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Abstract: Tumor mutational burden (TMB) is a genomic biomarker that predicts favorable responses
to immune checkpoint inhibitors (ICIs). Here, we set out to assess the predictive value of TMB on
long-term survival outcomes in patients undergoing ICIs. We systematically searched PubMed,
Embase, CENTRAL and clinicaltrials.gov from inception to 6 August 2019. We included retrospective
studies or clinical trials of ICIs that reported hazard ratios (HRs) for overall survival (OS) and/or
progression-free survival (PFS) according to TMB. Data on 5712 patients from 26 studies were included.
Among patients who received ICIs, high TMB groups showed better OS (HR 0.53, 95% CI 0.42 to
0.67) and PFS (HR 0.52, 95% CI 0.40 to 0.67) compared to low TMB groups. In patients with high
TMB, those who received ICIs had a better OS (HR 0.69, 95% CI 0.50 to 0.95) and PFS (HR = 0.66, 95%
CI = 0.47 to 0.92) compared to those who received chemotherapy alone, while in patients with low
TMB, such ICI benefits of OS or PFS were not statistically significant. In conclusion, TMB may be
an effective biomarker to predict survival in patients undergoing ICI treatment. The role of TMB in
identifying patient groups who may benefit from ICIs should be determined in future randomized
controlled trials.

Keywords: tumor mutational burden; immune checkpoint inhibitors; hazard ratio; overall survival;
progression-free survival; PD-1 inhibitor; PD-L1 inhibitor; CTLA-4 inhibitor

1. Introduction

Cancer immunotherapy using immune checkpoint inhibitors (ICIs) is approved for several
malignancies [1,2]. Although some patients experience significant clinical benefit from ICIs, others
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have no or limited clinical benefit [3–5], in some cases also accompanied by severe side effects.
Therefore, discovering biomarkers that can identify patients who may benefit from ICIs is crucial.
The programmed death-ligand 1 (PD-L1) expression density is widely used and thus far the only
biomarker in clinical routine in various cancer entities. It was approved by the US Food and Drug
Administration as a companion diagnostic tool [6,7]. A recent meta-analysis demonstrated that
programmed cell death protein 1 (PD-1) or PD-L1 blockade therapy could decrease the risk of death
by 28% in comparison to conventional treatment. Moreover, a greater risk reduction was achieved
in patients positive for PD-L1 (34%) compared to those with negative staining (20%) [8], providing
robust evidence for the clinical efficacy of ICIs, especially in patients with PD-L1-positive tumors.
However, PD-L1 expression as a predictive biomarker has many limitations. It may change over time
or upon the initiation of treatments such as chemotherapy and radiotherapy [9]. Tumor may be show
heterogenous PD-L1 expression, and small biopsies or tumor microarrays may miss PD-L1 expression
and give discrepant results from surgically resected tissue samples [9]. Pre-analytical factors such
as types of fixative and duration of fixation, differences in detecting techniques such as antibody
reagents and immunohistochemistry platforms, differences in definitions of cut-offs and poor observer
reproducibility account for different results of PD-L1 expression [9–11]. Positive PD-L1 may also
be induced by inflammatory procedures, such as release of interferon and T-cell recognition, which
can be driven by PD-1 inhibition [12]. In several phase III randomized controlled trials (RCTs),
PD-L1 immunohistochemistry has not fulfilled its promise as a predictive biomarker [4,13–15], showing
significant risk reduction rates with ICIs even in patients with negative PD-L1 staining. Therefore, it is
difficult to select patients for ICI therapy using PD-L1 expression alone [8,16]. Identification of putative
biomarkers that can better predict ICI efficacy and thereby allow better patient selection is of the utmost
clinical need in terms of economic considerations and immune-related adverse effects [17–19].

Recently, tumor-specific features derived from genome-wide analysis emerged as effective
biomarkers to predict the response to ICI treatment [20–22]. It was suggested that a higher frequency
of gene mutations, denoted as tumor mutational burden (TMB), increase the likelihood of generating
immunogenic tumor neoantigens recognized by the host immune system [20–22]. As a direct
indicator of immune recognition, neoantigen load was initially studied as a promising candidate [21].
Although mutational load, neoantigen load and expression of cytolytic markers in the immune
microenvironment were associated with clinical benefit after ipilimumab treatment, there was no
recurrent neoantigen peptide sequence which predicted response [21]. It was recently reported that
TMB is more predictive concerning the clinical benefit from ICIs than neoantigen load using either a
moderate or strong threshold to patient-specific class I human leukocyte antigen (HLA) alleles [23].
Thus, TMB was investigated as an emerging biomarker for prediction of response to ICI treatments.
In patients who received anti-PD-1 or anti-PD-L1 monotherapy involving 27 tumor types or subtypes,
Yarchoan et al. [24] showed that the response rate correlated with TMB. Although there has been a
growing body of evidence revealing a better response in patients with higher TMB treated by ICIs,
studies exploring the interaction between TMB and the long-term efficacy of ICI treatments are limited
by the relatively inadequate power of primary studies, mainly due to their exploratory nature.

