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Abstract 

Background: Driver genes of GBM may be crucial for the onset of isocitrate dehydrogenase (IDH)‑wildtype (WT) glio‑
blastoma (GBM). However, it is still unknown whether the genes are expressed in the identical cluster of cells. Here, we 
have examined the gene expression patterns of GBM tissues and patient‑derived tumorspheres (TSs) and aimed to 
find a progression‑related gene.

Methods: We retrospectively collected primary IDH‑WT GBM tissue samples (n = 58) and tumor‑free cortical tissue 
samples (control, n = 20). TSs are isolated from the IDH‑WT GBM tissue with B27 neurobasal medium. Associations 
among the driver genes were explored in the bulk tissue, bulk cell, and a single cell RNAsequencing techniques (scR‑
NAseq) considering the alteration status of TP53, PTEN, EGFR, and TERT promoter as well as MGMT promoter methyla‑
tion. Transcriptomic perturbation by temozolomide (TMZ) was examined in the two TSs.

Results: We comprehensively compared the gene expression of the known driver genes as well as MGMT, PTPRZ1, 
or IDH1. Bulk RNAseq databases of the primary GBM tissue revealed a significant association between TERT and TP53 
(p < 0.001, R = 0.28) and its association increased in the recurrent tumor (p  < 0.001, R = 0.86). TSs reflected the tissue‑
level patterns of association between the two genes (p < 0.01, R = 0.59, n = 20). A scRNAseq data of a TS revealed the 
TERT and TP53 expressing cells are in a same single cell cluster. The driver‑enriched cluster dominantly expressed the 
glioma‑associated long noncoding RNAs. Most of the driver‑associated genes were downregulated after TMZ except 
IGFBP5.

Conclusions: GBM tissue level expression patterns of EGFR, TERT, PTEN, IDH1, PTPRZ1, and MGMT are observed in the 
GBM TSs. The driver gene‑associated cluster of the GBM single cells were enriched with the glioma‑associated long 
noncoding RNAs.
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Background
Glioblastoma (GBM) has been known as the heterogene-
ous tumor with necrotic portion, perivascular prolifera-
tion, or its infiltrative nature to the surrounding cortex 
[1, 2]. As the diagnostic tissue slides show these molecu-
larly different areas, cellular models of GBM have been 
questioned for its reliability [3, 4].
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Molecular subtypes have been proposed to account 
for the heterogeneity of GBM [1, 5]. However, these sub-
types are not used in clinical diagnosis because of their 
stochastic nature [6]. To increase the accuracy of diag-
nosis, clinical glioma classification has recently gravi-
tated toward the analysis of mutations on the core driver 
genes, such as those of isocitrate dehydrogenase (IDH), 
epidermal growth factor receptor (EGFR), phosphatase 
and tensin homolog (PTEN), tumor protein p53 (TP53), 
telomerase reverse transcriptase (TERT) promoter, pro-
tein tyrosine phosphatase receptor type Z1 (PTPRZ1), 
as well as O-6-methylguanine-DNA methyltransferase 
(MGMT) promoter methylation [2, 7].

IDH is the primary gene used to distinguish between 
primary and secondary GBM [8]. Their clinical incidence 
and molecular evidence suggest that these tumor types 
differ in their mutation and expression profiles [5, 9, 10]. 
However, despite its importance, approximately 80% of 
patients with GBM patients have IDH-wildtype (WT) 
tumors [11, 12]. Furthermore, most of the established 
PDX models are from IDH-WT GBM which may suggest 
its importance in the survival of cells [13–15].

EGFR, PTEN, and TP53 mutation are the most com-
mon mutation in the GBM [16, 17]. Among these driver 
genes, TP53 mutation shows biased distribution when 
grouped by IDH-mutation status: IDH-mutant GBM 
with 75% of mutations while IDH-WT GBM with 26.7% 
TP53 mutant cases [2]. Even though, gain-of-function 
phenotype by TP53 mutation suggests the harmful effect 
of TP53 mutation [18–24], its prognostic impact is still 
controversial in the GBM and other cancers [22, 25, 26].

