
Leber congenital amaurosis (LCA) is a genetically 
heterogeneous retinal dystrophy with an incidence of 
approximately 2–3 per 100,000 births [1,2]. LCA is the most 
severe form of inherited retinal disorders and is accompa-
nied by nystagmus and severe visual impairment within the 
first year of life. LCA accounts for approximately 5% of 
all inherited retinal disorders, and nearly 20% of children 
who attend special schools for blind individuals have LCA 
[3]. The mode of inheritance in LCA is typically autosomal 
recessive, although some form of LCA is known to be 
inherited as autosomal dominant [1,4]. Clinical diagnosis of 
LCA is straightforward based on the presence of nystagmus 
or wandering eye movement, oculodigital sign, sluggish or 
absent pupillary responses, and flat or severely diminished 

response on electroretinography (ERG) [5,6]. The develop-
ment of next-generation sequencing (NGS) has enabled 
relatively simple characterization of the molecular features 
of LCA. To date, 25 genes have been shown to be associated 
with LCA (assessed July 2019, RetNet). Most of these genes 
are known to be important in retinal development or in the 
molecular pathways associated with phototransduction, reti-
noid cycle, molecular signal transduction, guanine synthesis, 
segment phagocytosis, photoreceptor morphogenesis, and 
intraphotoreceptor ciliary transport [7].

After the successful development of gene therapy for 
RPE65 (Gene ID 6121, OMIM 180069)-associated LCA, the 
molecular genetic diagnosis of LCA has received increased 
attention [8]. Although NGS can reveal causative muta-
tions of LCA, the origin of 20% to 30% of cases remains 
unclear because of the genetic complexity of the disease, 
copy number variations, or variants in non-coding regions. 
Identifying genetic mutations is a key step in proper diagnosis 
with genetic counseling and contributes to the development of 
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Purpose: We comprehensively evaluated the mutational spectrum of Leber congenital amaurosis (LCA) and investigated 
the molecular diagnostic rate and genotype–phenotype correlation in a Korean cohort.
Methods: This single-center retrospective case series included 50 Korean patients with LCA between June 2015 and 
March 2019. Molecular analysis was conducted using targeted panel-based next-generation sequencing, including deep 
intronic and regulatory variants or whole exome sequencing. The molecular diagnosis was made based on the inheritance 
pattern, zygosity, and pathogenicity.
Results: Among the 50 patients, 27 patients (54%) were male, and 11 (22%) showed systemic features. Genetic vari-
ants highly likely to be causative were identified in 78% (39/50) of cases and segregated into families. We detected two 
pathogenic or likely pathogenic variants in a gene linked to a recessive trait without segregation analysis in three cases 
(6.0%). GUCY2D (20%), NMNAT1 (18%), and CEP290 (16%) were the most frequently mutated genes in Korean LCA. 
Copy number variations were found in three patients, which accounted for 6% of LCA cases. A possible dual molecular 
diagnosis (Senior-Løken syndrome along with Leigh syndrome, and Joubert syndrome with transposition of the great 
arteries) was made in two patients (4%). Three of 50 patients were medically or surgically actionable: one patient for 
RPE65 gene therapy and two patients with WDR19 Senior-Løken syndrome for early preparation for kidney and liver 
transplantations.
Conclusions: This study demonstrated that approximately 4% of patients may have dual molecular diagnoses, and 6% 
were surgically or medically actionable in LCA. Therefore, accurate molecular diagnosis and careful interpretation of 
next-generation sequencing results can be of great help in patients with LCA.
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genetic therapeutic strategies. In East Asia, few studies have 
been conducted to explore the mutational spectrum of LCA. 
The most frequently mutated genes in patients from East Asia 
are CRB1 (Gene ID 23418, OMIM 604210), NMNAT1 (Gene 
ID 64802, OMIM 608700), GUCY2D (Gene ID 3000, OMIM 
600179), and RPGRIP1 (Gene ID 57096, OMIM 605446) 
[9,10]. Three studies have evaluated the genetic profiles of 
Korean patients with LCA, but the total number of patients is 
too low to determine overall frequencies [11,12]. Therefore, 
this study was conducted to investigate the molecular profile 
of 50 consecutive patients with LCA and determine the geno-
type–phenotype correlation of LCA.