Current investigations are attempting to validate the long-term oncologic impact of TMB from
two perspectives. One is the role of TMB as a predictive biomarker of ICI treatment and the other is the
efficacy of ICI treatment compared to conventional treatment in groups of patients with different TMB
levels. To synthesize the currently available evidence on these subjects, we performed a systematic
review and meta-analysis.

2. Results

2.1. Identification of Studies and Study Characteristics

Our initial search retrieved 1702 publications of which 122 articles were eligible for full-text
screening (Figure 1). After full-text review of 122 publications and manual search of articles, 26 studies
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were finally eligible, with years of publication ranging from 2014 to 2019 (Tables 1 and 2) [5,20–23,25–45].
The number of patients in each study ranged from 15 to 1662. Five articles were clinical trials with
prospective assessment of TMB, four of which were RCTs. The other 21 studies were retrospective
studies of cohorts or clinical trials, corresponding to 27 comparison pairs (high TMB arm versus
low TMB arm). Ten comparisons studied patients with melanoma, and eight comparisons studied
patients with non-small cell lung cancer (NSCLC). Gastric cancer, head and neck squamous cell cancer,
small-cell lung cancer and urothelial carcinoma were addressed in one comparison each. All patients
included in the enrolled studies were diagnosed as having advanced or metastatic diseases. For TMB
detection, 12 studies used whole-exome sequencing (WES) while 14 used next-generation sequencing
(NGS). The definition of high and low TMB was heterogeneous among the studies.

2.2. High TMB Group Versus Low TMB Group

Data on 3155 patients from 21 primary studies were included in the analysis (Table 1), and all
but one [5] study were retrospective. Under a random-effects model, patients in the high TMB group
receiving ICIs had significantly increased overall survival (OS) (hazard ratio (HR) 0.53, 95% confidence
interval (CI) 0.42 to 0.67) and progression-free survival (PFS) (HR 0.52, 95% CI 0.40 to 0.67) compared
with patients in the low TMB group (Figures 2 and 3). Analysis under fixed effects showed a similar
result (Table S1), and heterogeneity was low in both meta-analyses (I2 = 0%). There was no evidence of
publication bias, with no asymmetry in the funnel plots (Figures S1 and S2).

Subgroup analyses (Table 3) revealed that PD-L1 inhibitors (HR 0.35, 0.21 to 0.61) were associated
with greater OS benefit in the high TMB population when compared with PD-1 inhibitors (HR 0.62,
95% CI 0.33 to 1.17) (I2 among subgroups = 44%). Detection of TMB by NGS (HR 0.44, 95% CI 0.33 to
0.59) was associated with a greater OS benefit in the high TMB population when compared with
detection of TMB by WES (HR 0.73, 95% CI 0.50 to 1.06) (I2 among subgroups = 77%), while no such
significant difference was found in the PFS outcome. Association of TMB level and OS or PFS was not
heterogeneous among subgroups of cancer type (melanoma versus NSCLC), sample source (tumor
tissue versus blood), detection method (WES vs NGS), study design (clinical trials vs cohorts) and the
number of participants. There was a trend for better OS (HR 0.66, 95% CI 0.43 to 1.01) of patients with
melanoma in the high TMB group compared to the low TMB group, and higher TMB was significantly
associated with better PFS in patients with NSCLC (HR 0.53, 95% CI 0.30 to 0.93). The benefit of PFS or
OS was not found in subgroups of TMB detection by blood sample, but this may be due to the small
sample size and subsequent imprecision of the study estimates.

2.3. ICI Arm Versus Chemotherapy Arm, within High TMB Group or Low TMB Group

Data on 2557 patients were included in the analysis. The patient data were based on four RCTs
(Table 2), of which two RCTs prospectively analyzed TMB to test its role as a predictive biomarker.
In patients with high TMB, the ICI arm showed prolonged OS (HR 0.69, 95% CI 0.50 to 0.95) and PFS
(HR 0.66, 95% CI 0.47 to 0.92) compared to chemotherapy under a random-effects model (Table S1,
Figures S3 and S4). In patients with low TMB, there was a tendency for prolonged OS in the ICI arm
(HR 0.78, 95% CI 0.60 to 1.00), but the association was not statistically significant (p-value = 0.051),
and there was no PFS benefit (HR 1.14, 95% CI 0.83 to 1.57) under a random-effects model (Table S1,
Figures S5 and S6). Heterogeneity was low in all associations and a fixed effects model showed
similar results to the random-effects model (Table S1). There was no publication bias (Figures S7–S10).
A subgroup analysis was not available due to the small number of studies.
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Table 1. Characteristics of studies included in the meta-analysis of the high tumor mutational burden (TMB) group versus low TMB group.