TERT activity is detected in up to 90% of human pri-
mary cancer [27]. The rate of TERT promoter mutations 
is reported as about 58–90% of IDH-WT GBM patients 
[27, 28]. And 94% of GBM cells are reported to harbor 
TERT mutation [29]. However, TERT promoter muta-
tion does not significantly affect the prognosis of GBM 
patients [28].

PTPRZ1 shows a relatively low rate of mutation in the 
GBM. Recently, this gene is being associated with the 
origin of glioma cells with the elevated expression in the 
GBM tissue as well as the subventricular zone [30, 31]. As 
a marker of neuroglial origin, PTPRZ1 may add a bridge 
between the neurotransmitters, neurodevelopment, and 
tumor microtubes [10, 30, 32, 33].

MGMT promoter methylation status is observed in 
the 50% of glioblastoma patients. Its promoter methyla-
tion status is correlated with the gene expression [34]. 
In GBM, unmethylated MGMT promoter status is asso-
ciated with poor response to alkylating agents [35, 36]. 
Temozolomide (TMZ) is the most important alkylating 
agent available in the GBM patients [37]. However, con-
trasting reports shows other mechanisms than MGMT 

promoter methylation may be involved in the MGMT-
deficient GBM cells [38].

Here, a retrospective comparative analysis of RNAseq 
and single cell RNAseq data from IDH-WT GBM and 
GBM TS was conducted to find whether the TSs are rep-
resenting the signatures of tumor tissue. Furthermore, we 
aimed to find the transcriptomic change after TMZ treat-
ment in the in vitro level.

Methods
Clinical samples
IDH-WT GBM tissue samples were obtained from Brain 
cancer center, Severance hospital (n = 58, from 2016 to 
2020, The patient samples were ethically approved by the 
institutional review board of Severance hospital). Tumor-
free cortex samples for control were obtained when avail-
able during the resection of subcortical tumors, n = 24). 
All samples with associated DNA mutation profiles and 
tumor RNAseq data were included in this retrospective 
analysis. Samples without tumor mutation profiles were 
included for comparison. Clinical information, Muta-
tion profiles, and MGMT promoter methylation status 
were obtained from the electronic medical record of the 
hospital. Detailed methods are described in each section. 
Mutation profiles were not evaluated for the healthy cor-
tex controls, but were extrapolated from the results of the 
matched tumor tissues. Frozen tissue samples of RNAseq 
were processed in the (Theragen, Seongnam-si, Republic 
of Korea).

Tumorsphere culture
Patient samples of IDH-WT glioblastoma were cultured 
with the neurosphere media within 1  h after surgical 
resection [39–45]. Patient-derived TSs were established 
from the fresh GBM tissue specimens as previously 
described (n = 23, Institutional review board review 
number, 2012-0092-017) [46]. Previously isolated TSs 
were also prepared and included for this study (TS13-
30, TS13-64, and TS15-88). The media is composed of 
DMEM/F-12 (Mediatech, Manassas, VA, USA), 1× B27 
(Invitrogen, San Diego, CA, USA), 20 ng/mL basic fibro-
blast growth factor, and 20  ng/mL epidermal growth 
factor (Sigma-Aldrich, St. Louis, MO, USA) [39–44, 47, 
48]. Patient-derived GSC11 GBM TS were kindly pro-
vided by Frederick F. Lang’s laboratory (The Univer-
sity of Texas MD Anderson Cancer Center) [40, 49, 50]. 
Normal human astrocyte (NHA) was purchased from 
LONZA (Catalog number CC-2565). Culture conditions 
for GSC11 TSs and human astrocytes were the same as 
above. TS mutation profiles were extrapolated from the 
profiles of matching tumor tissues, and TS13-64 was pro-
filed by RNAseq.
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DNA pyrosequencing
All GBM tissue specimens were examined by modified 
pyrosequencing to evaluate MGMT promoter methylation 
status in the hospital setting [51]. DNA was extracted from 
diagnostic formalin-fixed, paraffin-embedded (FFPE) GBM 
samples using a Maxwell CSC DNA FFPE Kit (Promega, 
USA). The annealing temperature was 53  °C, and samples 
were analyzed on a Pyromark Q24 MDx System (Qiagen, 
Germany). To categorize tumors based on MGMT pro-
moter methylation status, we used a threshold of < 8% for 
the average percentage of four CpG sites in exon 1 [51].