METHODS

Patient recruitment: This retrospective consecutive case 
series recruited 50 unrelated Korean patients with LCA 
who underwent genetic testing between June 1, 2015, and 
March 31, 2019. Patients underwent detailed ophthalmic 
examinations, including optical coherence tomography and 
electroretinography, if applicable. Informed written consent 
was provided by the patients or their parents, or both, and 
peripheral blood samples were collected from all patients for 
genetic analysis. Whole blood was collected in the EDTA 
tube and transferred to the laboratory at room temperature 
to extract genomic DNA within 24 hours [13]. Genomic 
DNA was extracted using the QIAamp DNA Blood Mini Kit 
(Qiagen, Venlo, The Netherlands), followed by the manu-
facturer's instructions. The research protocol was approved 
by the Institutional Review Board of Severance Hospital, 
Yonsei University College of Medicine (4–2019–0542). This 
study adhered to the tenets of the Declaration of Helsinki and 
ARVO statements of ethical principles for medical research 
involving human subjects.

Sequencing analysis: Molecular testing was performed with 
targeted next-generation sequencing (Department of Labo-
ratory Medicine, Yonsei University College of Medicine) or 
whole exome sequencing at a core facility (DNA Link, Inc., 
Seoul, Korea). Sequencing was performed on an Illumina 
NextSeq 550 system (San Diego, CA) for targeted panel 
sequencing (n=39) and an Illumina NovaSeq 6000 system 
for whole exome sequencing (n=11). The targeted NGS panel 
included 113 genes associated with LCA, early onset retinal 
dystrophy, and infantile nystagmus, and 429 genes associ-
ated with inherited eye diseases (Appendix 1). The 429 gene 
targeted panel (version 2) also includes the deep intronic 
or regulatory variants associated with LCA (e.g., c.-70A>T 
and c.-69C>T in NMNAT1, and c.2991+1655A>G in the 
CEP290 (Gene ID 80184, OMIM 610142) gene, Appendix 
2). Target enrichment was performed with custom-designed 

RNA oligonucleotide probes and a target enrichment kit 
(Celemics, Seoul, South Korea). Whole exome sequencing 
was performed with the xGen Exome Research Panel v1.0 
(Integrated DNA Technologies, Inc., Coralville, IA). Demulti-
plexed BAM files were aligned to the hg19 reference genome 
using BWA-aln [14]. Single-nucleotide variants and small 
insertions or deletions were called and crosschecked using the 
Genome Analysis ToolKit (GATK) version 3.8.0 with Haplo-
typecaller and VarScan version 2.4.0. Each variant suspected 
to be pathogenic, likely pathogenic, or a variant of uncertain 
significance was confirmed with visual inspection of the 
bam file using Integrative Genomics Viewer 2.3 software. 
Split-read-based detection of large structural variation was 
conducted using Pindel and Manta [15,16]. Read-depth-based 
detection of copy number variations (CNVs) was conducted 
using ExomeDepth version 1.1.10 [17], followed by visualiza-
tion using a base-level read depth normalization algorithm 
designed by the authors. CopywriteR version 2.9.0 was used 
with a 1-Mb window option for off-target analysis and whole 
chromosomal CNV detection [18].

Variant filtering and classification: The variants with a 
minor allele frequency (MAF) >1% in the Genome Aggre-
gation Database (gnomAD v2.1.1) were excluded from 
further investigation. The potential pathogenicity of each 
variant was determined according to the guidelines of the 
American College of Medical Genetics (ACMG), and three 
in silico prediction algorithms, including Sorting Intolerant 
From Tolerant (SIFT), PolyPhen2, and Combined Annotation 
Dependent Depletion, were used for pathogenicity prediction 
[19]. Molecular diagnosis was made based on the inheritance 
pattern, zygosity, and pathogenicity of the variant. Patients 
were divided into three groups: (1) probable molecular 
diagnosis: patients with pathogenic or likely pathogenic 
disease-associated variant(s) with segregation, (2) possible 
molecular diagnosis: patients with two heterozygous patho-
genic or likely pathogenic mutations without segregation, 
or (3) unsolved: all other patients for whom no pathogenic 
or likely pathogenic disease-associated variants or patients 
harboring a single disease-associated variant in a gene linked 
with recessive traits.