Study Type of Study Malignancy Type of
Immunotherapy

Sample
Source

Detection
Method TMB Cutoff

Median TMB
(range)

Number of Patients
(High/Low TMB) Outcome

Balar et al.
2017 [44]

Retrospective
analysis of
clinical trial

Urothelial
carcinoma Atezolizumab Tumor FoundationOne ≥16/MB 8.1 (0.9–62.2) 97 (NR) OS

Chae et al.
2018 [28]

Retrospective
cohort NSCLC PD-1/PD-L1 inhibitor Tumor FoundationOne ≥15/MB 8 (1–55) 34 (NR) OS, PFS

Chae et al.
2019a [41]

Retrospective
cohort NSCLC Immune checkpoint

inhibitors Blood Guardant360 NR (median) NR 20 (10/10) OS, PFS

Chae et al.
2019b [41]

Retrospective
cohort NSCLC Immune checkpoint

inhibitors Blood Guardant360 NR (median) NR 12 (6/6) OS, PFS

Cristescu et al.
2018a [30]

Retrospective
analysis of
clinical trial

Pan-tumor Pembrolizumab Tumor WES >102.5 NR 119 (37/82) PFS

Cristescu et al.
2018b [30]

Retrospective
analysis of
clinical trial

Melanoma Pembrolizumab Tumor WES >191.5 NR 89 (59/30) PFS

Cristescu et al.
2018c [30]

Retrospective
analysis of
clinical trial

HNSCC Pembrolizumab Tumor WES >86 NR 107 (54/53) PFS

Fang et al.
2019 [39]

Retrospective
analysis of
clinical trial

NSCLC PD-1/PD-L1 inhibitor Tumor WES ≥157 (top tertile) 87 (4–1528) 73 (25/48) PFS

Goodman et
al. 2017 [27]

Retrospective
cohort Various Various Tumor FoundationOne ≥20/MB 6 (1–347) 151 (38/113) OS, PFS

Hamid et al.
2019 [37]

Retrospective
analysis of
clinical trial

Melanoma Atezolizumab Tumor FoundationOne ≥16/MB NR 23 (12/11) OS, PFS

Hellmann et
al. 2018 [23]

Retrospective
analysis of
clinical trial

NSCLC Nivolumab plus
ipilimumab Tumor WES >158 (median) 158 75 (37/38) PFS

Hugo et al.
2016 [31]

Retrospective
cohort Melanoma Pembrolizumab or

nivolumab Tumor WES ≥577 (bottom
tertile) 489 (73–3985) 37 (13/24) OS

Johnson et al.
2016 [29]

Retrospective
cohort Melanoma PD-1/PD-L1 inhibitor Tumor FoundationOne >23.1/MB NR 65 (27/38) OS, PFS
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Table 1. Cont.

Study Type of Study Malignancy Type of
Immunotherapy

Sample
Source

Detection
Method TMB Cutoff

Median TMB
(range)

Number of Patients
(High/Low TMB) Outcome

Khagi et al.
2017 [43]

Retrospective
cohort Various Various Blood Guardant360 >3 total ctDNR

alterations 2 (0–20) 69 (20/49) OS, PFS

Le et al. 2015
[5] Clinical trial Various Pembrolizumab Tumor WES NR NR 15 (NR) OS, PFS

Ricciuti et al.
2019 [40]

Retrospective
cohort

Small-cell
lung cancer

Immune checkpoint
inhibitors Tumor NGS

(OncoPanel) >9.7/MB (median) 9.8 (1.2–31.2) 52 (26/26) OS, PFS

Rizvi et al.
2015a [22]

Retrospective
cohort NSCLC Pembrolizumab Tumor WES >209 (median) NR 18 (9/9) PFS

Rizvi et al.
2015b [22]

Retrospective
cohort NSCLC Pembrolizumab Tumor WES >200 (median) NR 16 (8/8) PFS

Rizvi et al.
2018 [26]

Retrospective
cohort NSCLC Immune checkpoint

inhibitors Tumor WES >324 171 (1–1147) 49 (12/37) PFS

Roszik et al.
2016 [34]

Retrospective
cohort Melanoma Ipilimumab Tumor NGS >100 NR 76 (57/19) OS

Samstein et al.
2019 [32]

Retrospective
cohort Various Immune checkpoint

inhibitors Tumor NGS
(MSK-IMPACT)

90th percentile of
each histology NR 1662 (NR) OS

Snyder, et al.
2014a [20]

Retrospective
cohort Melanoma Ipilimumab or

tremelimumab Tumor WES >100 NR 25 (10/15) OS

Snyder et al.
2014b [20]

Retrospective
cohort Melanoma Ipilimumab or

tremelimumab Tumor WES >100 NR 39 (17/22) OS

Van Allen et
al. 2015 [21]

Retrospective
cohort Melanoma Ipilimumab Tumor WES ≥202 (median) 197 (7–5854) 110 (55/55) OS, PFS

Wang et al.
2019 [38]

Retrospective
analysis of
clinical trial

Gastric cancer Toripalimab Tumor WES ≥12/MB NR 54 (12/42) OS, PFS

Yusko et al.
2019a [35]

Retrospective
analysis of
clinical trial

Melanoma Nivolumab or
ipilimumab Tumor WES NR 171 30 (NR) OS

Yusko et al.
2019b [35]

Retrospective
analysis of
clinical trial

Melanoma Nivolumab or
ipilimumab Tumor WES NR 159 38 (NR) OS

Abbreviations: TMB, tumor mutational burden; NSCLC, non-small cell lung cancer; HNSCC, head and neck squamous cell carcinoma; PD-1, programmed cell death protein 1; PD-L1,
programmed death-ligand 1; WES, whole-exome sequencing; NGS, next-generation sequencing; NR, not reported; OS, overall survival; PFS, progression-free survival.
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Table 2. Characteristics of studies included in the meta-analysis of the immunotherapy group versus chemotherapy group.