Mutation calling
Formalin-fixed, paraffin-embedded (FFPE) tissue blocks 
were sequenced with Trusight Tumor 170 panel (Illu-
mina, United States) [52]. Maxwell CSC DNA FFPE Kit 
(Promega, United States) was used to prep for DNA/
RNA hybrid capture in the Nextseq 550 Dx (Illumina). 
Trusight Tumor 170 App Pipeline was used to analyze 
DNA small variants with Homo sapiens hg19 genome as 
the reference (Homo sapiens, UCSC). Exonic mutations 
that passed Illumina QC filter were included. Mutations 
less than 100 depth or less than 3% of variant allele fre-
quency were excluded from the analysis.

Transcriptome data analysis
The samples of TSs for RNAseq were hybridized with 
All Human V6 + UTR baits (individual TS, n = 20; for 
TMZ treatment, triplicated TS13-64 and GSC11). All of 
the transcripts in this analysis were merged and labeled 
after same alignment and counting process. GSC11 
and TS13-64 TS samples (with TMZ) were analyzed 
in the same manner. Gene expression level data were 
calculated by summing up the transcripts in the gene 
location (GRCh38.p5). Controversial transcripts were 
reconfirmed in the sequence level that is extracted from 
gffread (-w option)  [53]. An unsupervised selection of 
the expressed genes (Coefficient of variation > 10) were 
included for the t-SNE analysis [54].

Single cell RNAsequencing
GBM-derived TS 13–64 maintained under spheroid cell 
culture condition with B27. Within 30  min before the 
single-cell RNAsequencing (scRNAseq), the cells were 
dissociated with accutase. The 10× Genomics Chro-
mium platform was used to capture and barcode the cells 
to generate single-cell Gel Beads-in-Emulsion (GEMs) 
by following the manufacturer’s protocol. scRNAseq 
expression data were analyzed with Seurat v2.3.4 (PCA, 
Cluster, t-SNE and cluster). In brief, the Seurat object 
was generated from digital gene expression matrices. 
To maintain the TERT positive cells, the filtering of the 
number of genes detected in each cell was not restricted. 

The percent of mitochondrial genes were not restricted 
in our analysis. Normalized scaled data was found to 
have two distinct clusters. Shared nearest neighbor 
(SNN) modularity optimization-based clustering algo-
rithm revealed two to seven clusters depending on the 
resolution variable (from 0.01 to 0.5). Receiver operating 
characteristic  (ROC) was used for the identification of 
differentially expressed genes for each class with log fold 
change 0.25. We examined the area under the ROC curve 
(myAUC) with two and three cluster models.

Gene set enrichment analysis (GSEA)
Genes used in enrichment analysis were selected based 
on their coefficients of variation [the variance divided by 
the mean across the comparison group (n > 1) and mean 
expression (> 5 fragments per kilobase of transcript per 
million mapped reads (FPKM)] at the transcript level. 
Statistically significant genes were included in GSEA 
using the Reactome and KEGG database, with a signifi-
cance threshold of p < 0.01 [55, 56]. Pathway significance 
was calculated as the − log10 of the analysis p-value.

Validation sets
Gene expression level data of TCGA GBM was collected 
from Xena browser (University of California, United 
States) [57]. Survival data was gathered from the TCGA 
GBM, which was processed by GEPIA homepage [58]. 
Long non-coding RNA list of cancer was obtained from 
the Gold lab homepage [59].

Temozolomide treatment
The TSs (TS13-64 and GSC11) were dissociated using 
accutase (Invitrogen, United States) to the single cells 
[60]. After 1 day of stabilization, TMZ 250 µM was added 
for 1 × 106 cells/100  mm3 dish in triplicate. After 72  h, 
the plates were harvested separately for the RNAseq.