RESULTS

Patient demographics: The clinical and ophthalmic features 
of the 50 unrelated patients with LCA are listed in Appendix 
3 and Appendix 4. Among the 50 patients, 27 patients (54%) 
were male, and 23 patients (46%) were female. The average age 
at genetic testing was 7.1±10.7 years (range, 0.3–39.8 years), 
and the median age was 1.7 years. All patients were single 
ethnicity (Korean), and no patients were of consanguineous 
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parentage. All 50 patients had nystagmus or wandering eye 
movement within 6 months of age. Among them, 27 patients 
(54%) had wandering eye movement, 15 patients (30%) had 
pure horizontal jerk or pendular nystagmus, two patients (4%) 
had pure vertical type nystagmus, and six patients (12%) had 
multidirectional nystagmus. Pure vertical nystagmus was 
observed in two patients with mutations in RPGRIP1 (P32) 
and WDR19 (Gene ID 57728, OMIM 608151; P36).

Diagnostic rate of NGS: The overall diagnostic detection rate 
in this Korean LCA cohort was 84% (42/50) after targeted 
NGS or whole exome sequencing (Figure 1). Among the 42 
patients, possible diagnosis was made in three patients (7.1%) 
due to unavailability of parental DNA. Eight patients were 
molecularly unsolved after NGS testing. A total of 82 putative 
pathogenic variants were found in 42 patients, and 22 variants 
(26.8%) were novel mutations (Appendix 5). Moreover, three 
patients (6%) were eligible for surgical or medical treatment. 
One patient (P31) with RPE65-associated LCA was a candi-
date for gene therapy, and two patients with Senior-Løken 
syndrome (P36 and P37) could undergo early preparation for 
kidney and liver transplantation.

GUCY2D and NMNAT1 are frequently mutated genes in 
Korean patients: The most frequently observed variants 
were c.2649delT in GUCY2D, c.709C>T in NMNAT1, c.6012–
12T>A in CEP290, and c.3565_3571del in RPGRIP1. Previous 
studies reported that CEP290 c.6012–12T>A is a common 
allele in Japanese and Korean patients with Joubert syndrome 
[11,20,21]. In gnomAD, the MAF of CEP290 c.6012–12T>A 
was 0.001080 in Korean patients and 0.00001785 overall. 
The MAF of RPGRIP1 c.3565_3571del was also high in 
the Korean population (MAF 0.001048 in Korean patients, 
0.00001625 overall). Among the 50 patients, nine patients 
(18.0%) had mutations in NMNAT1. This rate is much higher 
than the rate in Western countries (4.9%) [22], and higher 

than in other East Asian such as Japanese (8.8%) and Chinese 
(2.3%) cohorts [9,23]. Except three cases, six patients with 
mutations in NMNAT1 showed the same compound heterozy-
gous c.196C>T/c.709C>T mutations (P23, P24, P25, P26, P27, 
and P28). All nine patients with NMNAT1-associated LCA 
had the c.709C>T:p.(Arg237Cys) variant. This variant showed 
a high MAF (0.001048) in Korean gnomAD (gnomAD global 
MAF 0.00004951). Three unrelated patients with mutations 
in GUCY2D c.2649del were identified in the present cohort, 
but this variant was absent from gnomAD.

Possible dual molecular diagnosis in two patients: In this 
study, two patients with homozygous mutations in WDR19 
c.3533G>A showed retinal dystrophy at early ages, accom-
panied by nephronophthisis and Caroli disease (Figure 2). 
One patient (P36) had no intellectual disability, while the 
other patient (P37) had severe mental retardation and mild 
hypotonia. In P37, brain magnetic resonance imaging (MRI) 
showed bilateral T2 hyperintensity of the corpus striatum 
predominantly in the putamen with diffuse volume loss of the 
brain, indicating metabolic mitochondrial disorders. Targeted 
NGS revealed compound heterozygous mutations in POLG 
(Gene ID 5428, OMIM 174763) c.1113G>T:p.(Lys371Asn)/
c.2890C>T:p.(Arg964Cys) along with mutations in WDR19. 
POLG encodes the catalytic subunit of DNA polymerase 
gamma, which is essential for mitochondrial DNA replica-
tion and repair. Mutations in POLG have been linked to a 
diverse spectrum of clinical phenotypes, such as encepha-
lomyopathies, resulting in autosomal recessive or dominant 
inheritance [24].

