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Abstract

Background

The diagnostic performance of convolutional neural networks (CNNs) for diagnosing several

types of skin neoplasms has been demonstrated as comparable with that of dermatologists

using clinical photography. However, the generalizability should be demonstrated using a

large-scale external dataset that includes most types of skin neoplasms. In this study, the

performance of a neural network algorithm was compared with that of dermatologists in both

real-world practice and experimental settings.

Methods and findings

To demonstrate generalizability, the skin cancer detection algorithm (https://rcnn.

modelderm.com) developed in our previous study was used without modification. We con-

ducted a retrospective study with all single lesion biopsied cases (43 disorders; 40,331 clini-

cal images from 10,426 cases: 1,222 malignant cases and 9,204 benign cases); mean age

(standard deviation [SD], 52.1 [18.3]; 4,701 men [45.1%]) were obtained from the Depart-

ment of Dermatology, Severance Hospital in Seoul, Korea between January 1, 2008 and

March 31, 2019. Using the external validation dataset, the predictions of the algorithm were

PLOS MEDICINE

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1003381 November 25, 2020 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Han SS, Moon IJ, Kim SH, Na J-I, Kim

MS, Park GH, et al. (2020) Assessment of deep

neural networks for the diagnosis of benign and

malignant skin neoplasms in comparison with

dermatologists: A retrospective validation study.

PLoS Med 17(11): e1003381. https://doi.org/

10.1371/journal.pmed.1003381

Academic Editor: Harald Kittler, Medical University

of Vienna, AUSTRIA

Received: January 14, 2020

Accepted: October 19, 2020

Published: November 25, 2020

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pmed.1003381

Copyright: © 2020 Han et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The images used to

test the neural networks described in this

manuscript are subject to privacy regulations and

https://orcid.org/0000-0002-0500-3628
https://orcid.org/0000-0002-1123-4166
https://orcid.org/0000-0001-6831-5621
https://orcid.org/0000-0002-5717-2490
https://orcid.org/0000-0002-0660-8098
https://orcid.org/0000-0001-8890-8678
https://orcid.org/0000-0001-6597-578X
https://orcid.org/0000-0003-0525-9065
https://orcid.org/0000-0003-4225-0414
https://rcnn.modelderm.com
https://rcnn.modelderm.com
https://doi.org/10.1371/journal.pmed.1003381
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pmed.1003381&domain=pdf&date_stamp=2020-11-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pmed.1003381&domain=pdf&date_stamp=2020-11-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pmed.1003381&domain=pdf&date_stamp=2020-11-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pmed.1003381&domain=pdf&date_stamp=2020-11-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pmed.1003381&domain=pdf&date_stamp=2020-11-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pmed.1003381&domain=pdf&date_stamp=2020-11-25
https://doi.org/10.1371/journal.pmed.1003381
https://doi.org/10.1371/journal.pmed.1003381
https://doi.org/10.1371/journal.pmed.1003381
http://creativecommons.org/licenses/by/4.0/


compared with the clinical diagnoses of 65 attending physicians who had recorded the clini-

cal diagnoses with thorough examinations in real-world practice.

In addition, the results obtained by the algorithm for the data of randomly selected

batches of 30 patients were compared with those obtained by 44 dermatologists in experi-

mental settings; the dermatologists were only provided with multiple images of each lesion,

without clinical information.

With regard to the determination of malignancy, the area under the curve (AUC) achieved

by the algorithm was 0.863 (95% confidence interval [CI] 0.852–0.875), when unprocessed

clinical photographs were used. The sensitivity and specificity of the algorithm at the prede-

fined high-specificity threshold were 62.7% (95% CI 59.9–65.1) and 90.0% (95% CI 89.4–

90.6), respectively. Furthermore, the sensitivity and specificity of the first clinical impression

of 65 attending physicians were 70.2% and 95.6%, respectively, which were superior to

those of the algorithm (McNemar test; p < 0.0001). The positive and negative predictive val-

ues of the algorithm were 45.4% (CI 43.7–47.3) and 94.8% (CI 94.4–95.2), respectively,

whereas those of the first clinical impression were 68.1% and 96.0%, respectively.

In the reader test conducted using images corresponding to batches of 30 patients, the

sensitivity and specificity of the algorithm at the predefined threshold were 66.9% (95% CI

57.7–76.0) and 87.4% (95% CI 82.5–92.2), respectively. Furthermore, the sensitivity and

specificity derived from the first impression of 44 of the participants were 65.8% (95% CI

55.7–75.9) and 85.7% (95% CI 82.4–88.9), respectively, which are values comparable with

those of the algorithm (Wilcoxon signed-rank test; p = 0.607 and 0.097).

Limitations of this study include the exclusive use of high-quality clinical photographs

taken in hospitals and the lack of ethnic diversity in the study population.

Conclusions

Our algorithm could diagnose skin tumors with nearly the same accuracy as a dermatologist

when the diagnosis was performed solely with photographs. However, as a result of limited

data relevancy, the performance was inferior to that of actual medical examination. To

achieve more accurate predictive diagnoses, clinical information should be integrated with

imaging information.

Author summary

Why was this study done?

• The diagnostic performance of artificial intelligence based on deep learning algorithms

has been demonstrated to be superior to or at least comparable with that of

dermatologists.

• However, the difference in diagnostic efficiency between algorithms and dermatologists

was determined using experimental reader tests with limited clinical information related

to the photographed skin abnormalities.

• Most studies performed internal validation, which indicates that both the training and

validation images were selected from the same source. In addition, only a small number
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of disorders have been validated in the previous studies. Thus, practical limitations and

biases have complicated translation to actual practices.

What did the researchers do and find?

• The performance of the neural network algorithm was compared with that of standard

dermatologic practice for diagnosing almost all types of skin neoplasms on a large scale.

• The algorithm could successfully screen malignancy, without lesion preselection by a

dermatologist. Under experimental settings, in which only images were provided for

diagnosis, the performance of the algorithm was comparable with that of the 44 derma-

tologists who performed the reader test.

• However, the performance of the algorithm was inferior to that of the attending physi-

cians who actually consulted with patients. This highlights the value of clinical data, in

addition to visual findings, for accurate diagnosis of cutaneous neoplasms.

What do these findings mean?

• Given photographs of abnormal skin findings, the algorithm can work ceaselessly to

determine the need for dermatologic consultation at a performance level comparable

with that of dermatologists.

• To further improve the algorithm’s performance, metadata, such as past medical history,

should be integrated with the clinical images.