Statistical analysis
For the group comparison in the Table 1, we used Pear-
son’s Chi-squared test with Yates’ continuity correction. 
Wilcoxon, Kruskal–Wallis, and Student’s t-tests were 
used for intergroup comparisons of gene expression lev-
els. For the scatter plot, Pearson correlations were calcu-
lated for individual groups using the ggpubr package in 
R (v. 0.4.0). For cell data, p < 0.05 was regarded as signifi-
cant (by t-test). In two-group comparisons, genes with 
p < 0.0001 by Student’s t-test were regarded as significant 
and included in the heatmaps.

Data availability
The tumor tissue and TS datasets (Severance cohort) 
analyzed during the current study will be published in the 
Arrayexpress and GEO databases. The cancer genome 
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atlas (TCGA) data from the gene expression profiling 
interactive analysis (GEPIA, v. 1) and cBioportal data-
bases were included after data analysis to validate gene 
correlation [58, 61].

Results
TS isolation from the IDH‑WT GBM tissues
In this bioinformatics analysis, each tumor tissue was 
non-selectively cultured to establish GBM TSs for 
RNAseq (Table  1) [44]. We found that TP53-mutant 
IDH-WT GBM comprises 48% of samples (28/58) which 
is relatively consistent with the reports [16].

Severance cohort of TSs revealed TP53 mutation status 
may be associated with the isolated TS (Table  1). Most 
of the isolated TSs are TP53 mutant (80%, 16/20, 3 sam-
ple excluded for the absence of next-generation sequenc-
ing data). The frequency of the TP53 mutants is different 

from that of GBM tissue (p = 0.027, Table 1). Other vari-
ables show no difference between the tissue and TSs 
(Table  1). TERT mutant TSs were found in the 90% of 
samples, however its composition ratio was consistent 
with a literature [29].

Gene level analysis of GBM TSs
From this finding, we examined the GBM tissue and TSs 
by these molecular markers: TERT-TP53 correlation was 
found in the Severance GBM database (Fig. 1). RNAseq 
revealed TERT and TP53 may be associated regardless 
of TP53 mutation status (Fig. 1a). Even though, TERT is 
overexpressed in the GBM tumor and TERT promoter 
mutated samples (Fig. 1b), these two gene expression lev-
els were more associated in the recurrent GBM (Fig. 1c). 
GBM TSs also showed stronger association, especially 
in the TP53 mutant TSs (Fig.  1d). Single cell RNAseq 
revealed these two genes, as well as other known driver 
genes, are overexpressed in a single cluster (Fig. 1e).

We examined the IDH-WT GBM tissues and GBM TSs, 
whether these samples are associated by other factors 
(Figs. 2, 3). We found TP53, EGFR, IDH1, PTPRZ1, and 
TERT are significantly overexpressed in the tumor tissue 
than the control (Fig. 2). However, these gene expression 
levels were not different by the TP53 mutation status 
in the tissue (Fig.  2a). GBM TSs showed EGFR, PTEN, 
IDH1, PTPRZ1 were overexpressed in the TSs than the 
normal human astrocytes (NHAs). However, TP53 gene 
was not showing elevated trend than the NHAs (Fig. 2b).

Downregulated trend of PTEN expression in the 
GBM tissue than the cortex (Fig.  2a) is reflected in the 
GSC11 and GBM TSs (Fig.  2b). As the BAX, CDKN1A, 
and MIR34AHG was associated to be elevated in the 
TP53 mutation status [21, 62, 63]: BAX, CDKN1A, and 
MIR34AHG are overexpressed in the IDH-WT GBM tis-
sue than the cortex. However, there was no trend in the 
TSs by the TP53 mutation status (Additional file 1).

There were seven matching samples of GBM tissues 
and TSs (Fig.  3). We evaluated the gene expressions of 
TP53, TERT, MGMT and PTPRZ1 by the molecular 
markers: TP53 mutation status was not associated with 
the conservation of the gene expression levels (Fig.  3a). 
TERT promoter mutation was associated with the higher 
expression of TERT and TP53 gene in the tissue and TSs 
(Fig. 3b). MGMT promoter methylation status was asso-
ciated with the MGMT gene expression (Fig. 3c).

Transcriptomic level analysis of GBM TSs
We examined whether the TP53 mutant TSs are different 
from the TP53 WT TSs (Fig. 4). Unsupervised gene var-
iability-based t-SNE showed no significant difference by 
the TP53 mutation status (Fig. 4a). There was no definite 
difference by other molecular markers (Additional file 2). 