Patient 9 (P9) exhibited transposition of the great arteries 
in prenatal ultrasonography and underwent arterial switch 
operation at postnatal day 5. At the age of 4 months, she had 
no eye contact, nystagmus, and extinguished ERG. Brain MRI 
showed molar tooth sign. NGS analysis revealed compound 

Figure 1. Molecular diagnosis of Leber congenital amaurosis in Korean patients. A: Distribution of mutated genes in Korean patients with 
Leber congenital amaurosis (LCA). B: Molecular diagnostic yield of next-generation sequencing in 50 patients with LCA.
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heterozygous mutations in c.3847C>T/c.6271–1G>A CEP290, 
but transposition of the great arteries has not been reported 
in Joubert syndrome. Further investigation revealed a novel 
heterozygous mutation in TBX1 (Gene ID 6899, OMIM 
602054) c.734A>G:p.(Tyr245Cys). TBX1 is associated with 
transposition of the great arteries, and haploinsufficiency 
of TBX1 causes malformation of the great vessel [25]. This 
variant is extremely rare (2/251482) in gnomAD, located in 
the DNA-binding domain, and predicted to be deleterious 
according to three different in silico prediction programs. 
However, the mother of the proband also had this hetero-
zygous variant but was phenotypically normal. Therefore, 
this mutation could be related to incomplete penetrance or 
maternal mosaicism. The pathogenicity of this variant could 
not be determined.

Genotype–phenotype correlation in LCA: The fundus 
feature of NMNAT1-associated LCA was characterized by 
early onset round coloboma-like macular degeneration with 
pigmentary retinopathy (Appendix 6). Spectralis domain 
optical coherence tomography (Heidelberg Engineering, 
Heidelberg, Germany) revealed mild excavation of the macula 
in patients with mutations in NMNAT1. One patient (P22) had 
a compound heterozygous c.275G>A:p.(Trp92*)/c.709C>T:p.
(Arg237Cys) variant in NMNAT1. This nonsense c.275G>A:p.

(Trp92*) variant was novel, and colobomatous macular degen-
erations and oculodigital sign were more severe than in other 
patients with mutations in NMNAT1. Fundus photographs 
showed multiple bear-foot-like colobomatous macular degen-
erations. Another patient (P7) with the homozygous mutation 
in CEP290 c.6012–12T>A:p.(Arg2004Serfs*7) had severe 
ptosis at early infancy, severe psychomotor development 
delay, and extinguished ERG. The patient was treated with 
a frontalis sling with a silicone rod at the age of 10 months 
(Figure 3). A large case series of 99 patients with Joubert 
syndrome demonstrated that severe ptosis was observed 
usually in TMEM67 (Gene ID 91147, OMIM 609884), MKS1 
(Gene ID 54903, OMIM 609883), TMEM216 (Gene ID 51259, 
OMIM 613277), CSPP1 (Gene ID 79848, OMIM 611654), 
RPGRIP1L (Gene ID 23322, OMIM 610937), and CELSR2 
(Gene ID 1952, OMIM 604265) Joubert syndrome, not in 
CEP290 Joubert syndrome [26], and ptosis was not observed 
in any of the other patients with CEP290 in this cohort. This 
patient also had molar tooth sign on the brain MRI and neph-
ronophthisis. This patient’s phenotype was consistent with 
Arima syndrome (OMIM:243910), which is considered a 
severe form of Joubert syndrome [27]. Arima syndrome has 
a specific homozygous variant (c.6012–12T>A) or compound 
heterozygous variants (c.1711+1G>A; c.6012–12T>A) in the 
CEP290 gene [27].

