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Here, we found two genomic safe harbor (GSH) candidates
from chromosomes 3 and 8, based on large-scale population-
based cohort data from 4,694 Koreans by CNV analysis.
Furthermore, estimated genotype of these CNVRs was vali-
dated by quantitative real-time PCR, and epidemiological
data examined no significant genetic association between dis-
eases or traits and two CNVRs. After screening the GSH candi-
dates by in silico approaches, we designed TALEN pairs to
integrate EGFP expression cassette into human cell lines in or-
der to confirm the functionality of GSH candidates in an
in vitro setting. As a result, transgene insertion into one of
the two loci using TALEN showed robust transgene expression
comparable to that with an AAVS1 site without significantly
perturbing neighboring genes. Changing the promoter or cell
type did not noticeably disturb this trend. Thus, we could vali-
date two CNVRs as a site for effective and safe transgene inser-
tion in human cells.
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INTRODUCTION
One of the critical needs in the biomedical field is the ability to stably
insert functional transgenes and other genetic elements into the
human genome without disrupting genes or perturbing their
transcription, which can potentially alter the biological properties
of host cells. Several diseases have been successfully treated with sta-
ble insertion of therapeutic genes, such as Leber’s congenital amau-
rosis,1 adrenoleukodystrophy,2 and Parkinson’s disease.3 Further-
more, this stable gene insertion can facilitate determination of
transgene functions, labeling cells for tracking and lineage analysis
through reporter gene insertion, and production of specific proteins
from human cells.

In the meantime, random integration of transgenes may cause inser-
tional mutagenesis, which can possibly alter expression levels of
neighbor genes. The most common approach of integrating trans-
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genes in human cells is to use retroviral vector, which inserts trans-
genes into the human genome in a semi-random manner with a pref-
erence toward the vicinity of transcriptionally active genes.4–6 This
uncontrolled insertional mutagenesis can cause cancer such as leuke-
mia7 and lymphoma8 by perturbing proto-oncogenes or tumor sup-
pressors. Furthermore, when the transgenes are integrated into
random regions of human chromosomes, the expression of these
transgenes can be silenced or unpredictable depending on the integra-
tion site.

Instead of viral vectors, engineered nucleases such as zinc-finger
nucleases (ZFNs), transcription activator-like effector nucleases
(TALENs), and the CRISPR-Cas system have become more prospec-
tive approaches for the purpose of safety. These engineered nucleases
induce site-specific double-stranded breaks into targeted sites and go
through a highly precise genomic editing by the mechanism of ho-
mology-directed repair (HDR) in the presence of single-stranded oli-
godeoxynucleotide (ssODN) or a donor DNA.9

Despite the advance in these engineered nucleases, there are only a
few up-to-date identified and validated genomic safe harbors
(GSHs). GSHs are intra- or extragenic regions that can support pre-
dictable transgene expression while minimizing neighboring gene
perturbation.10 The AAVS1 site on chromosome 19 is the most pop-
ular GSH, due to its ability to support transgene expression in
rapy: Oncolytics Vol. 14 September 2019 ª 2019 The Authors. 253
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Figure 1. Estimated CNV Classes of Selected Regions and Validation of CNV Genotype of Each Individual

(A) The flowchart shows how various CNVs were screened to select two final GSH candidate regions. (B) Histograms and cluster plots illustrates two candidate regions

of CNVR7 and CNVR22 generated by CNV tools. Like log2 ratio plots, histograms and cluster plots show that CNV genotypes of these regions were clearly separated in to

three groups (0 copies, 1 copy, and 2 copies). (C) Quantitative real-time PCR data show validation results on CNVR7 and CNVR22. We conducted a validation experiment for

three CNV states. Samples in each state were randomly selected. Higher bars, lower bars, and no bar mean normal copy (2 copies), heterozygous deletion (1 copy), and

homozygous deletion (0 copies), respectively. Blue bar represents CNV genotype of the reference sample (NA10851) used by comparative genomic hybridization array

(aCGH).
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multiple cell types,11,12 yet at the same time, it was known that the
AAVS1 locus could be silenced by the mechanism including DNA
methylations.13
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A copy-number variation (CNV) is an insertion or deletion of DNA
segment and is relatively common and widespread in the human
genome.14 There are different gene copy numbers in a particular