Introduction

Imaging diagnoses using deep learning algorithms [1] have shown excellent results in the anal-

ysis of fundoscopy images in ophthalmology [2], as well as X-rays [3,4] and computed tomog-

raphy (CT) images [5] in radiology. In dermatology, there have been remarkable advances,

leading to diagnostic performances of deep learning algorithms that are comparable with

those of dermatologists for both clinical photography [6–11] and dermoscopy images

[6,10,12–15]. However, it is unclear whether these excellent results can be extrapolated to the

clinical setting [16].

The performance of a deep learning algorithm is dependent on the relevancy of the data

exploited to train it. In particular, training an algorithm with medical data is complex, given

that all clinical information cannot be collected and quantified, and the relevancy of single

data domains employed for deep learning can vary substantially. For instance, even if an algo-

rithm is trained with countless brain MRIs, we cannot be sure whether the algorithm can truly

diagnose Parkinson’s disease using MRI alone. Although images of skin lesions contain impor-

tant and relevant information, the extent of their importance is thus far unknown for skin can-

cer diagnosis. Accordingly, this study was designed to compare the performance of an

algorithm trained with image information alone with that of attending physicians in real clini-

cal practice, as well as with that of physicians to whom only images were presented.
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Another pitfall in implementing deep learning algorithms in a real clinical practice is the

coverage of the training and test datasets. Deep learning algorithms can produce reliable

results only for preselected diseases; an algorithm may demonstrate epistemic uncertainty for

untrained problems [17]. Clinical questions in real practice usually involve an unlimited selec-

tion of diagnoses. The accuracy of an algorithm may be compromised if a problem encom-

passes a wide range of classifications or if training data do not cover appropriate conditions.

In our previous study [18], convolutional neural network (CNN) and region-based CNN

were trained with 1,106,886 image crops to detect potential lesions and to predict the probability

of a lesion being malignant. In that study [18], using 673 cases of 9 kinds of keratinocytic tumors,

the performance of the algorithm was comparable with that of dermatologists in the experimen-

tal setting, in which diagnoses were made with multiple unprocessed images without clinical

information. The aim of this study is to demonstrate the generalizability of our algorithm’s per-

formance in determining malignancy with most types of skin neoplasms and to analyze the dif-

ference in sensitivity and specificity between the experimental and real-world settings.

Methods

Study population

This study is reported as per the Standards for Reporting of Diagnostic Accuracy Studies

(STARD) 2015 reporting guideline for diagnostic accuracy studies (S1 STARD Checklist).

There was no prospective analysis plan for this study. With the approval of 2 institutional

review boards (IRBs) (Severance: #2019–0571 and Asan: #2017–0087), clinical photographs

were gathered from data collected at the Department of Dermatology, Severance Hospital,

Seoul, Korea, retrospectively covering the period from January 1, 2008 to March 31, 2019. The

information of all biopsy cases had been recorded according to a specific protocol for data col-

lection. Clinical diagnoses, pathologic diagnosis, lesion site, biopsy site, attending physician,

specimen’s slide number, and information of special stains have been systematically recorded

since 2005. Clinical photographs have been stored in a hierarchical structure as “root_folder/

year/month/month_day/” since 2008. A total of 65 attending physicians (7.1 ± 9.5 years of

experiences after board certification at the time of biopsy request; mean ± standard deviation

[SD]) had recorded the clinical diagnoses on the biopsy request forms with consideration of

the patient’s histories and physical examinations. The IRB did not permit minors to be

included in this retrospective analysis without the written consent of their parent or guardian,

and it did not allow any consent requirement to be waived. Thus, all cases over 19 years of age

that were pathologically diagnosed with 1 of 43 primary skin neoplasms were included (Fig 1).

Pathologic diagnosis was used as a reference standard, and only cases with a single biopsied

lesion were included because of possible mismatch between the lesion and diagnosis in cases

with multiple biopsied lesions. Cases involving mucosal (conjunctiva and oral cavity) lesions,

postoperative lesions, and laser surgery were excluded, but normal images taken for record

were included, even if they did not include the lesion of interest (e.g., if photographs of both

cheeks were taken, both right and left cheeks were analyzed, even if the biopsied lesion was on

1 of the cheeks only). The biopsied lesions were mostly located right in the center of photo-

graph or indicated with either a surgical ruler or a marker. In ambiguous cases, the lesion of

interest was located based on medical records including the recorded location of the lesion

and its clinical and pathologic diagnosis. For grouped lesions, they were considered as a single

case if they could all be considered to share the clinical and pathologic diagnoses. There were

257 (2.46%) such cases with grouped lesions. Specifically, we identified 32 such cases within

the malignancy group (2 most common disorders: 13 kaposi sarcomas and 10 intraepithelial

carcinomas) and 225 cases within the benign group (2 most common disorders: 70 seborrheic
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keratoses and 44 warts). Low-quality images where the clinical features of the lesions could not

be clearly identified were classified as “inadequate images.” Cases where the exact location of

the lesion could not be identified based on both clinical and pathological diagnoses were classi-

fied as “inherently impossible.” There were 66 cases with inadequate image quality and 750

cases for which it was inherently impossible to detect lesions (Fig 1). The 3 most common dis-

orders among the inherently impossible cases were epidermal cyst (497 cases), seborrheic kera-

tosis (64 cases), and hemangioma (37 cases). There were 26 cases of malignant nodules (18

cases of basal cell carcinoma and 8 cases of other malignancies) among the inherently impossi-

ble cases. Finally, a total of 40,331 clinical images from 10,426 cases (9,556 patients) were

included in this study (Table 1). Among the 40,331 images, a total of 35,170 images contained

Fig 1. Dataset selection process and exclusion criteria. �Because the IRB did not permit enrollment of minors under

the age of 20, they were excluded for analysis. ��Inherently impossible cases refer to the ones where the lesion could

not be exactly located based on metadata (clinical/pathologic diagnoses and record on the biopsy site). ���Small class

indicates disease classes with less than 10 cases: angiofibroma, Café au lait macule, juvenile xanthogranuloma, milia,

nevus spilus, and sebaceous hyperplasia. Untrained class indicates classes that the algorithm was not trained on

dermatofibrosarcoma protuberans, Spitz nevus, Kaposi sarcoma, angiosarcoma, and Merkel cell carcinoma.
����Severance Dataset A: a total of 10,426 cases (40,331 images; 43 disorders; age mean ± SD = 52.1 ± 18.3, male

45.1%) used for the binary classification (cancer or not). �����Severance Dataset B: a total of 10,315 cases (39,721

images; 32 disorders; age mean ± SD = 52.1 ± 18.2, male 44.8%) used for the multiclass classification results (Fig 4, S1

and S3 Figs; S1 Table). IRB, institutional review board; SD, standard deviation.

https://doi.org/10.1371/journal.pmed.1003381.g001
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Table 1. Demographics of the Severance validation dataset.

