score. Despite these limitations, our results 
show that the overall quality of radiomics research in AD 
and MCI was suboptimal, especially when compared to 
neuro-oncology radiomics research. Thus, there is scope for 
improvement in future studies to reach a higher technical 
and clinical impact.

In conclusion, the current quality of reporting of 
radiomics studies in MCI and AD is suboptimal. Validation 
is necessary using an external dataset, and improvements 
need to be made to feature reproducibility, feature 
selection, clinical utility, model performance index, and 
pursuits of a higher level of evidence. 
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