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Integrated pharmaco-proteogenomics defines two
subgroups in isocitrate dehydrogenase wild-type
glioblastoma with prognostic and therapeutic
opportunities
Sejin Oh 1,2,21, Jeonghun Yeom 3,4,5,21, Hee Jin Cho6,7,21, Ju-Hwa Kim8, Seon-Jin Yoon 2,9,

Hakhyun Kim 2, Jason K. Sa 10, Shinyeong Ju 3,11, Hwanho Lee 2,12, Myung Joon Oh1, Wonyeop Lee13,

Yumi Kwon3,11, Honglan Li13,14, Seunghyuk Choi 13, Jang Hee Han1,15, Jong Hee Chang 16, Eunsuk Choi 6,17,

Jayeon Kim6,7, Nam-Gu Her6, Se Hoon Kim 18, Seok-Gu Kang 15,16, Eunok Paek 13✉, Do-Hyun Nam6,17,19✉,

Cheolju Lee 3,4,20✉ & Hyun Seok Kim 1,2✉

The prognostic and therapeutic relevance of molecular subtypes for the most aggressive

isocitrate dehydrogenase 1/2 (IDH) wild-type glioblastoma (GBM) is currently limited due to

high molecular heterogeneity of the tumors that impedes patient stratification. Here, we

describe a distinct binary classification of IDH wild-type GBM tumors derived from a quan-

titative proteomic analysis of 39 IDH wild-type GBMs as well as IDH mutant and low-grade

glioma controls. Specifically, GBM proteomic cluster 1 (GPC1) tumors exhibit Warburg-like

features, neural stem-cell markers, immune checkpoint ligands, and a poor prognostic bio-

marker, FKBP prolyl isomerase 9 (FKBP9). Meanwhile, GPC2 tumors show elevated oxidative

phosphorylation-related proteins, differentiated oligodendrocyte and astrocyte markers, and

a favorable prognostic biomarker, phosphoglycerate dehydrogenase (PHGDH). Integrating

these proteomic features with the pharmacological profiles of matched patient-derived cells

(PDCs) reveals that the mTORC1/2 dual inhibitor AZD2014 is cytotoxic to the poor prog-

nostic PDCs. Our analyses will guide GBM prognosis and precision treatment strategies.
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G lioblastoma multiforme (GBM) is a lethal form of adult
brain cancer with a median overall survival time of
12–15 months1. Currently available therapeutic proce-

dures—namely, gross total resection, followed by a combination
of radiotherapy and chemotherapy with DNA-alkylating temo-
zolomide2,3—are largely ineffective. Indeed, 90% of patients
treated according to the standard clinical procedures experience
tumor recurrence within 6–9 months after initial treatment4.

Much research has been conducted using high-dimensional
molecular data in an attempt to locate major oncogenic events
and therapeutically actionable intervention points and to classify
GBM patients into diagnostic and prognostic subgroups5–7. The
vast majority of these efforts have been confined to the genomic,
transcriptomic, and epigenetic level. For example, a notable study
performed by The Cancer Genome Atlas (TCGA) group involved
sequencing several hundred GBM specimens, from which three
major oncogenic signaling pathways were identified: receptor
tyrosine kinase/RAS/PI3K, p53 and RB7. Based on the expression
of 840 genes, the researchers classified GBM into four distinct
subtypes: classical (EGFR amplification and CDKN2A deletion),
mesenchymal (NF1 deletion and expression of mesenchymal
markers), proneural (PDGFRA amplification, IDH1 mutation and
expression of proneural development genes), and neural
(expression of neuronal markers)8. Despite these efforts, these
mutation-based and transcriptome-based approaches have found
limited clinical application, and only a few biomarkers, including
IDH mutation (favorable prognoses, secondary GBM)9, MGMT
promoter methylation (benefit from temozolomide)10, and
1p/19q co-deletion (chemosensitivity)11 are being used in clinic.
Meanwhile, IDH wild-type GBM, which is found in ~90% of all
GBM cases, represents the most aggressive glioma subtype12.
Establishing predictive biomarkers or patient stratification stra-
tegies for use in developing targeted therapies and identifying
determinants of long-term survival of IDH wild-type GBM
remain challenges.

In this regard, proteogenomic studies in other cancers have
demonstrated that DNA-level and RNA-level alterations are
insufficient to predict protein activity13–15. Therefore, proteome-
based patient stratification might provide a more effective
approach with which to predict prognosis and susceptibility to
targeted agents. However, although several studies have con-
ducted proteomic analysis of glioma tissue samples16,17 or
secreted proteins in blood18, large-scale proteomic characteriza-
tion in the context of GBM has not yet been reported.

Here, we delineate GBM tumors based on proteome data and
identify prognostic and therapeutic biomarkers particularly for
IDH wild-type GBM. We generate global-proteomic and
phospho-proteomic data for a panel of 50 glioma tissues (39 IDH
wild-type GBMs) with previously annotated genomic, tran-
scriptomic, and clinical information as well as the responses of
matched neurosphere-like patient-derived cells (PDCs) to tar-
geted therapies. Our integrated pharmaco-proteogenomic
approach provides insight into GBM intertumoral and intratu-
moral heterogeneity in cell of origin, oncogenic signaling, and
metabolic pathways. Our data highlight potentially effective
prognostic and therapeutic strategies for IDH wild-type GBM
patients.

Results
Proteomic data represent glioma disease state. To gain insight
into GBM at the proteomic level, we assembled 39 IDH wild-type
GBM samples, along with two IDH mutant GBM and nine low-
grade glioma (LGG) samples as a control, from the Samsung
Medical Center (SMC) cohort, for which pre-existing whole-
exome sequencing (WES) and RNA sequencing (RNA-seq) data

already exist19. These samples displayed broad coverage of major
driver mutations5, including EGFR, EGFRvIII (deletion in exon
2–7), TP53, RB1, PTEN, and PIK3CA (Fig. 1a), and copy number
alterations (CNAs) in CDKN2A/TP53 (deletion) and EGFR/
PDGFRA (amplification) (Supplementary Fig. 1a), indicating that
these samples represented the GBM mutational spectrum. The
samples also spanned all four RNA subtypes8 (Supplementary
Fig. 1b). 20 out of 50 samples were obtained redundantly from
multiple regions or at different time points and had different
properties regarding mutation, RNA subtype, 5-aminolevulinic
acid (5-ALA) positivity, location (locally adjacent or core and
margin of tumors), or primary/relapse status (Supplementary
Data 1). Unsupervised clustering showed that samples from the
same patient showed a high degree of DNA-level similarity
(Fig. 1a).

We first measured the global proteome and phosphoproteome
levels relative to pooled global internal standards (GIS) by
isobaric labeling with six-plex tandem mass tag (TMT) reagents
followed by liquid tandem mass spectrometry (LC–MS/MS). We
obtained measurements for all 50 tumor samples and four normal
brain tissues by randomly assigning them to 11 TMT sets
(Fig. 1b). After removing isoforms, we quantified 9367 protein
groups and the phosphorylation of 8020 amino acid sites: each
TMT set possessed an average of 6294 protein groups and 2796
phosphorylation sites (Supplementary Fig. 1c). We then selected
for further analysis 3909 protein groups that were quantified in all
GIS and localized to all cellular compartments (Supplementary
Fig. 1d) and 4489 phospho-sites quantified in three or more GIS
(Supplementary Data 2). Significant overlap between the single
amino acid variants (SAVs) detected in this study by LC–MS/MS
and the previously annotated single nucleotide variants (SNVs;
Fig. 1c) indicated that our proteomic assay could successfully
detect mutant proteins. In addition, the protein expression levels
were generally positively correlated with the RNA levels, except
for genes involved in certain housekeeping functions, including
genes associated with ribosomes and oxidative phosphorylation
(OXPHOS—the mitochondrial process through which ATP is
synthesized via the electron transport chain coupled to substrate
oxidation; Fig. 1d), which is concordant with the findings of
previous studies on other tumor types13–15.

We next established the degree of similarity between samples at
the proteomic level by unsupervised hierarchical clustering.
Intriguingly, matched samples were clustered primarily by RNA
subtypes (P < 0.001; permutation test) or clinical phenotypes,
such as 5-ALA positivity, tumor grade and primary/relapse status
(P < 0.05; permutation tests) (Fig. 1e), instead of being clustered
by DNA-level similarity. This result suggests that proteome might
better represent the disease state and underlying biology than
genome.