Table 1. List of 30 CNV Regions on Gene Desert Regions

CNVRID Chromosome Start Stop

Frequency

Cluster
1

Cluster
2

Cluster
3

CNVR1

2 41091503 41105475

92.35 7.52 0.132 41091926 41095029

2 41091926 41110876

CNVR2 2 107383090 107385789 83.66 15.76 0.58

CNVR3

2 107633827 107644568

80.17 18.79 1.042 107640592 107644729

2 107641774 107644004

CNVR4 2 130094781 130097703 95.01 4.88 0.11

CNVR5

2 194397392 194400503

80.14 19.86 –
2 194397392 194403581

2 194399479 194403581

2 194401599 194403581

CNVR6 2 195688911 195690761 84.17 15.02 0.81

CNVR7* 3 82951465 82955620 90.82 8.95 0.23

CNVR8 3 112723878 112730315 85.28 14.23 0.49

CNVR9
4 25899244 25903905

81.85 17.53 0.62
4 25900330 25903009

CNVR10

4 52355328 52358561

86.39 13.61 –
4 52355328 52360772

4 52355328 52378210

4 52356185 52360772

CNVR11 4 61182975 61184206 90.84 8.97 0.19

CNVR12 4 61668290 61696232 88.13 11.53 0.34

CNVR13

4 64376477 64399338

75.48 23.11 1.41

4 64376893 64389954

4 64376893 64402277

4 64381512 64384210

4 64386390 64392883

CNVR14

4 138310481 138323629

76.01 22.09 1.904 138311724 138316056

4 138315738 138319841

CNVR15 5 57361273 57365938 75.16 24.84 –

CNVR16 5 97961273 97963268 93.52 6.35 0.13

CNVR17 6 14853578 14855073 93.69 6.31 –

CNVR18 6 95345973 95348593 92.99 6.84 0.17

CNVR19 7 86077403 86080393 86.13 13.23 0.64

CNVR20
7 144547892 144552203

93.95 5.99 0.06
7 144549963 144552203

CNVR21 8 2626786 2640303 89.84 9.91 0.26

CNVR22* 8 135127147 135140206 83.85 15.53 0.62

CNVR23 8 138195052 138196533 89.18 10.57 0.26

CNVR24 8 142926455 142932099 94.91 5.0 0.04

(Continued)

Table 1. Continued

CNVRID Chromosome Start Stop

Frequency

Cluster
1

Cluster
2

Cluster
3

CNVR25

9 81218373 81223517

86.39 12.95 0.66
9 81219657 81222228

9 81220275 81223087

9 81221187 81222270

CNVR26 10 58571948 58610908 91.63 8.24 0.13

CNVR27 10 91988373 91992382 92.91 6.99 0.11

CNVR28
13 49967437 49970106

76.48 23.52 –
13 49967836 49969229

CNVR29
13 103074226 103077048

92.16 7.71 0.13
13 103074677 103076638

CNVR30 18 62928265 62929768 94.95 4.92 0.13

Of these regions, the two CNV regions of CNVR7 and CNVR22, shown with an asterisk,
were selected for the GSH experiment. Frequency of each cluster has been rounded off to
the nearest hundredth.
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region among healthy individuals. We hypothesized that transgene
insertion into the CNV region (CNVR), which has less association
with genetic diseases, might not lead to any abnormal health prob-
lems. Accordingly, we performed the large-scale cohort studies
through Korean CNV analysis to screen potential GSH candidates
based on essential criteria.10

We selected two possible chromosomal sites, chromosomes 3 and 8,
further away from both gene-rich regions and genes implicated in
cancer and microRNA (miRNA). Once these chromosomal sites
satisfied the criteria for GSH, they were further investigated to rule
out any disease correlation. We were able to achieve efficient site-spe-
cific integration and to measure the neighboring gene perturbation
near the site of integration. Consequently, we proved that our CNVRs
could derive robust transgene expression without significantly
altering multiple neighboring genes.

RESULTS
Selected CNVRs for GSH Site

Through a frequency analysis of CNV state, 290 CNVRswith 5%–25%
frequency were selected from 3,601 CNVRs (Figure 1A; Figure S1A).
Among those, 30 CNVRs had no neighboring genes within 300 kb up-
stream and downstreamof aCNVR (Table 1). Subsequently, twoCNV
regions with much lower disease association through statistical anal-
ysis assessing the disease association, CNVR7 (chr3:82951465–
82955620, hg18) and CNVR22 (chr8:135127147–135140206, hg18),
were selected as final candidates (Table 2; Figure S1B).

Table 2 describes two selected regions. CNV genotypes of two regions
were composed of homozygous deletion (0 copies), heterozygous
deletion (1 copy), and normal copy (2 copies). Frequency of copy
number deletion (cluster 1 + cluster 2) was 9.18% and 16.15% for
CNVR 7 and CNVR22 (Table 2). Moreover, these regions overlapped
Molecular Therapy: Oncolytics Vol. 14 September 2019 255
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Table 2. Frequency Rate of Two Selected CNV Regions

CNVR ID Chromosome Locus Start End
Length
(bp)

No. of
Probes in
the CNV
Region CNV Type

Frequency (n = 4,694)

DGVNormal (2 copies)
Heterozygous
Deletion (1 copy)