Severance Dataset

Dataset A Dataset B (subset of A) Dataset C (subset of B)

No. of images 40,331 39,721 5,065

Patient demographics

No. of cases (patients) 10,426 (9,556) 10,315 (9,464) 1,320 (1,304)

Age (mean ± SD) 52.1 ± 18.3 52.1 ± 18.2 52.0 ± 18.3

Male 4,701 (45.1%) 4,626 (44.8%) 580 (43.9%)

No. of disorders 43 32 31

Malignancy 1,222 (11.7%) 1,154 (11.2%) 152 (11.5%)

Angiosarcoma 17 (0.2%) - -

Basal cell carcinoma 643 (6.3%) 643 (6.2%) 101 (7.7%)

Dermatofibrosarcoma protuberance 9 (0.1%) - -

Intraepithelial carcinoma (SCC in situ) 255 (2.5%) 255 (2.5%) 31 (2.3%)

Kaposi sarcoma 39 (0.4%) - -

Keratoacanthoma 15 (0.1%) 15 (0.1%) -

Malignant melanoma 83 (0.8%) 83 (0.8%) 13 (1.0%)

Merkel cell carcinoma 3 (0.0%) - -

Squamous cell carcinoma 158 (1.5%) 158 (1.5%) 7 (0.5%)

Benign 9,204 (88.3%) 9,161 (88.8%) 1,168 (88.5%)

Actinic keratosis 784 (7.6%) 784 (7.6%) 102 (7.7%)

Angiofibroma 4 (0.0%) - -

Angiokeratoma 39 (0.4%) 39 (0.4%) 4 (0.3%)

Becker nevus 14 (0.1%) 14 (0.1%) 2 (0.2%)

Blue nevus 115 (1.1%) 115 (1.1%) 17 (1.3%)

Café au lait macule 1 (0.0%) - -

Congenital nevus 47 (0.5%) 47 (0.5%) 9 (0.7%)

Dermatofibroma 845 (8.2%) 845 (8.2%) 102 (7.7%)

Epidermal cyst 1,501 (14.6%) 1,501 (14.6%) 203 (15.4%)

Epidermal nevus 26 (0.3%) 26 (0.3%) 5 (0.4%)

Hemangioma 263 (2.6%) 263 (2.5%) 34 (2.6%)

Juvenile xanthogranuloma 4 (0.0%) - -

Lentigo 67 (0.7%) 67 (0.6%) 2 (0.2%)

Lymphangioma 15 (0.1%) 15 (0.1%) 1 (0.1%)

Melanocytic nevus 1,441 (14.0%) 1,441 (14.0%) 171 (13.0%)

Milia 8 (0.1%) - -

Mucocele 73 (0.7%) 73 (0.7%) 10 (0.8%)

Mucosal melanotic macule 36 (0.4%) 36 (0.3%) 7 (0.5%)

Neurofibroma 199 (1.9%) 199 (1.9%) 31 (2.3%)

Nevus spilus 3 (0.0%) - -

Organoid nevus 62 (0.6%) 62 (0.6%) 7 (0.5%)

Ota nevus 24 (0.2%) 24 (0.2%) 4 (0.3%)

Porokeratosis 71 (0.7%) 71 (0.7%) 14 (1.1%)

Poroma 64 (0.6%) 64 (0.6%) 10 (0.8%)

Portwinestain 15 (0.1%) 15 (0.1%) 2 (0.2%)

Pyogenic granuloma 162 (1.6%) 162 (1.6%) 18 (1.4%)

Sebaceous hyperplasia 6 (0.1%) - -

Seborrheic keratosis 2,370 (23.1%) 2,370 (23.0%) 291 (22.0%)

Skin tag 70 (0.7%) 70 (0.7%) 8 (0.6%)

(Continued)
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lesions of interest, and the remaining 5,161 images were photographs without a lesion of inter-

est; these photographs were acquired for observation or comparison purposes. The distribu-

tions of malignant tumors by anatomical location was as follows: head and neck, 819 cases

(7.9%); trunk, 162 cases (1.6%); leg, 153 cases (1.5%); and arm, 88 cases (0.8%). The distribu-

tion of benign neoplasms by anatomical location was as follows: head and neck, 4,266 cases

(40.9%); trunk, 2,523 cases (24.2%); leg, 1,433 cases (13.7%); and arm, 982 cases (9.4%).

The subsets of Severance dataset

The Severance validation dataset was obtained from the Department of Dermatology, Sever-

ance Hospital and contained 34 types of benign neoplasms and 9 types of malignant tumors.

• Severance Dataset A consisted of all the 10,426 cases (40,331 images; 43 disorders; age

mean ± SD = 52.1 ± 18.3, male 45.1%).

• Severance Dataset B consisted of a total of 10,315 cases (39,721 images; 32 disorders; age

mean ± SD = 52.1 ± 18.2, male 44.8%). As shown in Fig 1, the Severance Dataset B was com-

piled after excluding cases of belonging to small and untrained classes from the Severance

Dataset A.

• Severance Dataset C consisted of a total of 1,320 cases (5,065 images; 31 disorders; age

mean ± SD = 52.0 ± 18.3, male 43.9%). Severance Dataset C was composed of 1,320 ran-

domly selected cases from Severance Dataset B. The Severance Dataset C was used for the

reader test.

Algorithm

A skin cancer detection algorithm (https://rcnn.modelderm.com) developed in a previous

study [18] was used without modification. This algorithm was trained not only with images

from the hospital archives but also with images that were generated by a region-based CNN

[19]. The algorithm was trained with a total of 1,106,886 cropped images involving 178 disease

classes. The training dataset comprised clinical images from the Asan Medical Center and

images gathered from websites. The disease classifier (SENet [20] and SE-ResNeXt-50) was

trained with the help of a region-based CNN (faster RCNN [19]) using a dataset that consisted

of various skin lesions, as well as normal structures that could mimic pathologic lesions. A

3-stage approach was applied to efficiently build the training dataset and to maximize the

explainability of the results (refer to S1 Text for more details). With the ability to detect lesions,

Table 1. (Continued)

Severance Dataset

Dataset A Dataset B (subset of A) Dataset C (subset of B)

Spitz nevus 17 (0.2%) - -

Syringoma 103 (1.0%) 103 (1.0%) 16 (1.2%)

Venous lake 101 (1.0%) 101 (1.0%) 13 (1.0%)

Wart 636 (6.2%) 636 (6.2%) 83 (6.3%)

Xanthelasma 18 (0.2%) 18 (0.2%) 2 (0.2%)

SCC, squamous cell carcinoma; SD, standard deviation.

https://doi.org/10.1371/journal.pmed.1003381.t001
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our algorithm can analyze clinical photographs without custom preparation that requires

work by a specialist [21].