Figure 2. Two patients with nephronophthisis and Caroli disease with homozygous mutations in WDR19 c.3533G>A. A–D: Fundus photo-
graph, optical coherence tomography, renal ultrasonography, and abdominal computed tomography of a 7-year-old patient with Leber 
congenital amaurosis (LCA) with a homozygous mutation in WDR19 c.3533G>A (P36). Increased kidney echogenicity, multiple cystic 
formation of the kidney, and dilated intrahepatic bile duct were noted. She was neurologically normal. E–H: Fundus photograph, renal and 
abdominal ultrasonography, and brain magnetic resonance imaging (MRI) image of a 4-year-old patient with possible dual diagnosis of 
mutations in WDR19/POLG (P37). Brain MRI showed a bilateral T2 hyperintense signal in the putamen, which was not reported in Senior-
Løken syndrome (black arrow). These findings suggest a possible dual diagnosis.
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Mutations in CRX caused LCA as either autosomal reces-
sive or autosomal dominant traits: We identified two patients 
with novel mutations in CRX (Gene ID 1406, OMIM 602225). 
One patient (P11) had compound heterozygous c.101–1G>A/
c.122G>A:p.(Arg41Gln) mutations, while the other (P12) had 
a novel heterozygous c.443del:p.(Gly148Alafs*39) mutation 
in CRX. The c.122G>A:p.(Arg41Gln) mutation is considered 
likely pathogenic in ClinVar, and previous studies identified 
that this variant is associated with autosomal dominant reti-
nitis pigmentosa [28]. However, the parents of P11 had no 
sign of retinal dystrophy, and the daughter of P11 also had 
the c.122G>A:p.(Arg41Gln) variant in CRX, but she had no 
retinal dystrophy until the age of 12 years. The inheritance 
pattern in this family was consistent with an autosomal 
recessive trait. Therefore, mutations in CRX cause LCA or 
cone-rod dystrophy depending on the type of mutation, and 
the mutation can be inherited as either autosomal dominant 
or autosomal recessive (Figure 4).

CNVs in LCA: Using a read-depth algorithm, we effectively 
identified CNVs that met the ACMG standard guidelines in 
three individuals [29,30]. Plots of the normalized read-depth 
ratio of regions with CNVs in these patients are shown in 
Appendix 7. Two heterozygous deletions were identified in 
two individuals with mutations in NMNAT1. The homozy-
gous c.709C>T mutation was initially suspected in P29, but 
detailed CNV analysis revealed an exon 4–5 deletion. Only 
one heterozygous c.709C>T variant was found using GATK 
best practice analysis in P30, and further investigation of the 
CNV identified a second mutation as a heterozygous deletion 
in exon 2 of NMNAT1 [31]. These intragenic deletions (an 
exon 4–5 deletion and an exon 2 deletion) involving NMNAT1 
could be classified as likely pathogenic variants according 

to the PVS1 rule (0.9 points from 2E evidence) because 
they were predicted to disrupt reading frame and induce 
nonsense-mediated decay (NMD) [29,32]. Another form of 
CNV was found in a patient with a mutation in GUCY2D 
(P20). The fundus of the patient appeared normal, with no 
neurologic sign and extinguished ERG, which was consistent 
with GUCY2D LCA. NGS analysis revealed c.1790G>A:p.
(Gly597Glu)/exon 4–5 duplication in GUCY2D. This GUCY2D 
exon 4–5 duplication occurred de novo (0.45 points from 4A 
evidence) and is absent from the database of genomic variants 
and gnomAD structural variants. The partial duplication was 
expected to cause reading frame disruption and NMD (0.45 
points from 2I evidence); therefore, it could be classified as a 
likely pathogenic variant [29,32].