Given the high quality of the proteome data, we were able to
identify differentially expressed proteins by comparing glioma
samples with adjacent normal tissue samples. As expected,
compared to normal tissues, gliomas showed elevated levels of
proteins involved in cell proliferation and immune responses
(Supplementary Fig. 1e; Supplementary Data 3). We then
compared IDH mutant (N= 6; 2 grade IV and 4 low grade)
and IDH wild-type (N= 44; 39 grade IV and 5 low grade)
gliomas, because the latter are associated with a significantly
worse prognosis than the former. We found that IDH wild-type
gliomas were significantly associated with elevated phosphoryla-
tion levels at 25 phospho-sites (Supplementary Data 3). Of these
sites, the phosphorylation of signal transducer and activator of
transcription 1 (STAT1) at serine-727, which is a marker of
STAT1 activation20, correlated with elevated target protein levels
in IDH wild-type tumors (Fig. 1f). Also, IDH mutation status
directly affected pSTAT1-S727 levels, as shown in an IDH
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wild-type and mutant GBM cell line pair in an isogenic U87MG
background (Supplementary Fig. 1f). Collectively, our results
suggest that quantitative proteomic data can accurately cluster
glioma samples by clinical phenotype and identify activated
pathways and their regulators.

Two proteomic subgroups of IDH wild-type GBM. We next
classified the tumors based on the proteome data. A consensus

clustering algorithm analysis of the 3909 protein groups detected
in all the tumor samples identified two stable proteomic subtypes
for IDH wild-type GBM: glioblastoma proteome cluster 1 (GPC1,
N= 26) and GPC2 (N= 13) (Fig. 2a). Inclusion of IDH mutant
GBMs and LGGs did not alter the classification of IDH WT GBM
tumors (Supplementary Fig. 2a): the two IDHmutant GBMs were
classified with GPC2 tumors, and the nine LGGs were sig-
nificantly associated with GPC2 tumors (χ2 test P= 0.0029).
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Removing non-unique samples (i.e., any sample that shared a
patient of origin) or taking all the GBMs regardless of IDH
genotype did not affect the binary nature of the classification
(Supplementary Fig. 2b–d). The stability of this classification
supports the robustness of the subtypes and implies that binary
classification is applicable to GBM in general.

The GPC1 global proteome expression pattern was distinct
from that of normal brain tissues, whereas the GPC2 global
proteome expression displayed a normal brain tissue-like pattern
(Fig. 2b, top panel). However, the purities of GPC2 tumor did not
significantly differ from those of GPC1 based on comparable
variant allele frequency (VAF) distribution (Fig. 2b, bottom
panel), which suggests that the abundance of normal cells in
tumors does not contribute to these proteomic differences. A
subtype switch, likely driven by therapeutic treatment, was
observed in recurrent tumors, with two of the three samples
switching from GPC1 into GPC2 (Supplementary Fig. 2e). This
finding demonstrates protein-level subtype plasticity, which is in
agreement with previous findings from a longitudinal transcrip-
tome analysis21.

The two GPC subtypes were largely independent of the four
RNA subtypes8 (χ2 test P= 0.122; Fig. 2c). Notably, EGFRvIII and
PIK3CA mutations were exclusively found in GPC1 tumors,
whereas other GBM driver mutations in TP53, NF1, PTEN, RB1,
and EGFR (non-vIII) were relatively evenly distributed between
the two subtypes (Fig. 2d). These results suggest that IDH wild-
type GBM can be classified into two stable protein subtypes that
are distinct from RNA subtypes.

OXPHOS-related proteins determine proteomic subtypes. To
identify the key proteins that characterize the GPC subtypes, we
conducted a principal component analysis (PCA) of the global
proteome data. The first principal component (PC1) successfully
stratified the two GPCs (Fig. 3a; left panel). A gene ontology
analysis of the top 10% of proteins with the highest absolute PC1
loading values revealed a notable enrichment of proteins involved
in OXPHOS (Fig. 3a; right panel and Supplementary Fig. 3a).
Moreover, the expression of OXPHOS-related proteins was sig-
nificantly lower in GPC1 than in GPC2. Importantly, we found
no differences in the OXPHOS mRNA levels between the sub-
types (Fig. 3b).

Compared to normal cells, GPC2 tumors expressed similar
levels of proteins involved in glycolysis, serine biosynthesis, the
tricarboxylic acid (TCA) cycle, glutaminolysis, and OXPHOS, but
at significantly higher levels than those found in GPC1 tumors
(Fig. 3b, c). This similarity indicates that GPC2 tumors primarily

generate ATP via OXPHOS, in a similar manner to normal cells
under aerobic conditions.

Compared with GPC2 tumors, GPC1 tumors expressed higher
levels of lactate dehydrogenase A (LDHA) and proteins involved
in glucose uptake, hexokinase 2 (HK2), the pentose phosphate
pathway (PPP), and the one-carbon pathway (Fig. 3c). Notably,
GPC1 expressed higher levels of pyruvate kinase m2 (PKM2) and
HK2, whereas GPC2 had an elevated PKM1 (Fig. 3d; Supple-
mentary Fig. 3b). In addition, GPC1 tumors exhibited elevated
expression of IDH1 protein (the primary producer of NADPH in
GBM)22,23 beyond the levels found in GPC2 tumors (Supple-
mentary Fig. 3c). The GPC1-activated PPP and one-carbon
pathway also generate NADPH, which is a reducing equivalent
for tumor cells affected by the Warburg effect24. Coherent with
our proteomic data, GBM cell lines belonging to gene expression-
based surrogate-GPC1 subtype (sGPC1) exhibited higher lactate
levels (Supplementary Fig. 3d) in the analysis of cancer cell line
encyclopedia metabolomics data25. Together, these results suggest
that GPC1 tumors metabolically rely on the Warburg effect.

GPC-subtype-dependent expression of cell-of-origin markers.
Neural stem cell (NSC) is considered a cell of origin of GBM26.
To understand whether each GPC subtype has a distinct cellular
origin, we compared the levels of NSCs (Nestin, Vimentin,
CD44), oligodendrocytes (OSP, MOG), and astrocytes (GLUL,
GLT-1, GLAST, HepaCAM, ALDH1A1, S100β) marker proteins
that were detected in all GIS. GPC1 tumors had significantly
elevated Nestin, Vimentin, and CD44 (Fig. 4a). In GPC1 tumors,
we also observed elevations in an active form of cortactin phos-
phorylated at T364/S368/T401/S405 and its interacting partner,
Arp2/3 complex subunits (Fig. 4b; Supplementary Data 3), which
are components not only of filopodia/lamellipodia (cytoplasmic
protrusions of migratory cells) but also of invadopodia (invasive
protrusions of transformed cells). By contrast, GPC2 tumors
significantly overexpressed the oligodendrocyte and astrocyte
markers OSP, MOG, GLT-1, GLAST, and HepaCAM (Fig. 4a).
GLUL, ALDH1A1, and S100β were also relatively highly
expressed in GPC2 tumors, but were marginally insignificant
(Fig. 4a). Cumulative evidence indicates that GBM stem cells are
immune-resistant27. Concordantly, GPC1 had elevated levels of
CD274 (PD-L1, two-way ANOVA P= 2.02E−6) and PDCD1LG2
(PD-L2, two-way ANOVA P= 4.75E−13) (Supplementary
Fig. 4a). Together, with the observation that recurrent tumors
tend to be GPC2 (Supplementary Fig. 2e), one potential expla-
nation of these data is that GPC1 tumors originate from NSCs,
whereas GPC2 tumors differentiate from GPC1. However, we

Fig. 1 Proteomic characterization reveals inter- and intra-patient molecular heterogeneity of glioblastoma multiforme (GBM). a Characteristics of IDH
wild-type GBM (N= 39), IDH mutant GBM (N= 2) and low-grade glioma (N= 9) tissue samples. Unsupervised hierarchical clustering with complete
linkage was used to cluster samples based on the 1 – Jaccard coefficient as the distance metric. The type of mutations in the 8 most frequently mutated
GBM genes5 are color-coded according to the legend. The multi-sample row displays multiple tumor samples obtained from the same patient as the same
color; no color indicates unique samples. 5-ALA (within multi-sample features) indicates the intensity of the 5-aminolevulinic acid-induced fluorescence.
b Overview of the multiplexed quantitative proteomic assay of glioma tissues. Trypsin-digested glioma (N= 50) and control normal tissues (N= 4) were
tagged with a six-plex tandem mass tag (TMT): TMT127-131 for samples and TMT126 for the global internal standard (GIS) control. A total of 11 sets for
54 samples were prepared. High-pH fractionated peptides were subjected to liquid chromatography-tandem mass spectrometry to identify and quantify
phosphopeptides and global proteins. See “Methods” for further details. c Coherence map of single-nucleotide variants (SNV) and single amino acid
variants (SAVs). d Correlations between mRNA and protein levels in glioma tissue samples. (Top) Density plot of Spearman’s correlation coefficients
between mRNA and protein abundance using the 8034 proteins detected in all GIS samples (N= 4071 at the gene level). Statistically significant positive
correlations with a false discovery rate (FDR) <5% are indicated by the dashed-line box. (Bottom) Distribution of correlation coefficients for gene sets of
interest. e Unsupervised hierarchical clustering of the 50 samples with global-proteomic data. Complete linkage and the distance metric 1 – Pearson’s
correlation coefficient was used for clustering. f Genetic regulatory network activated in IDH wild-type tumors. The transcription factor–target gene
regulatory network was formed by the significantly upregulated phosphoproteins and global proteins in IDH wild-type tumors using the OmniPath
database61 in Cytoscape. Source data are provided as a Source Data file.
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cannot exclude the possibility that GPC2 tumors may originate
directly from oligodendrocytes and astrocytes.