As demonstrated in Fig 2, the algorithm can detect multiple potential skin lesions in unpro-

cessed images and report the most probable diagnoses, along with the probability in numerical

values. In particular, a malignancy output was calculated from the report generated by the

algorithm. We used a predefined malignancy output, as follows: malignancy output = (basal

cell carcinoma output + squamous cell carcinoma output + intraepithelial carcinoma output

+ keratoacanthoma output + malignant melanoma output) + 0.2 × (actinic keratosis output

+ ulcer output) (details regarding this formula are described in S1 Text).

There are 2 different ways the algorithm may be used for lesion diagnosis: (1) the user local-

izes the lesion of interest (cropped-image analysis); and (2) the algorithm is used to analyze

unprocessed photographs without information regarding the lesion of interest (unprocessed-

image analysis). As shown in Fig 2, in unprocessed-image analysis, the blob detector and fine

image selector of the algorithm detect lesions in the photograph, and the disease classifier ana-

lyzed the detected lesions and calculated malignancy outputs. The highest malignancy output

among the malignancy outputs of multiple images is used as the final output score in the

unprocessed-image analysis. In cropped-image analysis, the specified lesions were analyzed by

the disease classifier of the algorithm, and the average malignancy output of multiple images of

the lesion is used as the final output score (Fig 2). In this study, unprocessed-image analysis

was employed for the binary classification of malignant and benign lesions, and cropped-

image analysis was used for multiclass classification, for predicting the exact diagnosis. In the

binary classification with unprocessed images, 2 cutoff thresholds (a high-sensitivity threshold

and a high-specificity threshold; see definitions in S1 Text) that were defined in the previous

study [18] were used to assess sensitivity, specificity, positive predictive value (PPV), and nega-

tive predictive value (NPV).

Binary classification versus multiclass classification

Multiclass classification was used to predict the exact diagnosis, whereas binary classification

was used to distinguish cancerous conditions from noncancerous ones. The binary classifica-

tion was performed with Severance Dataset A, whereas the multiclass classification was per-

formed with Severance Dataset B (Table 1). In the multiclass analysis, we excluded 6 classes

(angiofibroma, Café au lait macule, juvenile xanthogranuloma, milia, nevus spilus, and seba-

ceous hyperplasia), where the number of cases for each class was less than 10, and we also

excluded 5 classes (Spiz nevus, dermatofibrosarcoma protuberans, angiosarcoma, Kaposi sar-

coma, and Merkel cell carcinoma), on which the algorithm was not trained. Consequently, the

multiclass classification was performed with 32 disease classes (10,315 cases), and the binary

classification was performed with 43 disease classes (10,426 cases).

Conversion of multiclass decision to binary decision

We converted the dermatologists’ multiclass decisions, namely the Top-(1)–(3) diagnoses, into

binary responses using the following method: if a malignant condition was included in the

Top-(n) diagnoses, the response was recorded as a malignancy. For example, provided the

response “Top-1: seborrheic keratosis, Top-2: melanoma, Top-3: nevus,” the Top-2 binary

report was “malignancy” because a malignant condition is included in the Top-2 diagnoses.

Similarly, the Top-3 binary report would also be “malignancy.” This binary transformation

would therefore enhance the sensitivity. On the contrary, the binary decision derived from the

Top-1 response would be the most specific decision. The binary decision derived from the

Top-3 diagnosis corresponds to the prediction made by the algorithm at the high-sensitivity
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Fig 2. Illustration of unprocessed-image analysis and cropped-image analysis by the algorithm. F/80, pathologic

diagnosis = basal cell carcinoma. In unprocessed-image analysis, (a) the blob detector looks for all possible blobs after

analyzing the set of all 3 unprocessed images. (b) Then, the fine image selector marks the blobs containing possible

skin lesions. (c) Finally, the disease classifier outputs the probable diagnoses and calculates the malignancy output,

which is used for binary classification to determine malignancy. All boxes with a malignancy output value above the

predefined high-specificity threshold (46.87) are colored in red. The highest value is included in the final report, which

in this case is 90. In cropped-image analysis, (a) the user selects a lesion of interest. (b) The disease classifier reports the

probable diagnoses and the malignancy output. The mean value of the 2 malignancy outputs is included in the final

report, which in this case is (95 + 96) / 2 = 95.5. A multiclass classification for the exact diagnosis is carried out using

the probable diagnoses put forward by the disease classifier. The final output value is the mean of the outputs from 2

CNNs as the following: Top1 = BCC 0.955, Top2 = Nevus 0.03, Top3 = . . . In this figure, the malignancy output ranges

from 0 to 100, whereas the output from the disease classifier lies between 0.0 and 1.0. BCC, basal cell carcinoma; CNN,

convolutional neural network.

https://doi.org/10.1371/journal.pmed.1003381.g002
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threshold, whereas that derived from the Top-1 diagnosis corresponds to the prediction made

by the algorithm at the high-specificity threshold.

Reader test

A reader test was performed using only the photographs of lesions, blinding all clinical infor-

mation. After random sampling and shuffling of image sets of 1,320 cases, 44 test sets, each

containing data from 30 cases, were created (Severance Dataset C; 44 × 30 = 1,320). Each

reader test consisted of different cases. A total of 44 dermatologists (5.7 ± 5.2 (mean ± SD)

years of experience after board certification; in Seoul and its suburbs), where each dermatolo-

gist received a different test set, examined multiple images obtained from each patient and

chose their answer from 32 choices (= 32 disorders for the multiclass classification; S1 Table).

Test configurations

We tested 6 configurations as follows:

• Binary classification with the unprocessed images of the Severance Dataset A;

• Binary classification with the cropped images of the Severance Dataset B;

• Binary classification with the cropped images of the Severance C—Reader test;

• Multiclass classification with the cropped images of the Severance C—Reader test;

• Multiclass classification with the cropped images of the Severance Dataset B;

• Multiclass classification with the cropped images of the Edinburgh dataset.

The detailed methods and results of the multiclass classification with the Severance Dataset

B and the Edinburgh dataset (10 disorders; 1,300 images; https://licensing.edinburgh-

innovations.ed.ac.uk/i/software/dermofit-image-library.html) are described in S1 Text.

Statistical analysis

With regard to the binary classification for determining malignancy, receiver operating char-

acteristic (ROC) curves were drawn using the final output scores (the highest malignancy out-

put in the unprocessed-image analysis and the average malignancy output in the cropped-

image analysis). For the multiclass classification, to draw ROC curves of each of the classes, we

used a one-versus-rest method. The area under the curve (AUC) was calculated with R (R

Foundation for Statistical Computing, Vienna, Austria; version 3.4.4), using the pROC pack-

age (version 1.15.3) [22]. The confidence interval (CI) was computed using 2,000 stratified

bootstrap replicates.