Study Type of Study Malignancy
Immunotherapy

versus Chemotherapy
Comparison

Sample Source Detection
Method TMB Cutoff

Number of
Patients with

High/Low TMB
Outcome

Carbone et al.
2017 [33]

Retrospective
analysis of RCT NSCLC

Nivolumab versus
platinum-based
chemotherapy

Tumor WES ≥243 (top tertile) 107/205 OS, PFS

Gandara et al.
2018a [42]

Retrospective
analysis of RCT NSCLC Atezolizumab versus

docetaxel Blood FoundationOne ≥16/MB 63/148 OS, PFS

Gandara et al.
2018b [42]

Retrospective
analysis of RCT NSCLC Atezolizumab versus

docetaxel Blood FoundationOne ≥16/MB 158/425 OS, PFS

Hellmann et al.
2019 * [45] RCT NSCLC

Nivolumab plus
ipilimumab versus
platinum doublet

chemotherapy

Tumor FoundationOne ≥10/MB 299/380 OS

Hellmann et al.
2018a * [25] RCT NSCLC

Nivolumab plus
ipilimumab versus
platinum doublet

chemotherapy

Tumor FoundationOne ≥10/MB 299/380 PFS

Hellmann et al.
2018b [25] RCT NSCLC

Nivolumab versus
platinum doublet

chemotherapy
Tumor FoundationOne ≥13/MB 150/78 PFS

Powles et al.
2018 [36] RCT Urothelial

carcinoma

Atezolizumab versus
platinum-based
chemotherapy

Blood FoundationOne ≥9.65/MB
(median) 274/270 OS

Abbreviations: NR, not reported; NSCLC, non-small cell lung cancer; OS, overall survival; PFS, progression-free survival; RCT, randomized controlled trial; TMB, tumor mutational
burden; WES, whole-exome sequencing. * Data from identical population.
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Table 3. Results of the subgroup analysis of the high TMB group versus low TMB group.

Subgroup

Overall Survival Progression-Free Survival

Number of
Study

Estimates
HR (95% CI) p-Value * I2 (%)

I2 among
Subgroups

(%)

Number of
Study

Estimates
HR (95% CI) p-Value * I2 (%)

I2 among
Subgroups

(%)

All studies 19 0.53 (0.42 to 0.67) <0.001 0 19 0.52 (0.40 to 0.67) <0.001 0

Subgroup analysis

Treatment 0 -

PD-1/PD-L1 inhibitors 7 0.43 (0.29 to 0.64) <0.001 0 11 0.51 (0.35 to 0.73) <0.001 0

CTLA-4 inhibitors 4 0.57 (0.30 to 1.09) 0.087 0

PD-1 inhibitors versus PD-L1 inhibitors 44 -

PD-1 inhibitors 3 0.62 (0.33 to 1.17) 0.14 0 7 0.54 (0.36 to 0.81) 0.003 0

PD-L1 inhibitors 2 0.35 (0.21 to 0.61) <0.001 0

Cancer type 0 0

Melanoma 9 0.66 (0.43 to 1.01) 0.056 0 4 0.47 (0.21 to 1.05) 0.066 32

NSCLC 3 1.80 (0.21 to 15.60) 0.59 19 8 0.53 (0.30 to 0.93) 0.028 0

Sample source 0 0

Tumor tissue 16 0.52 (0.41 to 0.66) <0.001 0 16 0.50 (0.38 to 0.66) <0.001 0

Blood 3 1.22 (0.21 to 7.21) 0.83 39 3 0.84 (0.26 to 2.70) 0.77 18

Detection method 77 0

WES 8 0.73 (0.50 to 1.06) 0.094 0 11 0.56 (0.41 to 0.77) <0.001 0

NGS 11 0.44 (0.33 to 0.59) <0.001 0 8 0.44 (0.26 to 0.73) 0.001 6

Data source 0 0

Clinical trials 6 0.57 (0.35 to 0.92) 0.020 32 8 0.52 (0.36 to 0.75) <0.001 0

Cohorts 13 0.50 (0.37 to 0.68) <0.001 0 11 0.51 (0.35 to 0.76) <0.001 1

Number of participants 0 0

≥100 participants 3 0.53 (0.37 to 0.75) <0.001 0 4 0.56 (0.37 to 0.85) 0.007 7

<100 participants 16 0.53 (0.39 to 0.72) <0.001 0 15 0.49 (0.34 to 0.69) <0.001 0

Abbreviations: CI, confidence interval; CTLA-4, cytotoxic T lymphocyte-associated antigen 4; HR, hazard ratio; NGS, next-generation sequencing; NSCLC, non-small cell lung cancer;
PD-1, programmed cell death protein 1; PD-L1, programmed death-ligand 1; WES, whole-exome sequencing. * Significant associations are shown in bold.
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Figure 1. Flow of the literature search.
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Figure 2. Meta-analysis of immune checkpoint inhibitor therapy and overall survival, high TMB group
versus low TMB group.