PHGDH predicts favorable prognosis in IDH wild-type GBM.
A previous study identified GBM prognostic gene expression
biomarkers comprising 66 favorable and 205 unfavorable genes28,
however, protein level validation has yet been pursued. Univariate
Cox regression analysis of our GBM cohort revealed that only 11

of these markers were reproduced at the protein level (Supple-
mentary Data 4), and of those, we identified two biomarkers as
favorable for IDH wild-type GBM (phosphoglycerate dehy-
drogenase, PHGDH, and Raftlin family member 2, RFTN2), and
one as unfavorable (FKBP prolyl isomerase 9, FKBP9; Fig. 4c, d).
Importantly, the protein expression of all three of these markers
differed between the two GPC subtypes—FKBP9 was elevated in
GPC1, whereas PHGDH and RFTN2 were higher in GPC2
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(Fig. 4e). However, GPC subtypes did not directly show a sig-
nificant difference in prognosis (two-sided Log-rank test P=
0.0548).

Of the three proteins, PHGDH was the strongest biomarker
(univariate Cox P= 0.0071) associated with long-term survivors
of IDH wild-type GBM patients in the SMC1 cohort (Fig. 4c), as
well as in other independent data sets at the mRNA-level
(Supplementary Fig. 4b). Favorable prognosis of PHGDH-high
tumors was further validated in 42 independent IDH wild-type
GBM tumors assessed by immunohistochemistry on a tumor
tissue microarray (SMC-TMA) using an anti-PHGDH antibody

(Fig. 4f). The good prognosis of the PHGDH-high group suggests
a functional role for PHGDH in limiting tumor aggressiveness.
Intriguingly, NCT-502, a chemical inhibitor of PHGDH,
significantly increased invasion of tumor spheres (Fig. 4g) derived
from PHGDH-active GBM cell lines (Supplementary Fig. 4c, d
and Supplementary Data 5) into 3D matrix. Conversely, PHGDH
overexpression in PHGDH-deficient GBM cell lines decreased
invasion (Supplementary Fig. 4e), suggesting that PHGDH may
prolong patient survival by suppressing tumor invasion via its
increased enzymatic activity. PHGDH, which catalyzes the first
step of serine biosynthesis by converting 3-phospho-D-glycerate
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Fig. 4 GPC2-associated PHGDH predicts a favorable prognosis in IDH wild-type GBM. a Differential expression of protein markers for NSCs (orange),
oligodendrocytes (blue), and astrocytes (purple) between proteomic subtypes. *P < 0.05, **P < 0.001; two-sided unpaired Student’s t-test. See
Supplementary Data 3 for exact P-values. b The cortactin-Arp2/3 complex is elevated in GPC1 tumors. The gray color indicates proteins with no available
protein expression data. P-values were calculated by two-sided unpaired Student’s t-test. c Prognostic biomarker proteins in IDH wild-type GBM. Deceased
and surviving patients are denoted by black and red dots, respectively. *P < 0.05, **P < 0.01; univariate Cox regression test. Kaplan–Meier (KM) survival
curves for IDH wild-type GBM patients (N= 29) in the SMC1 cohort were shown on the right for each of the three proteins (black: high expression, red: low
expression). **P < 0.01; two-sided log-rank test. d Kaplan–Meier (KM) survival curves. Patients were classified by the optimal gene expression thresholds
reported by Uhlen et al.28. P-values were calculated using the two-sided log-rank test. e Box-jitter plots for the abundance of the indicated proteins. The
description of the box-and-whisker plots is the same as in Fig. 3b. Statistical significance of the downregulation of favorable markers (PHGDH and RFTN2)
and upregulation of an unfavorable marker (FKBP9) was evaluated by Student’s t-test (one-sided unpaired). The number of samples for GPC1 and GPC2 is
26 and 13, respectively. f KM survival curves for PHGDH-high vs. low patients in the SMC-TMA cohort. Patients were classified as described in d. P-values
were calculated as in d. g PHGDH activity (left), relative invasion lengths (middle), and representative images of 3D invasion (right) of the indicated tumor
spheres after treatment of vehicle (DMSO) or NCT-502 for 48 h at the indicated concentrations. Two-sided unpaired Student’s t-test was used to compare
PHGDH activity. Two-way ANOVA was used for the comparison of relative invasion length between treatment groups. Error bars indicate ±SD, N= 3.
Arrowheads indicate invasive fronts. Scale bar: 500 μm. Source data are provided as a Source Data file.
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to 3-phosphonooxypyruvate, is also known to mediate a
promiscuous function with the ability to convert α-ketoglutarate
into D-2-hydroxyglutarate (D-2-HG), similar to the IDH1 mutant
protein29. In support of this, we found a positive correlation
between PHGDH levels and 2-HG production (Supplementary
Fig. 4f) by analyzing 878 IDH wild-type cancer cell-line
metabolome data25.

Taken together, these data indicate that GPC2-associated
PHGDH predicts a favorable prognosis in IDH wild-type GBM.

Spatial and cell-type characteristics of GPC subtypes. Recent
single-cell analyses have revealed marked intratumoral hetero-
geneity in GBM at the transcriptional level. This finding indicates
that individual tumors contain single cells with a spectrum of
different subtypes and hybrid cellular states, and thus implies that
a dominant cellular population might determine the representa-
tive subtype of bulk tumors30. We therefore aimed to apply our
GBM proteomic subtype classification to single-cell transcriptome
data reported by Darmanis et al.31, which comprised 3589 single
cells from four patient IDH wild-type GBM tumors and provided
information regarding the brain cell type (vascular, immune,
neuronal, and glial) and three-dimensional location (tumor core,
periphery) (see “Methods” and Fig. 5a). Of the 3589 single cells,
357 and 428 cells were classified as sGPC1 and sGPC2, respec-
tively (permutation test P < 0.05; Fig. 5a, Supplementary Fig. 5a).
The mapping of these cells on t-distributed stochastic neighbor
embedding (t-SNE) coordinates revealed a distinct clustering
pattern of two proteome subtypes (Fig. 5b). Consistent with our
previous findings, NSC markers CD44 and VIM were significantly
elevated in single cells of the sGPC1 subtype, whereas oligoden-
drocyte marker OLIG2, OSP, andMOG and the astrocyte markers
SLC1A2 and S100B were elevated in the sGPC2 subtype (Fig. 5c).

According to the annotation by Darmanis et al.31, the majority
of single cells located in the tumor periphery were non-neoplastic
cells (95%), whereas the tumor core was largely composed of
neoplastic (44%) and myeloid cells (50%). As expected, we found
that each of the tumor cores from the four patients comprised a
mixture of cells of the two proteome subtypes; however, the ratios
of the two subtypes in neoplastic cell populations of the four
tumors were highly variable, and made a notable contribution to
determining the dominant proteome subtype of the tumor
(Fig. 5d). By contrast, the surrounding environment primarily
determined the proteomic subtype of normal cell populations:
84% of normal cells in the tumor core displayed sGPC1 features,
whereas 70% of normal cells in the periphery displayed sGPC2
features (Fig. 5e). Because the two subtypes showed differential
immune evasion characteristics, we further investigated whether
the neoplastic single cells of each subtype variably expressed
immune checkpoint ligands. Indeed, a PD-1 ligand PD-L1 was
upregulated in the neoplastic cells of sGPC1 tumors (Fig. 5f). To
further validate the intratumoral heterogeneity of GPC subtypes
at a single cell level, we used a tumor microarray (SMC-TMA) of
independent IDH wild-type GBM tissues to measure relative
expression of PHGDH (good prognostic marker representing
GPC2, Fig. 4f) and Nestin (representing GPC1, Fig. 4a) by
multiplex fluorescent immunohistochemistry that generated
reliable signal intensities at a single cell resolution. Consistent
with our findings in the proteomic analysis, sGPC1 tumors
exhibited a significantly higher fraction of Nestin-positive
neoplastic cells, whereas sGPC2 tumors comprised a significantly
higher fraction of PHGDH-positive neoplastic cells (Supplemen-
tary Fig. 5b). Intratumoral heterogeneity, observed from the
scRNA-seq data, was clearly seen in the multiplex fluorescent
immunohistochemistry results. Both Nestin+/PHGDH− cells
(representing GPC1 subtype) and PHGDH+/Nestin− cells

(representing GPC2 subtype) were found in all tumor cores,
albeit with different ratios matching their sGPC subtypes (i.e., two
sGPC1 tumors contained a higher frequency of Nestin+ cells),
whereas two sGPC2 tumors contained higher frequency of
PHGDH+ cells (Fig. 5g).