Table 1 Baseline characteristics of  IDH-wildtype GBM 
and its derived TSs

All samples are primary glioblastomas or its derived TSs. Presentation of age 
with mean ± standard deviation

GBM: glioblastoma, IDH: isocitrate dehydrogenase, TSs: GBM tumorspheres, 
MGMT: O-6-methylguanine-DNA methyltransferase, TP53: tumor protein p53 
gene mutation, TERT: telomerase reverse transcriptase, PTEN: phosphatase and 
tensin homolog, EGFR: epidermal growth factor receptor

* p-value compared IDH-WT GBM tumor samples and GBM TSs (GSC11 or normal 
human astrocyte are excluded from this table)

Tumor 
samples 
(n = 58)

GBM TSs (n = 23) p‑value*

Age 58.9 ± 12.4 59.7 ± 11.0 0.78

Sex 0.66

 Male 33 15

 Female 25 8

MGMT promoter 0.67

 Methylation 23 11

 Unmethylation 35 12

TP53 0.027

 Mutant 28 16

 Wildtype 30 4

 Unknown 3

TERT promoter 0.30

 Mutant 44 18

 Wildtype 14 2

 Unknown 3

PTEN 0.80

 Mutant 31 12

 Wildtype 27 8

 Unknown 3

EGFR 0.99

 Alterations 28 9

 Wildtype 30 11

 Unknown 3
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In our TSs, TP53 mutant TSs were relatively more het-
erogeneous than the TP53 WT TSs (Fig. 4c). Combining 
the results of DEG and GSVA, we found the ECM-related 
signatures came from the mesenchymal subtype of GBM 
TSs (Fig. 4b–d, Additional file 3).

Additionally, we found no definite association of the 
gene sets of invasion (or EMT, detail in the method) and 
glioma neurosphere with the TP53 mutation status of 
GBM TSs [64, 65]. EMT genes were not definitely asso-
ciated with TP53 mutation status (Additional file  4). 
Majority of the TS followed the glioma cell expression 
patterns: Glioma sphere downregulated genes (77%, 
17/22, Additional file  5a) and upregulated genes (54%, 
12/22, Additional file 5b) [65].

Single cell level RNAseq analysis of GBM TS
One GBM TS (13–64) was selected for the single cell 
RNAsequencing (Figs. 1e, 5). The TS was derived from 
a 56-year-old female patient with no medical history 
except a carrier status of hepatitis B virus. Her chief 

complaint was weakness on the left arm and leg for 
2 weeks. Magnetic resonance imaging (MRI) found an 
invasive phenotype on the MRI with high gadolinium-
enhancing mass (Right parietal lesion, 4.93 cm in diam-
eter) surrounded by extensive T2 FLAIR high density 
[1]. Pathology confirmed the diagnosis of GBM. The 
initial molecular phenotype of this tumor was IDH-
wildtype, MGMT promoter unmethylated status, and 
1p intact/19q intact. UMAP clustering showed two dis-
tinct clusters. DEGs from three cluster showed a clus-
ter was enriched with driver genes and long noncoding 
RNAs (Fig.  5). Interestingly, in a non-mixed immor-
tal TS line  (TS13-64), a driver genes-enriched clus-
ter occupied small number of cells and larger portion 
was not expressing the driver-associated genes (Fig. 1e, 
Additional file 6).

Most of the DEGs are not exclusively expressed in a 
single cluster (Fig.  5c–e). Single cell level correlation 
between MALAT1 and NEAT1 was found in the three 
clusters (Fig. 5f ).
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Transcriptomic change after TMZ treatment regardless 
of TP53 mutation status
We examined whether TMZ can change the gene 
expression pattern of GBM TS (13–64)  and GSC11 
(Fig. 6a). We included a driver gene expression matched 
GSC11 as control. A difference of GSC11 and TS13-
64 was TP53 mutation status (Additional file 7). Same 
amount of TMZ on the same number of cells showed an 
elevated stress-associated response with CDKN1A and 
downregulation of KIF20A gene expression (Fig.  6a, 
Additional file 8) [66].