Figure 3. Meta-analysis of immune checkpoint inhibitor therapy and progression-free survival, high
TMB group versus low TMB group.

3. Discussion

This meta-analysis focuses on the association between TMB and long-term outcomes assessed
by OS and PFS in cancer patients treated with ICIs. Integrating more than 5000 patient data with
various advanced cancer types, our pooled analysis revealed a 47% risk reduction for death and a 48%
risk reduction for disease progression in patients with high compared to low TMB undergoing ICI
treatment. Such survival differences according to TMB level were not found in patients undergoing
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therapy other than ICIs [46]. The ICIs compared to chemotherapies especially resulted in prolonged OS
and PFS in patients with high TMB, whereas in patients with low TMB no PFS benefit was suggested.
Therefore, our study suggests that TMB may be an effective predictive biomarker for ICI therapy.
Even though our data are promising, more clinical investigations are needed to decide the optimal
cut-off value that should be used for adding TMB to the routine clinical practice as a predictor of
clinical efficacy.

TMB, which is defined as the total number of somatic mutations in the tumor exome [24],
was initially measured using WES [20–22]. Thus, the utility of TMB was calculated primarily
for the investigational study-based cohort. Subsequently, many of the studies included in this
meta-analysis were small-sized, exploratory cohorts and contained patients with a variety of
malignancies. Nevertheless, the favorable influence of high TMB on the long-term survival of
patients under ICIs treatment did not significantly differ among studies with large versus small sample
sizes (>100 versus <100). This tendency was also maintained when studies of patients with melanoma
or NSCLC were analyzed separately.

Measuring TMB by WES has some limitations in daily clinical practice due to the tissue processing
difficulty, time- and labor-intensiveness due to its large sequencing capacity and subsequent high costs.
Due to these difficulties, a validated hybrid capture-based NGS platform was developed and is being
used with several pragmatic advantages [47,48]. However, the procedures differ in estimating the
total number of somatic mutations. In WES, the germline variants are excluded after comparing data
derived from normal tissue. The Foundation Medicine NGS approach, one of the most frequently used
platforms, measures the number of base substitutions (synonymous and nonsynonymous mutations)
in the coding region of targeted genes and defines TMB as the total number of mutations present
in more than 5% allele frequency [49,50]. Previous reports demonstrated significant correlations in
measuring TMB between using WES and these panel-based analyses [23,26,29,51,52], although some
studies suggested a certain panel size as the minimum requirement for a correct estimation [51,53].
In our study, the impact of TMB on OS was statistically significant in studies that used NGS but not in
studies that used WES.

In our study, subgroup analyses demonstrated that TMB measurement using panel-based
sequencing was associated with a higher OS benefit compared to detection of TMB by WES with
moderate heterogeneity. In clinical settings, cost is an important issue for the wide-spread use
of diagnostic tools. Consequently, the number of patients using the panel-based sequencing was
higher than that of WES-based analysis, and one study, which included an exceptionally large
number of patients, used panel-based sequencing, and this might have influenced the results of our
meta-analysis [32]. In addition, studies with panel-based NGS sequencing may select the cut off using
the optimal value that could maximize the survival difference between patients with high and low
TMB. These characteristics of the included studies in our meta-analysis might have caused bias to
favor outcomes from panel-based sequencing tests over WES-driven data, rather than one method
being superior than the other. Previous studies have reported high correlation of TMB measured by
NGS and WES [39,54].

Our data also showed that the effect of ICIs on OS was higher in TMB-high patients treated
with PD-L1 inhibitors compared to PD-1 inhibitors or cytotoxic T lymphocyte-associated antigen 4
(CTLA-4) inhibitors. This may be related to differences in the mechanism of action of the different ICIs.
For example, PD-1 blocking antibodies inhibit the interaction between PD-L1 and PD-1, but they do
not inhibit PD-L1 from interacting with CD80 [55]. In contrast, both these interactions with PD-L1 will
be blocked by PD-L1-blocking antibodies, but this does not prevent PD-1 from interacting with
PD-L2 [55]. In addition, binding of PD-L1 antibodies to tumor-associated macrophages (TAMs) may
trigger macrophage proliferation, survival and activation, triggering macrophage-mediated antitumor
activity [56]. The CTLA-4 antibodies have a distinct mechanism of action targeting different receptor
interactions from PD-L1/PD-1 inhibitors that may also impact a different phase of the anti-tumor
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immune response. These mechanistic basics might lead to the differences in the predictive impact of
TMB for various ICIs. Further studies are needed to clarify these observed differences in more detail.