These results indicate that GBM tumors comprise cells
belonging to both GPC subtypes, and that the ratio of neoplastic
cell subtypes influences the overall tumor characteristics. Besides,
unlike normal cells in the tumor core which displayed a static
sGPC1-like proteomic feature, neoplastic cells in the tumor core
exhibited highly variable GPC subtypes, suggesting that the
proteomic subtypes of neoplastic cells are largely determined by
cancer intrinsic factors rather than the tumor microenvironment.

GPC-subtype-dependent sensitivities to targeted therapies. In a
previous study, we screened 50 PDCs derived from the same
gliomas used here, against 60 anticancer-targeted agents that
covered major oncogenic pathways19. Of the 60 drugs tested, 51
were cytotoxic to at least one of the PDCs. Here, we determined
whether proteome-based patient stratification predicts suscept-
ibility to targeted agents using the PDC data set. Although the
PDCs had been cultured in vitro for several passages for the drug
assay, a substantial enrichment of statistically significant corre-
lations was observed between protein biomarkers (measured in
tumor tissues) and drug–response phenotypes (assayed in PDCs)
(Fig. 6a). Known drug targets were most strongly correlated with
the drug–response, particularly at the protein level (Supplemen-
tary Fig. 6a). For example, bortezomib and panobinostat cyto-
toxicities were significantly correlated with the protein expression
levels of the 20S proteasomal subunits and histone deacetylase
(HDAC)1/2, respectively (Fig. 6b), which agrees with previous
studies showing that target protein expression levels in cancer
cells determine the anticancer activities of proteasome and
HDAC inhibitors32,33. Interestingly, these correlations were less
evident at the mRNA level (Fig. 6b).

We subsequently examined whether any of the 51 targeted
agents showed selective cytotoxicity against GPC1 or
GPC2 subtype PDCs. Using the median effective dose (ED50)
or area under the curve (AUC) values, we identified four GPC1-
selective drugs (tandutinib, crizotinib, olaparib, and AZD2014)
and two GPC2-selective drugs (erismodegib and canertinib)
(Fig. 6c and Supplementary Data 6). Coherent drug-sensitivity
and target-pathway activation relationships for all of these drugs
were observed at the protein-levels (Fig. 6d): tandutinib (PDGFR
inhibitor), PDGFR_Binding; crizotinib (ALK, MET, ROS1
inhibitor), Oncogenesis_by_MET; olaparib (PARP inhibitor),
BRCAness score; AZD2014 (mTORC1/2 dual inhibitor), Trans-
lational_Initiation; erismodegib (Hedgehog inhibitor), Hedge-
hog_GLI_Pathway; and canertinib (pan-ERBB inhibitor),
ERBB_Pathway. Taken together, these data suggest that tandu-
tinib, olaparib, crizotinib, and AZD2014 might be a promising
targeted therapy for GPC1 tumors and that erismodegib and
canertinib might be more promising for GPC2 tumors.

Protein markers inform sensitivities to targeted therapies. The
majority of the 60 targeted agents used in this study inhibit
receptor tyrosine kinases (RTKs), the phosphorylation of which
serves as an important marker of their activation statuses.
Therefore, we endeavored to find phosphoproteomic markers
that are associated with specific drug responses using phospho-
proteomic data for the 50 gliomas and drug–response data for the
matched PDCs (Supplementary Data 6). The left-skewed p-value
distribution that we obtained from the correlation test indicates
the enrichment of statistically significant drug-response and
phosphoprotein relationships (Supplementary Fig. 6b).
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As expected, hypersensitivities associated with the
phosphorylation-mediated activation of a target protein were
observed for several targeted agents. For example, hypersensitiv-
ities to afatinib, an EGFR inhibitor, correlated with EGFR-
pY1197 (Supplementary Fig. 6c; left panel). Similarly, SRC pS17
and pY419 were associated with sensitivity to bosutinib
(Supplementary Fig. 6c; middle and right panels).

For most drugs, however, stronger correlations were found for
unrelated phosphoproteins or the non-activating phosphorylation
sites of the target protein than for activating phosphorylation sites

in target proteins. For example, lapatinib, a dual EGFR and HER2
inhibitor showed marked association with EGFR-pT693, a
known marker of receptor internalization (Supplementary Fig. 6d,
upper left panel). Intriguingly, three other phosphoproteins
commonly involved in RTK endocytic recycling—RAB4B-
pS193, SNAP91-pT309 and ANK2-pS2516—were even more
highly correlated with lapatinib sensitivity (Supplementary
Fig. 6d), which suggests a possibility that EGFR recycling activity,
rather than EGFR kinase activity, may determine responses to
lapatinib. Other correlations that exhibited a high degree of
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significance (FDR < 1%) included correlations between bosutinib
and TSC2-pS1420, and between AZD4547 (FGFR inhibitor) and
TOMM22-pS45 (Supplementary Fig. 6e). The functional impact
of these phosphorylation sites and their relationships to the
targeted agents are largely unknown.

Our final investigation aimed to identify targeted agents
selective to the most aggressive GBMs, characterized by wild-
type IDH, low PHGDH expression, and high FKBP9 expression
in our study (Fig. 4d). Here, we found that the most significant
correlations with both PHGDH and FKBP9 were found for
AZD2014 (Fig. 6e), suggesting that AZD2014 might be a
promising targeted therapy for the aggressive IDH wild-type
GBM subtype.

In summary, our integrated analysis of pharmaco-proteomic
data in patient-matched samples revealed proteomic-subtype-
associated and protein biomarker-dependent sensitivities to
targeted agents, which might provide additional insights into
patient stratification strategies for GBM therapy in the future.

Discussion
This study employed a large-scale quantitative proteomic
approach using LC–MS/MS technology to characterize the
intertumoral heterogeneity of 39 IDH wild-type GBM tumors.
We found that IDH wild-type GBM can be divided into two
stable proteomic subtypes, GPC1 and GPC2, which are primarily
characterized by low or high expression of OXPHOS-related
proteins, respectively. GPC1-subtype tumors displayed distinct
Warburg-like proteomic features, with increased LDHA, PKM2,
and HK2 expression that facilitates lactate production and confers
resistance to hypoxic stress in cancer cells34,35. The Warburg
effect drives the biosynthesis of nucleotides, lipids, and proteins
to support rapid cell proliferation, as well as the disruption of
tissue architecture to facilitate tumor motility and immune-cell
evasion in the tumor microenvironment24. NADPH is a key
component in this process, thus the elevated PPP, one-carbon
pathway, and IDH1 levels in GPC1 tumors provide additional
support for our hypothesis. As we found no direct correlation
between the RNA and protein levels of OXPHOS-related proteins
(presumably due to their dependence on post-translational pro-
teolysis and protein turnover to control abundance)15,36,37, our
proteome-based classification exhibited no significant correlative
relationship with previously identified RNA-based subtypes.
Therefore, the proteomic subtypes represent previously unrec-
ognized IDH wild-type GBM subgroups. However, some of the
samples, particularly in GPC2, exhibited heterogeneous expres-
sion patterns, compared to other samples in the subtype, sug-
gesting that increased sample size may lead to additional subtype
(s) distinct from the two major GPC subtypes.

The identification of prognostic biomarkers for IDH wild-type
GBM remains a challenge. Indeed, among the previously reported
271 gene expression biomarkers that are prognostic for GBM28,
only three were validated in our IDH wild-type GBM cohort at
the protein level. Of these, PHGDH (a rate-limiting enzyme of
serine biosynthesis) was elevated in GPC2 tumors of IDH wild-
type GBM and showed the strongest association with long-term
survival. IDH mutant proteins produce the oncometabolite D-2-
HG and predict a favorable prognosis in glioma9. Similarly,
PHGDH is known to have a promiscuous function to generate D-
2-HG29. Thus, further research may be needed to evaluate whe-
ther the canonical PHGDH function or its promiscuous function
is associated with favorable prognosis in IDH wild-type GBM.

Understanding the mechanistic connections among GPC1
tumor-specific features is important because these tumors carry
poor prognostic biomarkers. Nestin is expressed in adult NSCs
that reside in the subventricular zone (SVZ) of the brain: it forms

a heterodimer with Vimentin during mitosis, promotes the dis-
assembly of intermediate filaments, and supports the survival and
renewal of neural progenitor cells. A recent study showed that
56% of human GBM cases originate from SVZ-derived glioma
stem cells (GSCs)26. Thus, we hypothesized that GPC1 subtype
might originate from SVZ-derived GSCs. In further support of
this hypothesis, we found that GPC1 tumors expressed higher
protein levels of phosphorylated cortactin and the Arp2/3 com-
plex. Phosphorylated cortactin activates the Arp2/3 complex to
mediate a mechanism by which cancer cells might facilitate actin
filamentation and branching while remodeling the extracellular
matrix to gain increased motility and invasiveness38. GSC
maintenance depends on hypoxia inducible factor (HIF) 1α39

consistently, we found that GPC1 tumors had activated HIF
pathway (Supplementary Data 3). HIF1α inhibits cell differ-
entiation by activating signaling pathways driven by Notch,
NANOG, TGFβ, and SOX2. Metabolically, HIF1α activates
GLUT, PFK1, HK2, and LDHA, thus inducing aerobic glycolysis
and leading to increased glucose uptake due to a low ATP yield.
Increased glucose uptake and lactate secretion subsequently
facilitate immune evasion through immune checkpoint ligands
and metabolic competition40. HIF1α also activates the one-
carbon (folate) pathway to protect cancer stem cells from
increased oxidative stress by increasing NADPH (and glu-
tathione) production41. This process is consistent with our find-
ings that NADPH-producing IDH1, the PPP and one-carbon
pathway were elevated in GPC1 tumors.