Gene level downregulation was found in the multiple 
driver-associated genes and the DEGs from the single 
cell RNAseq of TS13-64 (Fig.  6b). TS13-64 was not 
distinct from other GBM TSs in the base expression 

level (Fig.  6c). In addition to the downregulated genes 
(Fig.  6d), there were relatively stable genes (Fig.  6e) 
and upregulated genes such as IGFBP5 (Fig. 6). In our 
study, TMZ treatment not definitely changed the level 
of NEAT1. Among the genes of Fig.  6b, NEAT1 was 
found to be associated with progression-free survival 
(PFS) in the GBM database (Fig. 6f ). Furthermore, the 
median level of NEAT1 was associated with poor over-
all  survival and poor PFS in the lower grade gliomas 
(Additional file  9).  NEAT1 expression was elevated in 
the TP53 wildtype GBM tissues of Severance cohort, 
but other molecular markers were not associated with 
the gene level (Additional file 10).
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Discussion
TP53 mutation is one of the most common alterations 
across tumor types [22], and is observed in the early 
stages of GBM, along with changes in related pathways 
[17, 67, 68]. However, its association with GBM TS isola-
tion rate was not reported yet [1, 41, 44, 47, 69–71]. In 
this retrospective analysis, we found that TP53 mutants 
were more amenable to isolation from tissue (Table  1). 
RNAseq data shows that TP53 mutants are overexpress-
ing ECM related genes with more mesenchymal subtypes 
(Fig. 4). CCLE database shows, no tendency by the TP53 
mutation status suggesting this finding may be exam-
ined in the prospective study (Additional file  11).  The 
details of the DEGs for Fig. 4 are included in Additional 
file 12.

Using IDH-WT GBM-derived TSs, we found a posi-
tive association between the levels of TERT and TP53. 

Furthermore, GBM tissues also displayed this associa-
tion (Fig.  1)  [58, 61], and other publicly available data 
suggest that TERT and TP53 are associated in other 
tumor types and normal brain tissue, such as lower grade 
glioma, head and neck cancer, and acute myeloid leuke-
mia [58]. However, not all cancer types exhibit this asso-
ciation (for example, urothelial bladder carcinoma) [58]. 
In retrospective analysis, our TSs are biased to the TP53 
mutants, and the correlation of TERT and TP53 may be 
examined in the balanced dataset (Fig. 1d). In an attempt 
to examine the response of TSs to TMZ, we planned a 
comparison of two cells which are only different by the 
TP53 mutation status  (TS13-64, TP53 mutant; GSC11, 
TP53 wildtype; Additional file  13). The expression pat-
tern and response to TMZ of IGFBP5,  which is com-
monly upregulated in GBM than cortical tissues, may 
need attention as it has been studied as one of important 
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factors of GBM and gliomas (Fig. 6b). About the associa-
tion between  TP53 and NEAT1 (Additional file  10), we 
need more evidences whether they are correlated in bio-
logical manner.  

TP53 mutations are known to have gain-of-function 
effects in GBM cells [18], and the abundance  of TP53 
mutant TSs in this TS RNAseq data may be associated 
to   a survival benefit to the TSs. However, we empha-
size the overrepresentation of TP53 mutant TSs than 
the WT TSs does not provide a direct evidence of the 
gain-of-function effect of the mutation.

Even with these limitations, our study indicates a 
clue to approach the in  vitro models of glioma  with 
the expression pattern of driver genes (including the 
MGMT promoter methylation status, Additional 
file  14): not all cells in a glioma TS are directly asso-
ciated with the driver-associated genes  (Fig.  5a). The 
culture of glioblastoma sphere cell (GSC) became a 
well-established laboratory technique [72–74]. For 

example, GSC11 was established from the fresh sur-
gically operated GBM tissue, and are used for drug 
screening or transcriptome analysis [49, 75, 76]. These 
cells become necrotic in the orthotopic models and 
organoid models [77, 78]. Established TSs was believed 
to have stemness, the potential to form orthotopic 
tumors, and their characteristics do not change with 
repeated subculture [39–43, 45, 47, 69]. These spheroid 
cultures of tumor cells however, was not a single homo-
geneous group of cells  (Fig.  5a)  [42, 45, 79].  Further-
more, the result of GSEA should not be regarded as the 
best representation of a  transcriptomic status (Addi-
tional file 15 of KEGG database shows different pattern 
with the same list of genes from Fig. 4b). 