Conforti and colleagues [57] reported a difference in immunotherapy efficacy according to patient
sex. The HRs for OS in patients treated with immunotherapy compared with controls was 0.72
(95% CI 0.65 to 0.79) in men and 0.86 (95% CI 0.79 to 0.93) in women (p = 0.0019) [57]. The reason
for the observed sex difference was not clear, but differences in behavioral and lifestyle differences
were discussed as causative factors [58]. In contrast, Wallis et al. [59] recently updated an earlier
meta-analysis and demonstrated no difference in the efficacy of ICIs according to sex.

Melanoma and NSCLC have high mutational burdens compared with other tumors [51,60],
and this was regarded to be the reason that the efficacy of ICIs is most prominent in these cancers.
Interestingly, among 19 different cancer types from The Cancer Genome Atlas (TCGA) dataset, mean
TMB was only higher in men than in women for cutaneous melanoma [61]. Considering the favorable
prognostic impact of high TMB in our meta-analysis, the reduced efficacy of ICIs in female melanoma
patients may originate from the relatively lower TMB levels rather than a true sex difference. It should
be noted that even though the overall effect size was not significantly different between men and
women in the Wallis and colleagues study [59] (HR 0.75, 95% CI (0.69 to 0.81) in men versus HR 0.77,
95% CI (0.67 to 0.88) in women), a reduced efficacy of immunotherapy in women was still noted in the
subgroup analysis of melanoma patients (HR 0.68, 95% CI (0.48 to 0.97) in men versus HR 0.83, 95% CI
(0.68 to 1.00) in women). Further large-scale clinical investigations should be conducted to validate the
real effect of sex or lifestyle factors on immunotherapy efficacy in relation to gender-specific differences
in TMB.

Clarifying the association of TMB with other known predictors of ICI therapy may be useful.
Association of microsatellite instability and TMB is reported to be complex and differs across different
cancer types [62], while PD-L1 expression is known to predict outcome independently from TMB [63,64].
The association of TMB with other clinicopathologic variables known to effect response to ICI
therapy such as age, body mass index [65], concomitant medications, gut microbiota [66], mismatch
repair status, tumor-infiltrating lymphocytes and neutrophil-to-lymphocyte ratio [1] remains to
be elucidated. Recent studies have also demonstrated that genetic driver events, intratumoral
heterogeneity, mutational signature and T-cell inflamed gene expression profile may be used to identify
patients showing responses to ICIs [30,67,68]. Though several of these factors may be interrelated,
these findings suggest that TMB status alone may be insufficient in determining which patients should
be offered ICIs. Besides adequate and clinically adapted cut-off values based on the patients’ stage
or clinical situation, we suggest a combined approach of these various biomarkers to be evaluated
together, as the clinical challenge remains to define non-responders rather than responders. This goal
to discriminate non-responders rather than responders should be taken into consideration when
defining cut-off values in the cohort of recurrent or advanced disease, as demonstrated by our eligible
studies. This might differ for early-stage patients, where a cut-off should identify high-risk patients
with the highest probability to benefit from ICI treatment compared to other treatment strategies.
Therefore, we suggest a combined approach utilizing a few predictive markers in the future dividing
the patient population by subgroups and assessing survival outcomes separately. This may particularly
be relevant when the biomarkers are independently predictive, such as PD-L1 and TMB [63,64]. To take
account of the combination of many biomarkers to predict response to therapy, one may develop
multivariable prediction models (such as logistic regression models) [69,70] or scoring systems [71]
which should be followed by its prospective validation in other independent cohorts. Finally, proposed
methods should be validated in large-sized RCTs to be utilized in real-world clinics.

There are some remaining issues and limitations in the use of TMB in routine clinical practice.
First, even though our study demonstrated that a high TMB level could be interpreted as a positive
predictive factor in patients treated with ICIs, deciding the exact cut-off value defining a high TMB
level remains a considerable task that should be completed prior to its use in clinical practice. In our
eligible studies, cut-off values varied significantly, even across studies of patient groups with the same



Cancers 2019, 11, 1798 12 of 21

malignancies. The tendency for HR to become lower as the threshold defining the high TMB increased
was observed in several studies [26,27,32]. It may be advantageous to raise the TMB standard to
identify patients who will benefit most from ICI treatment, though this may also result in potential
responding patients being excluded from ICI therapy. In future studies, an optimal TMB threshold
may initially be identified by setting a cut-off of optimal sensitivity and specificity of survival and by
utilizing molecular indicators of response to ICI therapy in a discovery cohort, following its prospective
validation in another independent cohort [22,72]. The proposed threshold should then be validated in
large-sized RCTs to be routinely used in clinical practice.

Another issue regarding TMB as a predictive biomarker is its potential variation over time.
For example, TMB may differ with age: Children’s mutational burden of glioblastoma was lower than
that of adults [51] and was also changed within the same patient. Nathanson and colleagues [73]
reported that TMB was significantly higher in melanoma patients with clinical benefit than in
non-responders. However, this positive correlation was only observed when TMB evaluation was
performed on patient samples collected prior to treatment and was not maintained when using patient
samples collected after the initiation of ICI therapy [73]. Thus, it was suggested that it would be ideal
to have TMB assessment on tissue obtained immediately prior to therapy [27]. In our meta-analysis,
it was not possible to compare the efficacy of TMB according to the time point at which it was assessed,
because many included studies did not report the exact time point at which TMB was assessed.