We also demonstrated GBM intratumoral heterogeneity in
terms of proteome subtype, although one subtype generally
dominated a tumor. This finding is consistent with the recent
observation reported in the Ivy Glioblastoma Atlas (http://
glioblastoma.alleninstitute.org), that the differences in tumor
characteristics separated by anatomical location are as large as the
differences observed between other tumors42. A subtype switch
observed in our longitudinal samples might also highlight intra-
tumoral heterogeneity as a major challenge to successful GBM
treatment. Our data imply that the two GPC subtypes might need
to be controlled simultaneously in GBM treatment to prevent
recurrence and have a therapeutic effect.

Finally, we assessed the direct chemical liabilities linked to
proteomic information using the previously generated data set
with 50 matched PDCs against 60 targeted anticancer drugs.
Here, we demonstrated concordant subtype-specific target path-
way (BRCAness) activation with olaparib showing efficacy for
GPC1 tumor-matched PDCs. Olaparib is under clinical trials
with radiotherapy (for MGMT unmethylated patients) and
radiotherapy-temozolomide (for MGMT methylated patients) in
newly diagnosed GBM43. Our proteomic classification may guide
further patient selection criteria for these efforts. We also
demonstrated that AZD2014, a dual mTORC1 and mTORC2
inhibitor, exhibited strong cytotoxicity toward the most aggres-
sive PHGDH-low and FKBP9-high IDH wild-type GBM-derived
PDCs. Despite the failure of mTORC1 inhibitors in clinical trials,
dual mTORC1/2 inhibitors are increasingly gaining traction in
GBM translational research because preclinical evidence indicates
that mTORC2 has divergent roles from mTORC1 in facilitating
GBM growth, invasiveness, and GSC proliferation44,45, and that
mTORC2 activity is selectively enhanced in grade IV tumors46.
Our data are in line with these observations and thus should
motivate further clinical studies.

In conclusion, our integrated pharmaco-proteogenomic ana-
lyses highlight the importance of using proteomic data to
understand the connections between GBM cellular origin, onco-
genic signaling and metabolic diversity, all of which shape distinct
binary molecular states. Our data illuminate unique therapeutic
vulnerabilities coupled to these binary molecular states and
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biomarker proteins and suggest potentially effective therapeutic
strategies for GBM.

Methods
Sample acquisition. Tumor specimens and their corresponding clinical records
were obtained from patients who underwent surgical resection at Samsung Medical
Center (SMC) and provided informed consent. SMC cohort 1 (N= 50) was used
for the proteomic analysis, SMC cohort 2 (N= 106) was used as an independent
data set for validation using RNA-based surrogate proteome signatures, and SMC-
TMA cohort (N= 120) was used as an independent data set for validation by
multiplex fluorescent immunohistochemistry. Detailed information about the
specimens is provided in Supplementary Data 1. This study was approved by the
SMC Institutional Review Board (201004004 and 200504001).

Whole-exome sequencing (WES) data analysis. The paired-end reads from
FASTQ files were aligned to the UCSC human reference genome assembly (hg19)
using Burrows–Wheeler Aligner BWA (version 0.6.2). The duplicated reads were
removed using Picard (version 1.73), and local realignment was then performed
around known insertions and deletions (indels) using SAMtools (version 0.1.18)
and the Genome Analysis Tool Kit (GATK version 2.5-2). dbSNP (version 135)
was subsequently used for the realignment and recalibration process. The resulting
bam files were used for mutation calling and copy number analysis.

SNVs were identified using MuTect (version 1.1.4) with the following criteria: a
Phred score >15 and coverage >20 in both the tumor tissue and the matched
normal tissue. Indels were identified by SomaticIndelDetector (GATK version 2.2)
based on a mapping quality score >15 and a coverage >10 in both the tumor tissue
and the matched normal tissue. The variants were annotated using dbSNP (version
135), 1000 Genomes Project (Phase I), and Exome Sequencing Project (ESP6500SI-
V2). The resulting variants were annotated using the Variant Effect Predictor (VEP
version 37.75)47. After removing synonymous variants, the nonsynonymous and
splicing variants were taken forward for further study. Hotspot mutations were
annotated using databases downloaded from www.cancerhotspots.org (Hotspot
Results V1) and www.3dhotspots.org (3D Hotspot Results).

For the copy number analyses, BAM files from WES of 50 GBM and 24
matched normal blood samples were used to generate gene-based read-count
matrices using Bedtools, according to the Ensembl gene table (version 37.75).
Subsequently, 1 was added to the read counts to prevent negative infinity values for
the log2 transformation. Genes with mean read counts <20 were filtered out. The
read counts were normalized to counts per million (CPMs) using the edgeR
package (version 3.20.9). The normalized values of the tumors were divided by that
of the matched normal samples to calculate the log2-ratio. A circular binary
segmentation algorithm was implemented with the log2-ratio values using the
DNAcopy package (version 1.52.0). Genomic identification of significant targets in
cancer (GISTIC) 2.0 using the default parameters was applied to the segmented
data to identify regions that were frequently altered in DNA copy number.

RNA-sequencing data analysis. GSNAP (version 2012-12-20)48 was used to align
the reads of SMC cohort 1 to the reference genome GRCh37, and STAR (version
2.5.4b) aligner49 was applied to SMC cohort 2. The normalized gene expression
values in fragments per kilobase of exon per million fragments mapped (FPKMs)
were quantified by Cufflinks (version 2.0.2). Finally, the (FPKM+ 1) values were
transformed to the log2 scale.

To determine the RNA subtype, single-sample gene set enrichment analysis
(ssGSEA)50 was applied to the Z-score normalized expression data to calculate
enrichment scores (ESs) for RNA subtypes as defined by Verhaak et al.8. The
subtype with the highest ES was used as the representative subtype for each sample.

Materials for quantitative proteomic analysis. A sequencing-grade modified
trypsin/LysC mix was purchased from Promega (Madison, WI, USA), and Tris (2-
carboxyethyl)phosphine hydrochloride, tandem mass tag (TMT) isobaric reagents
and a Pierce graphite spin column were purchased from Thermo Fisher Scientific
(Waltham, MA, USA). Water and organic solvents were obtained from J.T. Baker
(Center Valley, PA, USA). TitansphereTM Phos-TiO (10-μm bulk) was purchased
from GL Science (Tokyo, Japan).

Protein extraction, digestion, and TMT peptide labeling. Tumor and adjacent
normal tissue samples were carefully washed in PBS buffer on ice to remove the
blood and then individually cryo-pulverized using a cryoPREP device (CP02,
Covaris). Each tissue specimen (32–243 mg in total wet tissue weight) was placed in
a cryovial (Covaris, 430487) on dry ice, transferred to a Covaris tissue bag (TT1,
Covaris), placed into liquid nitrogen for 30 s and then pulverized at impact level 3.
The tissue powder from each tissue was then placed in a sonication tube (Covaris,
002109) and mixed with lysis buffer [8 M urea, 0.1 M NH5CO3, 1 mM PMSF
and 1× phosphatase inhibitor cocktail (ThermoScientific, Pittsburgh, PA, USA)].
The lysis buffer volume varied depending on the total tissue weight (ca. 1 mL for
20 mg). Tissue lysis was performed by sonication using a focused ultrasonicator
(Covaris, S220) at a setting of 2W (intensity of 5) for 5 s followed by 36W
(intensity of 10) for 20 s and 0W (intensity of 0) for 10 s. The sonication cycle was

repeated 20 times at 16 °C. The homogenate was centrifuged at 16,000×g and 20 °C
for 10 min (5810R, Eppendorf), and the supernatant was transferred to a new tube.
The protein concentration was determined by bicinchoninic acid protein assay
(ThermoFisher Scientific, Waltham, MA, USA).

The proteins (700 μg) were subjected to disulfide reduction with 5 mM Tris(2-
carboxyethyl)phosphine at room temperature for 2 h and alkylation with 15 mM
iodoacetamide at room temperature for 1 h in the dark. Subsequently, the samples
were diluted 10-fold with 0.1 M NH5CO3 to reduce the concentration of urea to
0.8 M. The protein sample was digested overnight at 37 °C using a Trypsin/LysC
protease mixture at a 1:25 enzyme–substrate ratio. The digested samples were
cooled at room temperature, and the digestion was quenched by acidification with
trifluoroacetic acid (TFA) at a final concentration of 0.5%. The sample was
subsequently purified/desalted through HLB solid-phase extraction (SPE) (Sep-
Pak, Waters), dried in vacuo and stored at −20 °C until further use.