Top-(n) accuracy represents the fact that the correct diagnosis is among the top n predic-

tions output by the model. For example, Top-3 accuracy means that any of the top 3 highest-

probability predictions made by the model match the expected answer. Mean Top-(n) accura-

cies were calculated by averaging the accuracies of the 32 disorders as follows: macroaveraged

mean Top-(n) accuracy = (Top-(n) accuracy of actinic keratosis + Top-(n) accuracy of angio-

keratoma + . . . + Top-(n) accuracy of xanthelasma) / 32. To reflect the difference in the num-

ber of cases for each disease, the microaveraged Top-(n) accuracy was also calculated as

follows: microaveraged mean Top-(n) accuracy = (Top-(n) matched cases in total) / 10,315.

Sensitivities, specificities, and Top accuracies were compared using either the McNemar or

Wilcoxon signed-rank tests. DeLong test was used for the comparison between AUC values. A
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95% CI was generated for all samples. A p-value of< 0.05 was considered to indicate a statisti-

cally significant difference.

Results

Binary classification of malignancy and benign lesions

With Severance Dataset A, the algorithm analyzed all unprocessed photographs of each patient

to detect malignancy. For every image, 13.4 ± 16.9 (mean ± SD) lesion boxes were detected

and were subject to analysis, and the AUC value was 0.863 (95% CI 0.852 to 0.875). We com-

pared the algorithm at the predefined high-sensitivity threshold with the binary decision

derived from the Top-3 clinical diagnosis. We also compared the algorithm at the predefined

high-specificity threshold with the Top-1 clinical diagnosis, which produced a more specific

decision. At the high-sensitivity threshold, the sensitivity and specificity were 79.1% (CI 76.9

to 81.4) and 76.9% (CI 76.1 to 77.8), respectively; in addition, at the high-specificity threshold,

the sensitivity and specificity were 62.7% (CI 59.9 to 65.5) and 90.0% (CI 89.4 to 90.6)

(Table 2), respectively. The sensitivity and specificity derived from the Top-3 clinical diagnoses

were 88.1% and 83.8%, respectively, which were higher than those of the algorithm at the high-

specificity threshold. The sensitivity and specificity derived from the Top-1 clinical diagnosis

were 70.2% and 95.6%, respectively, which were also higher than those of the algorithm at the

high-sensitivity threshold (Fig 3A). The difference between the results obtained for the Top-3

clinical diagnoses and the algorithm at the high-sensitivity threshold was statistically signifi-

cant (McNemar test; p< 0.0001), and the difference between the results obtained for the Top-

1 clinical diagnosis and the algorithm at the high-specificity threshold was also statistically sig-

nificant (McNemar test; p< 0.0001).

The PPV of the algorithm was 31.3% (CI 30.3 to 32.3) at the high-sensitivity threshold and

45.4% (CI 43.7 to 47.3) at the high-specificity threshold, whereas the PPVs of the Top-3 and

Top-1 clinical diagnoses were 41.9% and 68.1%, respectively. The NPV of the algorithm was

96.5% (CI 96.2 to 96.9) at the high-sensitivity threshold and 94.8% (CI 94.4 to 95.2) at the

high-specificity threshold, whereas the NPVs of Top-3 and Top-1 clinical diagnoses were

98.1% and 96.0%, respectively.

Multiclass classification for predicting exact diagnosis

The mean AUC of 32 classes obtained using Severance Dataset B (39,721 images from 10,315

cases) was 0.931 (S1 Fig and S1 Table). The macroaveraged mean Top-1/3 accuracies of the

clinical diagnoses of the attending physicians were 65.4%/74.7%, and those of the algorithm

were 42.6%/61.9%, respectively. The microaveraged mean Top-1/3 accuracies of the clinical

diagnoses of the attending physicians were 68.2%/78.7%, and those of the algorithm were

49.2%/71.2%, respectively.

The mean AUC of 10 diseases using the Edinburgh Dataset was 0.939 (S2 Fig and S2

Table). The macroaveraged mean Top-1 and 3 accuracies were 53.0% and 77.6%, respectively.

Reader test with board-certified dermatologists

With the Severance Dataset C (5,065 images from 1,320 cases), a reader test was conducted,

where 44 dermatologists evaluated a different test set with images from 30 randomly selected

cases.

For binary classification with regard to malignancy, we compared the diagnoses of the par-

ticipants in the reader test with those of the algorithm. As shown in Fig 3B, the overall perfor-

mance of the algorithm was comparable with those of the participants. The sensitivity of the
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participants, derived from the Top-3 diagnosis, was 84.9% (CI 77.4 to 92.4). This value is

slightly lower than that of the algorithm, which was 85.3% (CI 79.3 to 91.2) at the high-sensitiv-

ity threshold, but the difference was not statistically significant (Wilcoxon test; p = 0.985). The

sensitivity of the participants (from Top-1; 65.8%, CI 55.7 to 75.9) was also lower than that of

the algorithm (66.9%, CI 57.7 to 76.0) at the high-specificity threshold, but the difference was

not statistically significant (Wilcoxon test; p = 0.607). The specificity of the participants (from

Top-3; 66.9%, CI 62.4 to 71.4) was slightly lower than that of the algorithm (75.2%, CI 71.2 to

79.2) at the high-sensitivity threshold (Wilcoxon test; p = 0.004), and the specificity of the par-

ticipants (from Top-1; 85.7%, CI 82.4 to 88.9) was lower than that of the algorithm (87.4%, CI

82.5 to 92.2) at the high-specificity-threshold, but the difference was not statistically significant

(Wilcoxon test; p = 0.097).

For the multiclass classification for deriving the exact diagnoses, the Top-1/Top-3 accura-

cies of the algorithm were 49.5% (CI 46.7 to 52.4)/69.5% (CI 67.2 to 71.7), and those of the par-

ticipants were 37.7% (CI 34.4 to 40.9)/53.4% (CI 49.9 to 57.0), and those in the case of the

Table 2. Sensitivity, specificity, PPV, and NPV of the algorithm at 2 predefined cutoff thresholds.