This study has several limitations. The included studies are apt to have non-generalizable results
and may be more representative of an insured, high-income population due to selection and referral
bias. Many eligible studies (especially basic research papers) had small sample sizes and often did
not present data necessary for analysis, possibly leading to selection bias and exclusion of other
meaningful findings. Most eligible studies of high TMB versus low TMB analyses studied NSCLC,
melanoma or non-specific tumor type and, therefore, the results may be hard to generalize to other
cancer types. Modality of TMB detection (NGS versus WES) and tissue (blood versus tumor) also
differed significantly. Definition of high and low TMB varied across the studies, further contributing
to the potential heterogeneity. However, the observed heterogeneity (I2) within the main analyses
or within most subgroups were low with consistent results found across the studies, supporting the
robust association of higher benefit of ICIs in the high TMB group compared to the low TMB group
despite these differences. Therefore, TMB may be an effective biomarker to predict survival in patients
undergoing ICI treatment.

4. Materials and Methods

This systematic review and meta-analysis were performed according to Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [74] (Table A1).

4.1. Literature Search Strategy and Eligibility Criteria

Three investigators (JYK, JK and JIS) searched PubMed, Embase, CENTRAL and clinicaltrials.gov
from inception to 6 August 2019 to identify retrospective studies or clinical trials of ICIs that reported
HRs for OS and/or PFS according to TMB. The search was performed with key words such as tumor
mutational burden, mutational load and immune checkpoint inhibitors (full search strategy available
in Appendix B). There was no language restriction. Reference lists of relevant studies were also
manually searched.

We searched for observational studies or RCTs studying the role of TMB as the predictive biomarker
of ICI therapy for cancer patients. The eligibility criteria were as follows. First, the study had to report
patient group(s) with any type of cancer treated with inhibitors of PD-1 (nivolumab, pembrolizumab,
or toripalimab), PD-L1 (atezolizumab or avelumab), or CTLA-4 (ipilimumab or tremelimumab), alone
or in combination with other ICIs. Second, the TMB of the included patients had to be assessed and
reported. TMB was assessed by WES or a hybrid capture-based targeted NGS panel, both of which are
available in clinical practice. Third, studies were required to either report OS and/or PFS comparing
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patient groups with high and low TMB or report OS and/or PFS comparing patient groups with ICI
treatment and chemotherapy (any kind of chemotherapy) within patient groups with either high or low
TMB. The definition of high or low TMB followed that of the individual studies. Fourth, the survival
data had to be reported as a calculable metric such as HR. Studies that did not report survival as a
calculable metric, in vitro studies, animal studies, conference abstracts and reviews were excluded.
When there was a duplicate population among two or more studies, we included the more recent and
complete study.

4.2. Data Extraction

Three investigators (JYK, JK and JIS) extracted the data, and discrepancies were resolved by
discussion and consensus. From eligible articles, we extracted the following: Name of the first author,
published year, study design, type of cancer, treatment regimen, source of the sample for assessing
TMB, TMB detection method, median TMB and its range, TMB threshold, the numbers of patients in
high/low TMB groups and survival outcomes represented as HRs and corresponding 95% CIs.

4.3. Statistical Analysis

We performed the following meta-analyses: (1) OS or PFS in the high TMB group versus low
TMB group and (2) OS or PFS in ICI arm versus chemotherapy arm within the high TMB group or
low TMB group. All analyses were conducted using R version 3.5.1 (R-project, Institute for Statistics
and Mathematics) and “metafor” package [75]. We calculated the summary effect size, 95% CI and
p-values under random- and fixed-effects models. We presented results under random effects because
the clinical settings were expected to be heterogeneous across the studies. The heterogeneity among
the included studies was evaluated using the I2 statistic and its p-value of χ2-based Cochran’s Q test.
I2 > 50% and >75% are considered to indicate large and very large heterogeneity, respectively [76].
To investigate the potential source of variation of the predictive value of TMB, we performed subgroup
analyses of treatment regimen, cancer type, TMB sample source (tumor tissue versus blood), TMB
detection method (WES versus NGS), study design and the number of participants (<100 versus >100).
We assessed publication bias by visual inspection of funnel plots and Egger’s test of asymmetry [77].
In Egger’s test, publication bias was claimed at p < 0.10. All statistical tests were two-tailed, and p <

0.05 was considered statistically significant.

5. Conclusions

Our systematic review demonstrated that the TMB may predict long-term outcomes in patients
who received ICIs and encourages its evaluation as a predictive marker of ICI therapy. Future large
RCTs of ICIs for patients with various cancer types should evaluate the role of TMB in identifying
patient groups that may benefit from ICIs.
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Appendix A

Table A1. PRISMA Checklist.