The dried peptides were resuspended in labeling buffer (0.1 M
Triethylammonium bicarbonate buffer, Sigma Aldrich), and the peptide
concentration was determined using a Nanodrop spectrophotometer
(ThermoFisher Scientific) at 280 nm wavelength. An aliquot equivalent to 500 μg of
each sample was immediately labeled with 4 mg of each TMT channel, except for
TMT 126, which was prepared according to the manufacturer’s instructions. For
the first batch (sets 1–6), samples from sets 1 through 6 were combined to obtain a
global internal standard 1 (GIS1); this standard was labeled with TMT channel 126.
GIS2 was used for the second batch (sets 7–11), which was obtained by pooling sets
7–11. Following incubation at room temperature for 1 h, the reaction was
quenched with hydroxylamine at a final concentration of 0.3% (v/v). The TMT-
labeled samples were pooled at a 1:1:1:1:1 ratio. The sample arrangement is shown
in Supplementary Data 1. The combined sample was subsequently purified/
desalted using HLB-SPE, dried in vacuo, and stored at −20 °C until further use.
The combined sample comprising the first batch was dried in vacuo and
subsequently desalted using HLB-SPE. By contrast, the combined sample for the
second batch was directly desalted and subsequently dried in vacuo because drying
samples in the presence of hydroxylamine is detrimental to phosphopeptides51.

Peptide fractionation and preparation of proteome samples. The TMT-labeled
peptides were fractionated by bRPLC using an Agilent 1290 Infinity LC System
(Agilent Technologies). Chromatography was performed with an XBridge BEH130
C18 column (4.6-μm i.d. × 250-mm length; pore size of 130 Å and particle size of
3.5 μm; Waters Corporation, Milford, MA, USA) at a flow rate of 0.5 mL/min. The
mobile phases were 10 mM NH4HCO2 (pH 10) as phase A and 10 mM NH4HCO2

(pH 10) in 90% ACN (pH 10) as phase B. The peptides were dissolved in 110 μL
mobile phase A and then injected into a 100-μL sample loop. The gradient was
2–5% B for 10 min, 5–40% B for 40 min, 40–70% B for 15 min, 70% B for 10 min,
and 70-5% B for 15 min. Fractionation was performed by collecting 84 tubes (0.8
min/tube) throughout the chromatographic run. Eighty-four fractions were pooled
to obtain 12 concatenated fractions based on the following rule: a set of an
arithmetic sequence with a common difference of 12 was pooled into one con-
catenated fraction; for instance, fractions with numbers 1, 13, 25, 37, 49, 61, and 73
were pooled to generate concatenated faction 1. A total of 5% of the volume of each
fraction was allocated to global proteome analysis and dried. The remaining 95% of
the concatenated fractions were further combined into 12 fractions, and the flow-
through fractions from bRPLC were also combined into one fraction for phospho-
peptide enrichment and dried. For all experiments, the phosphopeptides were
subjected to metal oxide affinity chromatography using titanium dioxide beads
(10 μm, Titansphere Phos-TiO Bulk)52,53. The dried peptide and TiO2 beads were
preincubated separately in a solution of 3.45 M lactic acid (302 mg/mL), 60% ACN
and 0.3% TFA (one fraction of peptide in 100 μL of the solution; 2 mg of beads in
10 μL of the solution). The two preincubated mixtures were combined and further
incubated for 30 min at 25 °C with agitation. After incubation, the beads enriched
with phosphopeptides were collected by centrifugation, and the unbound super-
natant from the three fractions was pooled into one fraction for double TiO2

enrichment54. The beads were washed with 1% TFA in 30% ACN and loaded onto
a C8-plugged tip (Diatech Korea, Seoul, Korea). The bound phosphopeptides were
eluted with 1.5% NH4OH and then with 5% pyrrolidine in a single tube. The
eluates were directly acidified with 1% TFA and desalted using graphite spin col-
umns (ThermoScientific) according to the manufacturer’s instructions. The
phosphopeptides were dried and resuspended in 0.4% acetic acid.

Liquid chromatography and tandem mass spectrometry. The dried peptide
samples were reconstituted in 0.4% acetic acid, and an aliquot containing ~1 μg of
the sample was injected from a cooled (10 °C) autosampler into a reversed-phase
Magic C18aq (Michrom BioResources, Auburn, CA, USA) column (20 cm ×
75 μm, packed in-house) on an Eksigent nanoLC-ultra 1D plus system at a flow
rate of 300 nL/min. Before use, the column was equilibrated with 90% buffer A
(0.1% formic acid in water) and 10% buffer B (0.1% formic acid in acetonitrile).
The peptides were eluted with a linear gradient from 5 to 40% buffer B over
100 min and 40 to 80% buffer B over 5 min and then subjected to an organic wash
and aqueous re-equilibration at a flow rate of 300 nL/min with a total run time of
130 min. The HPLC system was coupled to a Q-Exactive mass spectrometer
(ThermoFisher Scientific, Bremen, Germany) operated in data-dependent acqui-
sition mode. Survey full-scan MS spectra (m/z 400–2000) were acquired at a
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resolution of 70,000. The source ionization parameters were as follows: spray
voltage, 2.5 kV; capillary temperature, 300 °C; and s-lens level, 44.0. The MS/MS
spectra of the 12 most intense ions from the MS1 scan with a charge state of 1–5
were acquired with a fixed first m/z of 120 along with the following options:
resolution, 17,500; automatic gain control target, 1E5; isolation width, 2.0m/z;
normalized collision energy, 27%; dynamic exclusion duration, 90 s; and ion
selection threshold, 4.00E+ 03 counts.

Peptide and protein identification and quantification. Peptide and protein
identification and quantification were performed using MaxQuant55 1.5.6.0. The
mass spectrometry raw files were searched against the Swiss-Prot human database
(released in March 2014; http://www.uniprot.org) using the Andromeda search
engine included in MaxQuant. The following MaxQuant search parameters were
used: semispecific trypsin was selected as the enzyme; the carbamidomethylation of
cysteine was set as a fixed modification; N-terminal protein acetylation and oxi-
dation (M) were set as variable modifications; and phosphorylation (STY) was set
as a variable modification for phosphorylation-enriched samples. The reporter ion
was set as six-plex TMT for quantification. Peptide matches were filtered by a
minimum length of eight amino acids and no miscleavages were allowed. The false
discovery rate (FDR) was set to 0.01 at both the protein and peptide spectrum
match (PSM) levels. Proteins identified by at least two unique peptides were used.
For protein quantification, the minimum ratio count was set to two, and the
peptide for protein quantification was set as unique. Other settings were kept at
their default values. In total, 9367 protein groups, 179,234 stripped peptides, and
2,750,407 peptide spectral matches (PSMs) were identified from the global pro-
teome. In the case of the phosphoproteome, 8019 phosphorylation sites, 16,377
phosphorylated peptides, and 276,153 PSMs were identified. The mass spectro-
metry proteomics data have been deposited to the ProteomeXchange Consortium
(http://proteomecentral.proteomexchange.org) via the PRIDE partner repository
with the data set identifier PXD015545. The protein intensity of a sample was
divided by the corresponding global internal standard (GIS) and converted to the
log2 scale. The normalized log2 intensities were then sample-wise median centered
across all proteins before protein-wise median centering across samples belonging
to a GIS batch. Finally, the normalized abundance values obtained from two GIS
batches (30 samples from batch 1, 24 samples from batch 2) were combined.
Samples with no intensity values were arbitrarily given the second smallest value of
all samples to avoid negative infinity. A total of 8034 proteins quantified in all GISs
were used for analysis.

To convert the abundances of the phosphopeptides to that of phospho-sites, the
mass spectral intensity values from all the phosphopeptides containing a particular
phospho-site (s) were averaged at the levels of mono-, di-, or tri- or more
phosphorylated peptide signal intensities, respectively. These three levels of
intensity values (Isn) for a single phospho-site were subjected to the following
equation:

Is ¼
X3

n¼1

I2snP3
n¼1 Isn

; ð1Þ

where Is represents a weighted squared sum of the intensity value for a phospho-
site (s). This weighting was performed to give more weight to the phosphorylation
class providing higher intensities, and the Is values were then further log2
transformed. For the samples with no intensity value for a phospho-site, the second
minimum value of all the samples was arbitrarily set to avoid negative infinity. Due
to the relatively high sparsity of phosphorylation data, phosphopeptides (N=
11,346) quantified in at least three GISs (approximately ten samples or more) were
considered for the quantification of the phospho-site level.

Based on the observation that the global and phosphoprotein abundance data of
the six subgroups (normal, tumor, GPC1, GPC2, IDH wild-type, IDH mutant, low-
grade glioma (LGG), and GBM) largely follow a Gaussian distribution, as
determined by the Shapiro–Wilk test, Student’s t-test was used to identify
differentially expressed proteins (DEPs) and differentially expressed
phosphoproteins (DEPPs) from the four comparisons (tumor vs. normal, GPC1 vs.
GPC2, GBM vs. LGG, and IDH wild-type vs. mutant). The DEPs and DEPPs whose
P-values were <0.05 with their corresponding FDR scores were selected for further
analyses. The DEPPs were further filtered when these were found as DEPs in the
same direction in the comparison.