Finally, we rediscovered NEAT1 and other  long non-
coding RNAs (LncRNAs) that  are important in the 
cancer biology as well as in GBM cell growth and inva-
sion  [59, 80]. Furthermore, NEAT1 distinguishes the 
survival both in the GBM and lower grade gliomas 
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(Additional file 9). Our data also shows NEAT1 is over-
expressed in the driver-enriched cluster of a GBM TS 
(Fig. 4). We examined the value of myAUC in the three 
cluster model of Fig.  5a (Additional file  16): The clus-
ter 2, which was enriched with other driver genes, har-
bors five cancer related LncRNAs as the characterizing 
genes. Using the driver genes as the marker, we claimed 
the TSs are reflecting the characteristics of GBM tissue, 
at least with the driver gene expression. From bulk  TSs 

to single individual cell level of a TS, we found these 
driver genes are expressed in a single cluster which has 
LncRNA classifiers (Additional file  16).  When  NEAT1 
and accompanying LncRNAs  are searched  in the public 
datasets, however, the glioblastoma tissue is not seem to 
be enriched with these genes. Our new finding with scR-
NAseq and LncRNAs may help neglected LncRNAs to be 
included for a research theme.
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Conclusion
We found that GBM TSs represent the tissue level 
gene expression patterns of EGFR, TERT, PTEN, IDH1, 
PTPRZ1, and MGMT. Single cell sequencing revealed 
these driver-associated genes are co-expressed with the 
cancer driver noncoding genes. Our data shows the asso-
ciation of the protein coding driver genes and the non-
coding driver genes.
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 Additional file 1. Gene expression profiles of CDKN1A, BAX, and 
MIR34AHG (Related to the Fig. 3). Three genes are overexpressed in the 
GBM tumors than the control tissues. However, there was no definite dif‑
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and BAX. b. MIR34AHG. 

Additional file 2. t‑SNE of the GBM TSs (Related to the Fig. 4). a. t‑SNE plot 
with additional samples than Fig. 4a. (Upper) Two TSs (TS20‑24 and 20‑09) 
are added to Fig. 4a. (Lower) In addition to the upper panel, NHAs and 
GSC11 are added. (b–f ). t‑SNE plot for comparison by the molecular mark‑
ers. b. TP53 mutation status. c. TERT promoter mutation status. d. MGMT 
promoter methylation status. e. PTEN mutation status. f. EGFR alteration 
status. 

Additional file 3. Gene expression heatmap of the extracellular matrix 
related gene set (Related to the Fig. 4). This gene set was obtained from a 
TP53 mutant TS‑related Reactome analysis of Fig. 4b. 

Additional file 4. mSig DB genes of epithelial mesenchymal transition 
(Related to the Fig. 4). The criteria of selecting these genes are described 
in the additional method section. 

Additional file 5. TS gene expression heatmap of the glioma sphere gene 
sets (Related to the Fig. 4). a. Glioma sphere downregulated genes. b. 
Glioma sphere upregulated genes [65]. TS: Tumorsphere. 

Additional file 6. Violin plots of gene expression (Related to the Fig. 5). 
a. NOTCH pathway related genes. b. Neurotransmitter related genes. c. 
Glioma type related genes. 

Additional file 7. Detailed description of the methods. 

Additional file 8. TS13‑64 and GSC11 are treated with TMZ (Related to 
the Fig. 6). a. Based on the driver‑associated gene expressions, we selected 
two GBM TSs. b. Two types of TSs are sent for RNAseq. c. Both cells are 
showing elevated CDKN1A and downregulated KIF20A after TMZ (Gene 
set enrichment assay of these two cells are displayed in Fig. 6a). 

Additional file 9. Survival plots of GBM by NEAT1 (Related to the Fig. 6f ). 
a. Overall survival by the median expression of NEAT1 in the TCGA GBM 
(processed in GEPIA). b. The results of the lower grade glioma database 
[58]. 