DISCUSSION

In this study, we analyzed 50 consecutive patients to inves-
tigate the molecular spectrum of LCA. The diagnostic yield 
of NGS was 84%. We also found that GUCY2D, NMNAT1, 
and CEP290 were the most frequently mutated genes in the 
Korean population. Mutations in these genes occur in more 
than 50% of patients. Previous studies revealed that GUCY2D 
and CEP290 frequently contain genetic variants in Western 
countries [4], which is consistent with the present results. 
Interestingly, all patients with NMNAT1-associated LCA 
had the heterozygous c.709C>T variant. In gnomAD, the 
MAF of c.709C>T in NMNAT1 is relatively common in East 
Asian and Korean population [4]. The high MAF of NMNAT1 
c.709C>T in Koreans may be related to the present results. 
Compared to populations in other countries, high MAFs of 
NMNAT1 c.709C>T, CEP290 c.6012–12T>A, and RPGRIP1 
c.3565_3571del were found in the Korean population. The 

Figure 3. Ptosis and severe neurologic feature of Arima syndrome caused by homozygous mutations in CEP290 c.6012–12T>A (P7). A: 
Severe ptosis was observed immediately after birth. B: Frontalis sling with silicone rod was used as treatment. C: Brain magnetic resonance 
imaging (MRI) revealed elongation of the superior cerebellar peduncle and cerebellar vermis hypoplasia.
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mutational spectrum of Korean patients with LCA appears 
to be similar to that in Japanese and Chinese populations, 
while NMNAT1 LCA is more prevalent in patients from Korea 
compared to those from other countries.

A previous study reported deep excavation of the macula 
with the absence of any distinct laminations in a 60-year-
old patient with NMNAT1 LCA [33]. In the present study, 
mild excavation with preservation of the inner retinal layers 
was found in a 4-year-old with NMNAT1-associated LCA. 
The mechanism of retinal damage caused by mutations in 
NMNAT1 may occur preferentially in the outer retina, further 
progressing to the inner retinal layers. Moreover, a patient 
who carries the nonsense c.275G>A:p.(Trp92*) variant in 
NMNAT1 had multiple bear-foot-like macular degenerations 
rather than one round coloboma-like macular degeneration 
as observed in other patients with NMNAT1. Therefore, the 
more deleterious mutation in NMNAT1 causes a more severe 
phenotype. We observed that coloboma-like macular degen-
eration occurred at the age of 4 months, and thus has a narrow 
therapeutic window. Further studies are needed to determine 

the exact mechanism of macular coloboma-like formation in 
NMNAT1 LCA.

Previous studies showed that early preparation for kidney 
transplantation can reduce hemolysis-dependent periods in 
Senior-Løken syndrome [34,35]. RPE65-associated LCA can 
be treated by gene therapy. We identified three patients (6%) 
who could be managed or treated differently based on NGS 
testing. In terms of precision medicine, NGS can guide which 
genes are surgically or medically actionable. Additionally, a 
previous study reported that 4.9% of patients had diagnoses 
involving two or more disease loci [36]. The present study 
revealed two patients (4%) with pathogenic or likely patho-
genic variant(s) in two different disease loci. Whole exome 
sequencing reveals large numbers of variants of unknown 
significance. Therefore, meticulous phenotyping and careful 
interpretation of genetic analysis results are essential for 
ensuring the correct diagnosis.

CRX encodes a cone-rod homeobox protein that plays a 
key role in photoreceptor development and survival [37,38]. 
Mutations in CRX cause LCA, cone-rod dystrophy, or 
macular dystrophy depending on the type of mutation [39-41]. 

Figure 4. Mutations in CRX cause Leber congenital amaurosis (LCA) as either an autosomal recessive or autosomal dominant trait (P11). 
A: Fundus photograph showing macular dystrophy with peripheral retinal pigmentary changes. B: Optical coherence tomography showing 
diffuse loss of photoreceptor bands and thinning of the outer nuclear layer. C: The daughter of the proband (age 12 years) carrying the 
mutation in CRX c.122G>A had no evidence of retinal degeneration, suggesting that CRX can be inherited in an autosomal recessive manner. 
Although it has been reported that CRX c.122G>A variants cause cone-rod dystrophy in an autosomal dominant manner, the daughter of 
the proband showed no evidence of cone-rod dystrophy until the age of 12 years. D: Fundus photographs showing diffuse peripheral retinal 
pigmentary changes at early infancy (P12). E: Optical coherence tomography showing diffuse loss of photoreceptor bands and thinning of 
the outer nuclear layer. F: The heterozygous mutation in CRX c.443delG causes Leber congenital amaurosis (LCA), suggesting this novel 
mutation in CRX is inherited in an autosomal dominant manner.