Variant peptide identification. To determine the overlaps between the variants
called from the WES data and those identified from the mass spectrometry data,
variant peptides were identified using a multistage search approach56 and a unified
protein database. A unified protein database consists of both a reference and a
sample-specific protein database. The Swiss-Prot human protein database (version
2014/03) was used as the reference protein database. A sample-specific protein
database was constructed using the following four types of information: sample-
specific protein expression, sample-specific genomic variations, fusion gene pre-
diction, and common contaminants. For this database, the transcript models in
Ensembl 75 (released in February 2014) whose FPKM values were >1 were used,
similar to our previous study57. The sample-specific variant peptide database was
built by applying SNVs and indels called from the WES data and observed in the
RNA-seq data to the transcript models. The resulting RNA sequences were then

converted into amino acid sequences allowing up to three missed cleavages on both
sides, in accordance with the methodology used in our previous study57. Some-
times, SNVs and indels can result in stop gain or stop loss. The variants resulting in
stop gains were ignored because it was impossible to distinguish the variant pep-
tides whose translations were stopped by missed cleavage parameters or a novel
stop codon. Conversely, if a stop loss occurred, the sequences were translated if (1)
up to 20 amino acids whose read depths at the translated positions were >3 or (2)
until a new stop codon was found. Due to the constraint on the read depth, short
peptides could be generated due to early termination. To prevent short peptide
generation, up to five missed cleavages in the N-terminus direction were allowed
during translation. For the sample-specific fusion gene database, fusion genes were
predicted from the RNA-seq data and translated from the fusion junction in both
directions based on the frame of the upstream gene.

To identify variant peptides, the MS/MS spectra were searched using a
multistage approach56, which consisted of the sequential application of MS-GF+58

with a unified database and the in-house software MODplus with the unified
database over the set of spectra that were not identified during the first stage. The
parameters used for the MS-GF+ search were as follows: precursor error tolerance,
10 ppm; isotope error range, −1 to 2; fragmentation method, HCD; and
instrument, Q-Exactive; variable posttranslational modification (PTM), M-
oxidation; and two fixed modifications, C-carbamidomethyl and K/N-term-TMT.
The second-stage MODplus search focused on the identification of a variety of
PTMs. The MODplus search parameters were the following: precursor error
tolerance, 10 ppm; fragment ion tolerance, 0.025 Da; isotope error range −1 to 2;
instrument, QTOF (equivalent to Q-Exactive with HCD); 46 variable PTMs (this
parameter allows identification of modified peptides with multiple modifications
within a range of −480 to 470 Da; a list of the variable modifications is provided
in Supplementary Data 2); and two fixed modifications, C-carbamidomethyl and
K/N-term-TMT. Furthermore, MODplus identified modified peptides with
multiple modifications within a given mass range, which is a user-specific
parameter. All search steps were executed with the trypsin enzyme, TMT protocol,
and semi-tryptic search. In each step, peptides <8 amino acids and an estimated 1%
FDR were discarded using a target-decoy approach. The MODplus search
considered De-TMT modifications that discriminated TMT-free PSMs. The TMT-
free PSMs were discarded because it was unable to determine in which sample the
peptide was expressed. The overlapping somatic variants with WES data were
identified based on their genomic coordinates. Finally, the Jaccard coefficient was
calculated.

Protein isoform analysis. In total, 18 protein isoforms (sharing a gene symbol)
were quantified across the GISs and had different quantification values; these
corresponded to nine genes (CAPZB, EPB41L3, IKBIP, MAP2, MAP4, PFN2, PKM,
RTN1, and SNX32). Among the 18 isoform groups, only PKM isoforms exhibited
mutually exclusive expression patterns in two GPC subtypes: PKM1 was sig-
nificantly elevated in GPC2, whereas PKM2 was in GPC1. For the comparison of
PKM isoforms, we selected peptides belong either to PKM1-specific exon 9 or
PKM2-specific exon 10. The peptide intensities were normalized based on the
corresponding GISs and transformed to the log2 scale. The average peptide
expression values were then calculated according to the specific sequences for
either PKM1 or PKM2. Five PKM1 isoforms (ENST00000319622,
ENST00000389093, ENST00000565154, ENST00000565184, and
ENST00000568459) and one PKM2 isoform (ENST00000335181) were used. The
average expression of the isoforms was used for PKM1.

Calculation of RNA to protein correlation. The Ensembl gene IDs and UniProt
IDs were converted into an official gene symbol using the BioMart (version 2.34.2),
org.Hs.eg.db (version 3.5), EnsDb.Hsapiens.v75 (version 2.99), UniProt.ws (version
2.18), and rentrez (version 1.2.1) packages. The Spearman correlation coefficients
and P-values for 4071 genes were calculated using the R function cor.test.

Identification of proteomic subtypes. Multiple protein IDs with identical
numeric values across all samples, which likely indicate isoforms, were grouped
into one ID to prevent undesirable effects from redundant protein IDs. Subse-
quently, a consensus clustering algorithm was applied to the protein expression
matrix with default parameters and 1000 iterations. The optimal number of clusters
was determined by assuming that the K value represents the minimal PAC score59.

Gene set enrichment analyses (GSEA) and network analysis. Gene set analysis
(GSA) was conducted with official symbols from the top 10% PC1 high loadings
and DEPs/DEPPs. A total of 9404 unique pre-annotated gene sets obtained from
the CORUM (version 3.0), C2, and C5 MSigDB were used after removing
redundant, too-small (<5), and too-large (>150) gene sets. Gene sets with at least
four hits were then selected from the given symbol lists. The gene symbols cor-
responding to all global proteins or all global and phosphoproteins were used as the
background for PC1-GSA and DEPs/DEPPs-GSA, respectively. The statistical
significance of the gene set enrichment was evaluated based on the hypergeometric
test, followed by multiple testing correction with the false discovery rate (FDR).
Gene sets with FDR < 1% were selected for normal/tumor, whereas those with FDR
< 10% were selected for PC1-loadings to examine the relationships between gene
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sets using the EnrichmentMap algorithm based on an overlap coefficient cutoff of
0.560. For the DEPs and DEPPs, the signaling network, enzyme–substrate inter-
actions, and transcription factor–target interactions were further analyzed using
the literature-curated OmniPath database61. BRCAness score was estimated at the
mRNA level using the methods described by Konstantinopoulos et al.62.

Processing of public data. Gene expression and metadata of TCGA were
downloaded using the TCGAbiolinks package (version 2.6.12)63. After 1 was added
to each gene expression value from the TCGA data, the values were transformed to
the log2 scale.

Surrogate GBM proteomic cluster (sGPC) subtyping. To extend our analysis to
larger cohorts lacking proteome data, we constructed a random forest model using
the differentially expressed genes (DEGs) between GPC1 and GPC2 samples and
predicted sGPC subtypes of IDH-WT GBM tumor samples in a separate inde-
pendent cohort (N= 106, SMC cohort 2) and TCGA cohort (N= 149). DEGs
between two GPC subtypes in IDH wild-type GBMs of SMC cohort 1 were
obtained by Student’s t-test, and the top 100 DEGs were selected based on the P-
values. The individual RNA expression data of the other cohort were then merged
with the corresponding SMC cohort 1 data, and the merged matrix was subjected
to quantile normalization to reduce the batch effects. The random forest model of
the normalized SMC cohort 1 was trained using the randomForest package (ver-
sion 4.6-14), and the optimal parameters were selected using the caret package
(version 6.0-8) with 1000 iterations of fivefold cross-validation. The model was
applied to the normalized SMC cohort 2 and samples with a GPC subtyping
probability of at least 60% were used for downstream analyses.

To address the sparsity issues in the Darmanis single-cell data31, DEGs were
identified from the 1000 genes with the highest expression in the SMC 1 cohort and
those that were expressed in at least 50% of all single cells. To predict the sGPC
subtype of each single cell, an equal number of DEGs (FDR < 10%) were selected
from both sides. Likewise, an equal number of DEGs (100 GPC1-high and 100
GPC2-high) from the CCLE, Yonsei, and ANOCEF cohort data were selected
according to Student’s t-test P-values. The selected gene expression values were
converted into Z scores. ΔZ score was calculated using the following equation:

ΔZ score ¼ meanðZGPC1Þ �meanðZGPC2Þ; ð2Þ

where, ZGPC1 and ZGPC2 represent vector of Z scores of either GPC1- or GPC2-
high genes. The P-value for the ΔZ score was estimated by 1000X permutations of
the gene labels. The sGPC subtype was determined if a single cell had permutation
P-values < 0.05.