Additional file 10. Gene expression of NEAT1 in the Severance database 
(Related to the Fig. 6). The gene expression of NEAT1 was compared by the 
molecular markers in the IDH‑WT GBM RNAseq data. 

Additional file 11. Subtypes of the CNS related tumor cells in the CCLE 
database (Related to the Fig. 4). The RNAseq data of CCLE was down‑
loaded and analyzed by the same method for the subtype analysis 
(Related to Fig. 4c). Both group of TP53 mutation status cells were classi‑
fied to mesenchymal (or invasive) types [1, 81]. 

Additional file 12. The list of differentially expressed genes by TP53 muta‑
tion status. Data calculated by the Reactome database. 

Additional file 13. GBM oncogene mutation profiles. The mutation 
profiles of the two GBM TSs (TS13‑64, GSC11). 

Additional file 14. MGMT gene expression from the tissue, GBM TSs, and 
TS13‑64 (Related to the Fig. 3). a. Gene expression by MGMT promoter 
methylation status in the GBM (n = 58; Unmethylated samples, n = 35; 
Methylated Samples, n = 23) and its associated control cortex tissue 
(n=24). GBM TSs is displayed in the right panel (Unmethylated TS n = 12, 
Methylated TS n = 11). 

Additional file 15. KEGG analysis on the GBM TSs by the mutation status 
of TP53 (Related to the Fig. 4). Each gene of GBM TSs (not excluding TS20‑
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parameters (or the number of clusters), the driver‑gene enriched cluster 
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Additional file 7. Detailed description of the methods. 

Additional file 8. TS13‑64 and GSC11 are treated with TMZ (Related to 
the Fig. 6). a. Based on the driver‑associated gene expressions, we selected 
two GBM TSs. b. Two types of TSs are sent for RNAseq. c. Both cells are 
showing elevated CDKN1A and downregulated KIF20A after TMZ (Gene 
set enrichment assay of these two cells are displayed in Fig. 6a). 

Additional file 9. Survival plots of GBM by NEAT1 (Related to the Fig. 6f ). 
a. Overall survival by the median expression of NEAT1 in the TCGA GBM 
(processed in GEPIA). b. The results of the lower grade glioma database 
[58]. 

Additional file 10. Gene expression of NEAT1 in the Severance database 
(Related to the Fig. 6). The gene expression of NEAT1 was compared by the 
molecular markers in the IDH‑WT GBM RNAseq data. 

Additional file 11. Subtypes of the CNS related tumor cells in the CCLE 
database (Related to the Fig. 4). The RNAseq data of CCLE was down‑
loaded and analyzed by the same method for the subtype analysis 
(Related to Fig. 4c). Both group of TP53 mutation status cells were classi‑
fied to mesenchymal (or invasive) types [1, 81]. 

Additional file 12. The list of differentially expressed genes by TP53 muta‑
tion status. Data calculated by the Reactome database. 

Additional file 13. GBM oncogene mutation profiles. The mutation 
profiles of the two GBM TSs (TS13‑64, GSC11). 

Additional file 14. MGMT gene expression from the tissue, GBM TSs, and 
TS13‑64 (Related to the Fig. 3). a. Gene expression by MGMT promoter 
methylation status in the GBM (n = 58; Unmethylated samples, n = 35; 
Methylated Samples, n = 23) and its associated control cortex tissue 
(n=24). GBM TSs is displayed in the right panel (Unmethylated TS n = 12, 
Methylated TS n = 11). 

Additional file 15. KEGG analysis on the GBM TSs by the mutation status 
of TP53 (Related to the Fig. 4). Each gene of GBM TSs (not excluding TS20‑
24 and 20‑09) were calculated for the gene set enrichment analysis. The 
highly enriched gene lists were examined with the KEGG database. 

Additional file 16. AUC values from the single cell RNAseq (Related to the 
Figs. 5 and 6). The differentially expressed genes from the clusters of TS13‑
64 were obtained from Seurat algorithm. Regardless of the resolution 
parameters (or the number of clusters), the driver‑gene enriched cluster 
was always marked with the glioma related long noncoding RNAs [59].
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