http://www.molvis.org/molvis/v26/26


Molecular Vision 2020; 26:26-35 <http://www.molvis.org/molvis/v26/26> © 2020 Molecular Vision 

32

All cases show a heterozygous state except four case reports 
of homozygous disease in LCA and severe retinopathy 
[41,42]. The mutations in CRX that arise in the homeodomain 
(residue 39–99) are usually missense mutations; heterozygous 
variants in the homeodomain cause predominantly cone-rod 
dystrophy, followed by LCA. The CRX c.122G>A mutation 
has been reported to cause late-onset autosomal dominant 
cone-rod dystrophy, but a recent study reported that middle-
aged heterozygous carriers of this mutation showed a normal 
phenotype [43]. We also found that a family member carrying 
the heterozygous c.122G>A mutation had no retinal dystrophy 
until 12 years of age, and CRX causes LCA as an autosomal 
recessive trait. The pathogenic mechanism in most cases is 
likely dominant negative, with gain of function. However, 
recent literature reported that homozygous complete deletion 
of the CRX gene causes the LCA phenotype [41]. Considering 
the incomplete penetrance and complexity of the inheritance 
pattern of CRX, ophthalmologists should use caution during 
genetic counseling of patients with mutations in CRX.

Previous studies reported that the diagnostic yield of 
targeted NGS study for LCA is typically 50% to 80% [4,44], 
which is consistent with the present results. We detected 
CNVs in three patients using customized ExomeDepth soft-
ware, which accounted for 7.1% of solved cases. Among the 
50 patients, the cases of eight patients remained unsolved. 
Whole genome sequencing confirmed a molecular diagnosis 
of inherited retinal disease in 11 of 33 individuals who had 
not obtained a molecular diagnosis through targeted NGS 
testing [45]. Additionally, exome reanalysis with periodic 
assimilation identified pathogenic variants in 30% to 40% 
of exome-negative cases [46,47]. Therefore, further genomic 
analysis, such as whole genome sequencing or exome reanal-
ysis, is required to detect large structural variants, variants in 
new discovered genes, Alu insertion, or non-coding variants.

This study had several limitations. First, it was a single-
center, retrospective study consisting of 50 unrelated patients. 
A larger sample is needed to estimate the overall genetic 
profile of LCA in Korean patients. Second, targeted panel 
sequencing or whole exome sequencing may miss variants in 
deep intronic regions, non-coding regions (e.g., non-coding 
exon 1 in GUCY2D and non-coding exon 1 in NMNAT1), and 
low complex repeated sequence regions. Although the targeted 
panel included known deep intronic and regulatory variants 
(c.-70A>T and c.-69C>T in NMNAT1, and c.2991+1655A>G 
in CEP290), these variants were not detected in the present 
study cohort. It is known that the CEP290 c.2991+1655A>G 
variant is a founder mutation in non-Finnish Europeans, but 
not in other populations. Therefore, an ethnicity-specific 

targeted panel is needed to improve the molecular diagnostic 
rate. Third, we could not determine the transconfiguration of 
variants in three patients because DNA from family members 
was not available or the parents of the proband refused to 
undergo segregation analysis. Therefore, we classified these 
patients as possible diagnosis.

In conclusion, mutations in GUCY2D, NMNAT1, and 
CEP290 appeared to be the major genetic causes of LCA in 
Korean patients. The overall molecular pickup rate of LCA 
was 84%. We also found that 4% of patients had multiple 
molecular diagnoses in two different disease loci, and 6% of 
patients were surgically or medically actionable. In Korea, 
NMNAT1-associated LCA appears to be more prevalent than 
in other countries because of the high MAF of NMNAT1 
c.709C>T in the Korean population. Because early retinal 
degeneration of the macula occurs in NMNAT1-associated 
LCA, visual prognosis was worst among all LCA cases. 
Despite the success of RPE65 gene therapy trials, animal 
or human studies toward clinical trials are limited. Further 
studies are needed to define the natural history and primary 
outcome in NMNAT1-associated LCA.
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