Survival analysis. Multi-samples with different GPC subtypes were excluded to
prevent the effects of multiple samples on the survival analysis. If samples shared a
GPC subtype, they were considered a single sample. The survival analysis was
performed using the survival package in R (version 2.42-6). 271 previously reported
gene expression-based prognostic markers28 were validated in our SMC1 cohort by
univariate Cox regression analysis of survival rate under the proportional hazards
assumption using the coxph function in “survival” package (ver 2.43-3) of R. If
there are multiple samples per patient, a mean expression value was used for a
protein.

Multiplex fluorescent immunohistochemistry. The tissue microarray (SMC-
TMA) consisted of 120 tissue samples that were formalin fixed, paraffin embedded
(FFPE), and sectioned (2-mm thickness): 6 normal samples, 35 low-grade gliomas,
1 IDH-mutant GBM, 3 IDH-status unknown GBMs, and 75 IDH-wild-type GBMs,
including 14 SMC2 tumors. The FFPE tissues on slides were deparaffinized and
rehydrated for multiplex immunohistochemistry staining. Epitope retrieval was
performed using BOND Epitope Retrieval Solution 2 kits (Leica Biosystems,
AR9640). Immunofluorescent signals were visualized using the OPAL 7-Color
automation IHC kit (Akoya, NEL82100KT), TSA dyes 570 (PHGDH; Atlas
Antibodies, RRID: AB_1855299, 1/1000), 690 (Nestin; Atlas Antibodies, RRID:
AB_1854381, 1/700), and spectral DAPI. The stained slides were coverslipped
using HIGHDEF® IHC fluoromount (Enzo, ADI-950-260-0025) and scanned using
a Vectra® 3.0 Automated Quantitative Pathology Imaging System (PerkinElmer).
Color separation, cell segmentation, and cell phenotyping were performed on
inForm Advanced Image Analysis software (version 2.2, PerkinElmer) to extract
image data. PHGDH and Nestin-positive cells were determined by thresholds of
0.6 (PHGDH) and 1.25 (Nestin), respectively.

Cell lines. SNU466, SNU201, SNU626, A172, HS683, SNU1105, and T98G were
purchased from Korean Cell Line Bank. KNS81 cells were obtained from the JCRB
cell bank. U87MG and U87MG-IDH1-R132H cells were purchased from ATCC.
Cells were grown in RPMI-1640 medium (Gibco, 11875-093) supplemented with
10% fetal bovine serum (Gibco, 16000-044) and 1% penicillin–streptomycin
(Gibco, 15140122). The absence of mycoplasma contamination was confirmed in
all cell lines by e-Myco VALiD Mycoplasma PCR detection kits (LiliF, 25299).
Short tandem repeat profiles of the GBM cell lines are provided in Supplementary
Data 5.

Western blot and antibodies. Cells were lysed in RIPA buffer (Sigma-Aldrich,
R0278) with protease inhibitor cocktail (Genedepot, P3100) and phosphatase
inhibitor cocktail (Genedepot, P3200). Protein concentrations were determined by
the Bradford protein assay (BIORAD, 500-0006), and equal amounts of protein
were loaded and separated in sodium dodecyl sulfate-polyacrylamide gels (SDS-
PAGE). Proteins were then transferred to nitrocellulose membranes (BIORAD,
1620177). After blocking with 5% skim milk, the membranes were probed with
primary antibodies. Antibodies used in this study were as follows: STAT1 (Cell
Signaling Technology, AB_2799965, 1/1000); pSTAT1 Serine-727 (Cell Signaling
Technology, AB_2773718, 1/1000); PHGDH (Cell Signaling Technology,
AB_2737030, 1/1000); Nestin (Abcam, AB_10859398, 1/1000); FKBP9 (Novus
Biologicals, AB_11005959, 1/1000); β-actin (Cell Signaling Technology,
AB_2223172, 1/1000); IDH1-R132H (DIANOVA, AB_2335716, 1/1000); IDH1
(Cell Signaling Technology, AB_10950504, 1/1000); Anti-rabbit IgG (Jackson
ImmunoResearch, AB_2307391, 1/5000); and Anti-mouse IgG (Jackson Immu-
noResearch, AB_2307392, 1/5000). After washing three times, the membranes were
incubated with secondary antibodies. Band signals were developed with ECL
western blotting substrate kit (Pierce, 32106).

cDNA Transfection. The pCMV6-GFP-PHGDH (RG203949) was purchased from
OriGene. A172 and SNU201 cells were seeded at 300,000 cells per well in 6-well
plates. After overnight incubation at 37 °C, cells were transiently transfected with 2
μg of PHGDH cDNA or an empty vector using Lipofectamine 2000 (Invitrogen,
11668019) according to the manufacturer’s instructions. After 24 h, PHGDH
expressing cells were collected by trypsinization and resuspended in spheroid
forming ECM solution (R&D Systems, 3500-096-K).

3D spheroid cell invasion assay. 3D invasion assay was performed using Cultrex
3D Spheroid Cell Invasion Assay (R&D Systems, 3500-096-K) according to the
manufacturer’s instructions. Briefly, resuspended cells in 1× spheroid forming
ECM solution were seeded at 4000 cells per well in 96-well plates and incubated at
37 °C for 48 h for spheroid formation. Once the spheroids were formed, they were
embedded in an invasion matrix and supplemented with culture medium con-
taining NCT-502 (MedChemExpress, HY-117240) or DMSO. 3D spheroid inva-
sion assay plates were incubated for 72 h. Invading spheroids were photographed
using an inverted phase-contrast microscope (Olympus, IX73) with CellSence
standard 1.15 software (Olympus) at ×4 magnification. For quantification of
spheroid invasion, distances of invading cells were measured by ImageJ software.
For this, the three longest protrusions or migrated single cells from each of the
quadrants were combined, and the median value of the 12 distances per condition
were used to compare the invasiveness of the spheroids.

Phosphoglycerate dehydrogenase (PHGDH) activity assay. Basal PHGDH
activities of the nine GBM cell lines were measured by PHGDH activity assay kits
(BioVision, K569) according to the manufacturer’s instructions. Briefly, 106 cells were
lysed and centrifuged at 10,000 × g for 5 min at 4 °C. The supernatant was mixed with
saturated 4.32M ammonium sulfate (BioVision, 7096) to remove interferences. The
mixture was then placed on ice for 30min and centrifuged at 10,000 × g at 4 °C for
10min. The pellet was resuspended in the assay buffer. PHGDH induced changes in
the probe signals were measured by EnVision 2105 (PerkinElmer) at OD 450 nm.
HS683 and SNU1105 cells were treated with NCT-502 (MedChemExpress,
HY-117240) or DMSO for 2 h before measuring enzyme activity.

Analysis of high-throughput drug screening data set. Drug screening data19

were used with some analytic modifications. The normalized data per drug per
concentration were smoothed by removing data points with an abnormally high
viability value (>1.5 and >3× interquartile range from the third quartile viability
value of all PDCs) based on the assumption that the anticancer drugs in our panel
are not expected to increase the proliferation of PDCs significantly. If a PDC
showed no related data for any drug concentration, the pair was not used for
further studies. Area under the curve (AUC) values were calculated using the
trapezoidal method: a low AUC indicates high cell line sensitivity to the drug.
ED50 values were calculated using the drc package (version 3.0-1) with a four-
parameter log-logistic fit. If the imputed ED50 values were higher than the highest
tested dose (20 μM), 20 μM was assigned as the ED50 of the drug. Statistically
significant associations between phosphoproteins and drug responses across 50
PDCs were identified by subjecting all the phosphoproteins in Supplementary
Data 2 to a Spearman’s correlation test with the ED50 and AUC
drug–response data.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data supporting the findings of this manuscript are available from the corresponding
author upon reasonable request. Previously published WES and RNA-Seq data that were
reanalyzed here are available from EGA (https://www.ebi.ac.uk/ega/studies/
EGAS00001002515). The mass spectrometry proteomics data have been deposited to the
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ProteomeXchange Consortium via the PRIDE partner repository with the data set
identifier PXD015545 (http://proteomecentral.proteomexchange.org). Normalized
single-cell gene expression data (GBM_normalized_gene_counts.csv) was downloaded
from http://gbmseq.org. CCLE’s mutation (CCLE_DepMap_18Q1_maf_20180207.txt),
gene expression (CCLE_RNAseq_genes_rpkm_20180929.gct.gz), and metabolome data
(CCLE_metabolomics_20190502.csv) were downloaded from https://portals.
broadinstitute.org/ccle/data. Gene expression microarray data for the Yonsei64 and
ANOCEF65 cohorts were downloaded from GEO (https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE131837) and Arrayexpress (https://www.ebi.ac.uk/arrayexpress/
experiments/E-TABM-898/), respectively. FPKM-normalized RNA-Seq and survival data
for 149 IDH wild-type TCGA-GBM tumors were downloaded from https://portal.gdc.
cancer.gov. The source data underlying Fig. 4g and Supplementary Figs. 1f and 4c, d, e
are provided with this paper.

Code availability
The code for generation of heatmaps and other graphics is available for download at
https://github.com/hk-lab-software/gbm2020/. Source data are provided with this paper.
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