Title 1 Identify the Report as a Systematic Review,
Meta-Analysis, or Both 0

ABSTRACT

Structured summary 2

Provide a structured summary including,
as applicable: Background; objectives; data sources;

study eligibility criteria, participants,
and interventions; study appraisal and synthesis

methods; results; limitations; conclusions and
implications of key findings; systematic review

registration number.

0

INTRODUCTION

Rationale 3 Describe the rationale for the review in the context of
what is already known. 1

Objectives 4

Provide an explicit statement of questions being
addressed with reference to participants,

interventions, comparisons, outcomes, and study
design (PICOS).

1

METHODS

Protocol and
registration 5

Indicate if a review protocol exists, if and where it
can be accessed (e.g., Web address), and, if available,

provide registration information including
registration number.

N/A

Eligibility criteria 6

Specify study characteristics (e.g., PICOS, length of
follow-up) and report characteristics (e.g., years

considered, language, publication status) used as
criteria for eligibility, giving rationale.

11–12

Information sources 7

Describe all information sources (e.g., databases with
dates of coverage, contact with study authors to

identify additional studies) in the search and date
last searched.

11

Search 8
Present full electronic search strategy for at least one

database, including any limits used, such that it
could be repeated.

Appendix B

Study selection 9
State the process for selecting studies (i.e., screening,

eligibility, included in systematic review, and,
if applicable, included in the meta-analysis).

11–12

Data collection
process 10

Describe method of data extraction from reports (e.g.,
piloted forms, independently, in duplicate) and any
processes for obtaining and confirming data from

investigators.

12
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Table A1. Cont.

Data items 11
List and define all variables for which data were
sought (e.g., PICOS, funding sources) and any

assumptions and simplifications made.
12

Risk of bias in
individual studies 12

Describe methods used for assessing risk of bias of
individual studies (including specification of

whether this was done at the study or outcome level),
and how this information is to be used in any data

synthesis.

N/A

Summary measures 13 State the principal summary measures (e.g., risk
ratio, difference in means). 12

Synthesis of results 14

Describe the methods of handling data and
combining results of studies, if done, including

measures of consistency (e.g., I2) for each
meta-analysis.

12

Risk of bias across
studies 15

Specify any assessment of risk of bias that may affect
the cumulative evidence (e.g., publication bias,

selective reporting within studies).
12

Additional analyses 16
Describe methods of additional analyses (e.g.,

sensitivity or subgroup analyses, meta-regression),
if done, indicating which were pre-specified.

12

RESULTS

Study selection 17

Give numbers of studies screened, assessed for
eligibility, and included in the review, with reasons

for exclusions at each stage, ideally with a flow
diagram.

2, Figure 1

Study characteristics 18
For each study, present characteristics for which data

were extracted (e.g., study size, PICOS, follow-up
period) and provide the citations.

2, Tables 1 and 2

Risk of bias within
studies 19

Present data on risk of bias of each study and,
if available, any outcome level assessment (see item

12).
N/A

Results of individual
studies 20

For all outcomes considered (benefits or harms),
present, for each study: (a) simple summary data for

each intervention group (b) effect estimates and
confidence intervals, ideally with a forest plot.

Figures 2 and 3,
Figures S3–S6

Synthesis of results 21 Present results of each meta-analysis done, including
confidence intervals and measures of consistency.

2, Tables 1 and 2,
Table S1

Risk of bias across
studies 22 Present results of any assessment of risk of bias

across studies (see Item 15).
2, Table S1, Figures

S1, S2, S7–S10

Additional analysis 23
Give results of additional analyses, if done (e.g.,

sensitivity or subgroup analyses, meta-regression
[see Item 16]).

Table 3

DISCUSSION

Summary of
evidence 24

Summarize the main findings including the strength
of evidence for each main outcome; consider their
relevance to key groups (e.g., healthcare providers,

users, and policy makers).

9–11

Limitations 25
Discuss limitations at study and outcome level (e.g.,

risk of bias), and at review-level (e.g., incomplete
retrieval of identified research, reporting bias).

11
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Table A1. Cont.

Conclusions 26
Provide a general interpretation of the results in the
context of other evidence, and implications for future

research.
12

FUNDING

Funding 27
Describe sources of funding for the systematic

review and other support (e.g., supply of data); role
of funders for the systematic review.

13(none)

From: Moher et al. [74]

Appendix B

Full Search Strategy in PubMed

The last search performed on 6 August 2019 yielded 776 results:
Search term: (mutational burden* OR mutation burden* OR mutational load* OR mutation

load*) AND (nivolumab OR pembrolizumab OR atezolizumab OR avelumab OR durvalumab OR
ipilimumab OR immunotherap* OR PD-1 OR PD-L1 OR CTLA-4 OR PD1 OR PDL1 OR CTLA4 OR
PDCD1 OR CD274 OR BMS-936558 OR BMS-936559 OR MK-3475 OR MPDL3280A OR MEDI4736 OR
MSB0010718C OR BMS-734016 OR MDX-010 OR MDX-101 OR immune checkpoint* OR checkpoint
blockade*)
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