Disease Classifier Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI)

All malignant tumors Algorithm

1,222 cases High-sensitivity threshold 79.1 (76.9–81.4) 76.9 (76.1–77.8) 31.3 (30.3–32.3) 96.5 (96.2–96.9)

High-specificity threshold 62.7 (59.9–65.5) 90.0 (89.4–90.6) 45.4 (43.7–47.3) 94.8 (94.4–95.2)

Clinical diagnosis

Top-1 70.2 95.6 68.1 96.0

Top-2 84.9 86.0 44.6 97.7

Top-3 88.1 83.8 41.9 98.1

Basal cell carcinoma Algorithm

643 cases High-sensitivity threshold 81.3 (78.2–84.3) 76.9 (76.0–77.8) 19.8 (18.9–20.6) 98.3 (98.0–98.6)

High-specificity threshold 66.6 (63.0–70.1) 90.0 (89.3–90.6) 31.7 (30.0–33.6) 97.5 (97.2–97.7)

Clinical diagnosis

Top-1 74.0 95.6 54.2 98.1

Top-2 87.7 86.0 30.4 99.0

Top-3 90.4 83.8 28.0 99.2

Squamous cell carcinoma Algorithm

158 cases High-sensitivity threshold 84.2 (78.5–89.9) 76.9 (76.1–77.8) 5.9 (5.5–6.3) 99.7 (99.5–99.8)

High-specificity threshold 70.9 (63.3–77.8) 90.0 (89.4–90.6) 10.8 (9.7–12.0) 99.5 (99.3–99.6)

Clinical diagnosis

Top-1 65.8 95.6 20.6 99.4

Top-2 84.2 86.0 9.3 99.7

Top-3 86.1 83.8 8.3 99.7

Malignant melanoma Algorithm

83 cases High-sensitivity threshold 81.9 (73.5–90.4) 76.9 (76.0–77.8) 3.1 (2.8–3.4) 99.8 (99.7–99.9)

High-specificity threshold 61.4 (50.6–72.3) 90.0 (89.4–90.6) 5.3 (4.3–6.1) 99.6 (99.5–99.7)

Clinical diagnosis

Top-1 68.7 95.6 12.4 99.7

Top-2 84.3 86.0 5.1 99.8

Top-3 89.2 83.8 4.7 99.9

CI, confidence interval; NPV, negative predictive value; PPV, positive predictive value.

The algorithm analyzed unprocessed images from 1,222 cases with malignant tumors and 9,204 cases with benign neoplasms (Severance Dataset A; 43 disorders).

https://doi.org/10.1371/journal.pmed.1003381.t002
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clinical diagnoses were 68.1% (CI 65.2 to 71.0)/77.3% (CI 74.5 to 80.2) (Fig 4). The Top accura-

cies of the algorithm were superior to those of the participants (Wilcoxon test; both Top 1/Top

3 accuracies; p< 0.0001) and inferior to those of the clinical diagnosis (Wilcoxon test; both

Top 1/Top 3 accuracies; p< 0.0001).

Performance changes in different settings

As shown in Fig 4, the mean Top accuracies decreased with an increase in the number of possi-

ble outputs. The algorithm was trained with 178 disease classes as a unified classifier, whereas

Fig 3. Diagnostic performance for determining malignancy; binary classification. (A) Test Dataset = Severance Dataset

A (10,426 cases). (B) Test Dataset = Severance Dataset C (1,320 cases). Black curve—algorithm (unprocessed-images

analysis). Diamond—algorithm at the predefined high-sensitivity threshold. Round—algorithm at the predefined high-

specificity threshold. Red, orange, and yellow circles—malignancy determination derived from Top-1, Top-2, and Top-3

clinical diagnoses of the 65 attending physicians, respectively. Dark blue, blue, and sky blue circles—malignancy

determination derived from Top-1, Top-2, and Top-3 diagnoses of the predictions of the 44 participants, respectively.

Overall, in the binary task of determining malignancy, the performance in the case of the clinical diagnoses was superior to

those of both the algorithm and the reader test participants. The performance of the algorithm and the 44 participants was

comparable. AUC, area under the curve.

https://doi.org/10.1371/journal.pmed.1003381.g003

Fig 4. Performance changes according to the number of disorders tested; multiclass classification. (A) Test Dataset = Severance Dataset B (10,315

cases). (B) Test Dataset = Severance Dataset C (1,320 cases). Red line: 65 attending physicians. Blue line: 44 reader test participants. Black line:

algorithm; among a total of 178 outputs of the algorithm, 32 to 178 outputs (x-axis) were used to calculate Top accuracies.

https://doi.org/10.1371/journal.pmed.1003381.g004
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the test dataset included 32 classes. The prediction accuracy of the algorithm was assessed by

randomly ignoring outputs outside of the 32 classes, 1 by 1, and every number between 32 and

178 was tested. Because there were many possible combinations of excluding outputs (i.e., C

(156,100) = 156! / 100!(156−100)! > 1043), the results of a bootstrap, performed 2,000 times,

were plotted. When the output of the algorithm was restricted to the 32 classes, the accuracy of

the algorithm (Top-3) was even higher than that of the clinical diagnosis (Top-3).

As shown in S3 Fig, the performance of the algorithm was only slightly influenced by the

use of unprocessed images or cropped images. The AUC of cropped-image analysis (0.881, CI

0.870 to 0.891) was slightly better than that of unprocessed-image analysis (0.870, CI 0.858 to

0.881) (DeLong test; p = 0.002).

As shown in S4 Fig, the performance of the algorithm was not significantly influenced by

the addition of inadequate images and images corresponding to classes that were not included

during the training. The AUC values of the blue (Severance Dataset A + 750 inherently impos-

sible cases + 66 inadequate quality cases), black (Severance Dataset A), and red (Severance

Dataset A– 111 cases of small and untrained classes) curves of the S4 Fig were 0.861 (CI 0.849

to 0.872; 11,242 cases), 0.863 (CI 0.852 to 0.875; 10,426 cases), and 0.870 (CI 0.858 to 0.881;

10,315 cases), respectively. The difference between the AUCs of the black and blue curve was

not statistically significant (DeLong test; p = 0.746), neither was the difference between the

AUCs of the black and red curve (DeLong test; p = 0.428).

Discussion

In this study, our algorithm showed an AUC of 0.863 in the external validation (10,426 cases;

43 disorders), which was comparable with the AUC of 0.896 in the internal validation (386

cases; 9 disorders) of the previous study [18]. The algorithm showed comparable sensitivity

and specificity with those of 44 dermatologists in the experimental setting. However, the algo-

rithm showed inferior sensitivity and specificity to those of 65 attending physicians in real-

world practice.

Deep learning algorithms have recently shown remarkable performance in dermatology. In

the analysis of clinical photographs [6–11] and dermoscopic images [6,10,12–15], such algo-

rithms have shown performance comparable with that of dermatologists, with regard to the

differentiation of malignant melanoma from nevus and carcinoma from benign keratotic

tumors. However, direct comparisons between the results of different studies are difficult

because the inclusion criteria of the validation datasets are often unclear, and the validation

datasets are usually private [23]. To date, only a few studies have used external datasets to com-

pare the performance of algorithms with that of experts [24]. In addition, there were several

critiques that currently available smartphone-based applications did not reach dermatologist-

level performance, as has been reported academically [25,26].

When investigating the performance of deep learning algorithms for the diagnosis of skin

diseases, there are various factors that result in poor reproducibility or generalizability in actual

practice.

In the algorithm training stage, these factors may include the following. (1) Limited number

of training classes relative to the number of test classes: The number of disorders included in

studies is usually much smaller than that encountered in real-world practice. Algorithms may

well exhibit good performance in a narrow range problem, such as “melanoma–nevus binary

classification.” However, as shown in S1 Table, the mean Top-1 accuracy of the clinical diag-

noses was only 65.4%, which suggests poor performance with regard to the initial selection of

possible diagnoses. For example, an algorithm trained only for melanoma and nevus classifica-

tion may not be able to diagnose nail hematoma because of epistemic uncertainty [17]. (2)
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Compromised performance owing to an increase in the number of training and test classes: As

shown in Fig 4, our algorithm showed better performance if the number of disorders consid-

ered was restricted to 32 disorders. However, the performance deteriorated as the number of

disorders increased because there are several disorders that may appear as nodules, such as

prurigo nodularis. Because we should consider more disorders than the 178 classes in real

practice, the actual performance of the algorithm may be depressed to the point where the

accuracy is extrapolated over 178 disease classes. Therefore, the diagnostic accuracy achieved

based on a limited number of disorders may be exaggerated and not replicable in real clinical

practice, where the number of conditions of concern is inexhaustible. (3) A nonrepresentative

training dataset [27]: Hospital archives usually include unusual cases that require biopsies;

such cases do not represent the general population. For example, there are several cases of

small melanomas that do not have characteristic bizarre morphology. If an algorithm is trained

on such unusual cases, the algorithm may be biased toward false positives. In addition, hospital

archives have an insufficient number of images of benign disorders, which can reduce the

diagnostic accuracy in the case of images from the general population with benign disorders.

(4) Data leakage: This occurs when the training and test dataset are not split completely

(train–test contamination) or when training uses data from the future (target leakage; e.g., cel-

lulitis prediction based on antibiotics usage) [28]. In the case of data leakage, the model uses

inessential additional information for classification [29]. (5) Specific optimization: The hyper-

parameters of the algorithm (i.e., batch size, learning rate, and stop iteration) may be specifi-

cally optimized for the validation dataset at the time of training and may consequently lack

generalizability to other datasets [28].

In the validation stage, the factors resulting in poor reproducibility or generalizability in

real practice may include the following: (1) Prediction from false hidden features: In the inter-

nal validation process, predictions may be made based on unexpected false features, instead of

true features of the disease [30]. The composition of images and the presence of skin markings

are likely to affect the prediction made by the algorithm [31,32]. (2) Preselection by the special-

ist: Preselection bias exists in real-time procedures, such as endoscopy, ultrasonography, and

clinical photography. In dermatology, both training and test datasets are created by dermatolo-

gists, and dermatologists determine which lesions need to be included and which composi-

tions are adequate. Preselection is performed by dermatologists not only with regard to the

images but also with regard to the metadata. This is because metadata are selectively collected

according to the physician’s clinical impression. For example, dermatologists who suspect the

occurrence of scabies record detailed metadata, such as the pruritus of family members, but

general physicians who do not have the same suspicion may not record this information on

the chart. Thus, the neural network may not exhibit the same performance without the prese-

lection of data by dermatologists. (3) Unclear inclusion and exclusion criteria: Selection bias

affects the results if cases with negative results are excluded more frequently for any reason. All

patients whose data are present in the archives should be included, subject to reasonable inclu-

sion/exclusion criteria, to prevent selection bias. (4) Data relevancy: Although algorithms may

analyze images better than dermatologists, dermatologists show superior diagnostic accuracy

in real practice because they consider all the patient’s information for the diagnosis, whereas

automated algorithms are usually trained using data with limited relevancy.

To minimize bias, this study was designed considering the following: (1) To reduce uncer-

tainty with respect to untrained classes, most types of skin neoplasms were included. (2) To

avoid selection bias, all cases biopsied in 1 hospital were included, except unavailable, inher-

ently impossible, and inadequate-quality cases. (3) To prevent data leakage, resulting from

train–test contamination, and to prove whether the algorithm was trained with true features,

we tested the algorithm with 2 separate external validation datasets: the Severance dataset and
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Edinburgh dataset (S1 Text). (4) To demonstrate generalizability, we verified the performance

of the previously created algorithm with a new validation dataset. (5) Without dermatologist

preselection, the algorithm was tested with unprocessed images.

To date, most comparisons between dermatologists and algorithms have been performed

using a single cropped image of each lesion. Deep learning algorithms have shown comparable

performance with that of dermatologists in such settings [6,7,9–11,13–15]. A meta-analysis of

medical studies also showed that, under the same conditions, the performance of algorithms is

comparable to that of healthcare specialists [24]. In this study, when the diagnosis was based

on multiple cropped images without clinical information, the algorithm showed performance

similar to that of the 44 readers in the binary classification test. In the multiclass classification

test, the performance of the readers was inferior to that of the algorithm (Wilcoxon test;

p< 0.0001). It was an unusual task for dermatologists to examine photographs of lesions with-

out clinical information on the patient and to predict exact diagnosis; therefore, this unfamil-

iarity may have affected the multiclass results.

In this study, skin cancer diagnosis using biopsied cases from images proved to be a difficult

task for experienced dermatologists, even when they were provided with all clinical informa-

tion. The sensitivity calculated from 3 differential impressions of the dermatologists was

88.1%, indicating that 11.9% of malignant tumors were incorrectly classified by the dermatolo-

gists, even after thorough examination, with the presence of malignancy being demonstrated

by the biopsy report. The accuracy of malignancy prediction based on the first clinical impres-

sion was 70.2%, implying a misdiagnosis rate of 29.8%. Deep learning algorithms show uncer-

tainty regarding tasks for which they are not specifically trained [17]; therefore, if the

algorithm is not a unified classifier, but a classifier trained with limited classes, the precondi-

tion may be incorrect [33].

In actual medical practice, the physician not only considers the visual information of the

lesion but also various other information such as the previous medical history, referral note,

and physical examination. In radiology or pathology, the reader does not only perform the

diagnosis using the image alone but also checks the medical history through a chart review and

reflects on clinicopathologic correlations. Currently, there exist several studies [34–36] that

incorporate patients’ metadata. One report showed that combining images and clinical infor-

mation lead to an overall improvement in accuracy of approximately 7% [34]. In this study,

the Top-1 accuracy of the clinical diagnoses (68.1%, CI 65.2 to 71.0) was substantially better

than that of the 44 dermatologists (37.7%, CI 34.4 to 40.9) in the reader test with the Severance

C dataset.

The strengths of this study lie in the retrospective validation on a dataset that seeks to repre-

sent the tumor distribution in an actual hospital. We used an external validation method

where the external validation dataset came from sources completely different from the training

data and were independent of each other.

There are several limitations to this work. Although we obtained a mean AUC of

0.939 ± 0.030 (mean ± SD; S2 Table and S2 Fig) with the Edinburgh dataset (1,300 images of

10 benign and malignant neoplasms), which primarily consists of white patients, our algo-

rithm needs to be tested with unprocessed clinical photographs of various races and ethnicities.

Given the images of dysplastic nevi, clinicians may warn of a high chance of melanoma for

white patients, whereas they may recommend close observation for Asian patients, as mela-

noma is relatively rare in Asians [37,38]. In this study, most training and validation images

acquired were of adequate quality. Image quality and composition are likely to have more of

an effect on the performance of the algorithm than on human readers [31,39,40]. Therefore,

the performance of the algorithm on photographs taken by the general public must be evalu-

ated in further studies.
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Standalone algorithms can play a crucial role in the screening of patients if mass diagnostic

tasks are to be performed using image information alone. Regardless of the preselection of

lesions, our algorithm in full automatic mode showed comparable performance to the

cropped-image analysis, as shown in S3 Fig (AUC with unprocessed images = 0.870 [CI 0.858

to 0.881] versus AUC with cropped images = 0.881 [CI 0.870 to 0.891]; Test = Severance B

dataset). In a previous study [18], which employed unprocessed facial images, our algorithm

showed an AUC of 0.896 on the internal validation (386 patients; 81 with malignant tumors

and 305 with benign neoplasms), and the performance of the algorithm was comparable with

that of 13 dermatologists in terms of the F1 score and Youden index. In this study, the algo-

rithm reproduced a similar AUC for the large-scale external validation dataset.

In this study, the sensitivity at the high-sensitivity threshold was 79.1% (CI 76.9 to 81.4);

this value lies between the sensitivities (70.2% and 84.9%) derived from the Top-1 and Top-2

clinical diagnoses, as shown in Fig 3A. In a previous study, approximately 50% of the images

of malignant cases were misinterpreted as benign by the general public [11,18]. We expect that

algorithm-based cancer screening may facilitate appropriate referrals.

A prospective study is required to confirm the impact of algorithm-assisted improvement

in diagnostic accuracy on a patient’s clinical outcome. Because the algorithm’s output may not

always be in agreement with the user’s decision, further investigation to assess how much the

algorithm’s output influences the user’s clinical practice is needed. Further, frequent use of a

diagnostic algorithm portends the risk of false positive outputs. Thus, research on its optimal

use should be conducted in the near future.

Conclusions

Because of the limited data relevancy and diversity involved in differential diagnoses in prac-

tice, the performance of the algorithm was inferior to that of dermatologists. However, in the

experimental setting, the performance of the algorithm was comparable with that of the partic-

ipants, which was consistent with existing reports [24]. Without the preselection of lesions by

dermatologists, our standalone algorithm showed an AUC of 0.863 (Severance A dataset),

which demonstrates its unprecedented potential as a mass screening tool. More clinical infor-

mation, such as patient metadata, may be incorporated to further improve the performance of

the algorithm.

Supporting information

S1 STARD Checklist. Standards for Reporting of Diagnostic Accuracy (STARD 2015).

(DOCX)

S1 Text. Supplementary methods and results.

(DOCX)

S1 Fig. Multiclass task—ROC curve of the algorithm with 32 skin tumors in the Severance

B dataset. DER_Top1 –Top-1 accuracy of the clinical diagnoses. DER_Top2 –Top-2 accuracy

of the clinical diagnoses. DER_Top3 –Top-3 accuracy of the clinical diagnoses. The algorithm

analyzed multiple cropped images from the Severance Dataset B (39,721 images of 10,315

cases; 32 disorders). Not 32 outputs, but all 178 outputs were used for analysis without restric-

tion.

(TIF)

S2 Fig. Multiclass task—ROC curve of the algorithm for 10 skin tumors in the Edinburgh

dataset. The algorithm analyzed 1,300 images from the Edinburgh dataset (https://licensing.

edinburgh-innovations.ed.ac.uk/i/software/dermofit-image-library.html). All images in the
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Edinburgh dataset were cropped around the lesion of interest. All 178 outputs were used for

analysis without restriction. We drew the ROC curves in a one-versus-rest manner.

(TIF)

S3 Fig. Performance comparison between unprocessed-image analysis and cropped-images

analysis. Test = Severance Dataset B (10,315 cases). Black curve—algorithm (unprocessed-

image analysis). Gray curve—algorithm (cropped-image analysis). In the unprocessed-image

analysis, the algorithm detected lesions of interest from multiple clinical photographs, and the

algorithm predicted whether the detected lesions were malignant or not. In the cropped-image

analysis, the algorithm predicted whether multiple lesions of interest that were chosen by the

user were malignant or not. The AUC of 0.881 (0.870 to 0.891) obtained for the cropped-

image analysis was slightly better than the AUC of 0.870 (0.858 to 0.881) obtained for the

unprocessed-image analysis (DeLong test; p = 0.002).

(TIF)

S4 Fig. Performance comparison with the subsets of the Severance Dataset. Black curve

(10,426 cases); Test = Severance Dataset A. Blue curve (11,242 cases); Test = Severance Dataset

A + 750 inherently impossible cases + 66 inadequate quality cases. Red curve (10,315 cases);

Test = Severance Dataset A– 111 cases of small and untrained classes = Severance Dataset B.

The algorithm was tested in the unprocessed-image analysis mode when images were added

and deleted based on Severance Dataset A. We compared the binary performance of the algo-

rithm with regard to malignancy detection using multiple subsets of the Severance dataset.

The AUC values of the blue, black, and red curve were 0.861 (11,242 cases), 0.863 (10,426

cases), and 0.870 (10,315 cases), respectively. The difference between the black and blue curve

was not statistically significant (DeLong test; p = 0.746), and neither was that between the

black and red curves (DeLong test; p = 0.428).

(TIF)

S1 Table. Multiclass task—AUCs and Top accuracies of the algorithm compared with

those of clinical diagnoses for the 32 skin tumors of the Severance B Dataset. The algorithm

analyzed multiple cropped images from Severance Dataset B (39,721 images of 10,315 cases; 32

disorders). We calculated the AUC values of the ROC curves in a one-versus-rest manner.

(DOCX)

S2 Table. Multiclass task—AUCs and Top accuracies of the algorithm for 10 skin tumors

in the Edinburgh Dataset. The algorithm analyzed 1,300 images from the Edinburgh dataset

(https://licensing.edinburgh-innovations.ed.ac.uk/i/software/dermofit-image-library.html).

All images in the Edinburgh dataset were cropped images around the lesion of interest. We cal-

culated the AUC values of the ROC curve in a one-versus-rest manner.

(DOCX)
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