Homozygous
Deletion (0 copies)

CNVR7 3 3p12.2 82951465 82955620 4,155 34 deletion 90.82% (4263) 8.95% (420) 0.23% (11) overlapped

CNVR22 8 8q24.22 135127147 135140206 13,060 38 deletion 83.85% (3936) 15.53% (729) 0.62% (29) overlapped

Major CNV state is normal copy, followed by heterozygous deletion and homozygous deletion. Frequency of homozygous deletion is less than 1% in both regions.
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with previously reported CNV regions found in the Database of
Genomic Variants (http://dgv.tcag.ca/dgv/app/home). A length of
CNV region at chromosome 3 was about 4.1 kb, and 34 consecutive
probes were included in this region; the length of CNV region at chro-
mosome 8 was 13 kb, and 38 probes were included (Table 2).

Validation of EstimatedCNVGenotype on TwoSelectedRegions

by Quantitative Real-Time PCR

Figures 1B and 1C represent estimated CNV classes and validated
CNV genotypes. We estimated that there were three copy-number
classes in two selected regions. Moreover, to evaluate whether esti-
mated CNV genotype of each individual is concordant with real
CNV genotype, we randomly selected 49 and 47 samples from
CNVR7 and CNVR22, respectively. To examine overall accuracy,
positive predictive value (PPV) was used as the measurement stan-
dard of accuracy. PPV was defined as the proportion of true-positive
numbers to number of positive calls.

From quantitative real-time PCR experiment results, we confirmed
that two regions consisted of three copy-number classes and the
CNV genotype of each individual was perfectly matched to those of
our estimation (Figure 1C). PPV of each candidate region was 1.

Disease-Association Results of Two Candidate Regions

Tables 3 and 4 are association analyses of CNVR7 and CNVR22,
respectively. In the case of CNVR7, most diseases such as type 2 dia-
betes (T2D), hypertension, osteoporosis, obesity, dyslipidemia, and
metabolic syndrome were not significantly associated with this region,
except for high-density lipoprotein (HDL). The p value of HDL-CNV
association analysis was p < 0.05 (p = 0.037) (Table 3). Because the
sample size of this case-control study might cause spurious results,
we also checked statistical significance of association by conducting
linear regression analysis. The results from linear regression analysis
exhibited conflicting results (p = 0.178) compared to those from logis-
tic regression. From this, we assumed that this discrepancy indicates no
CNVassociationwithHDL trait. In the case ofCNVR22,we found that
there was no statistical significance in association results (Table 4).
Tables S1–S28 illustrate disease-association analysis of 28 CNVRs.

EGFP Cassette Integration and Expression into AAVS1, CNVR7,

and CNVR22

We designed TALEN pairs to target AAVS1, CNVR22, and CNVR7
sites in human somatic cell lines and their corresponding EGFP
expression cassettes, which were driven by the CMV early enhancer
256 Molecular Therapy: Oncolytics Vol. 14 September 2019
or chicken beta-actin (CAG) and viral origin SFFV (spleen focus-
forming virus) promoter terminating at the poly(A) site from the
bovine growth hormone gene (Figure 2; Figure S2B). To promote effi-
cient homologous recombination at the required locus of AAVS1,
CNVR7, and CNVR22, each of the targeting donor cassettes was con-
structed with homology arms of 800 bp (left arm) and 800 bp (right
arm). The appropriate combination of TALENs and the EGFP expres-
sion cassette was transiently transfected into human K562 cells and
Huh 7.5 cells by electroporation. We derived single clones from
EGFP+ sorted cells and performed site-specific integration PCR anal-
ysis to confirm transgene integration at the target site by homology-
directed repair (Figure S2C). From K562 cells, we selected a total of
252, 184, and 223 clones for AAVS1, CNVR7, and CNVR22, respec-
tively, and sorted EGFP+ clones (Figures S2A and S2B). A similar de-
gree of EGFP-expressing populations among three sites may validate
the use of two extragenic GSH candidate regions. Then, target-inte-
grated clones from EGFP+ clones were represented by 78.6%, 73.1%,
and 79% for AAVS1, CNVR7, and CNVR22 (Figure 3A). As reported
by Lombardo et al.,15 integration efficiency (percentage of EGFP+

cells) is unaffected by the target site, and mean fluorescence intensity
(MFI; a measure of the average expression per cell) of EGFP depends
on both the promoter and the target locus. We also recorded a similar
outcome (more than 70% of confirmed transgene integrated clones for
each construct)15 in that the MFI of EGFP showed no significance be-
tween AAVS1 and CNVR22 sites but outperforming CNVR7, with
p = 0.0256 (Figure 3B). Nonetheless, the integration efficiency was
dependent on the TALEN activity (data not shown).

To validate that such findings are not strictly defined to one cell type,
we tried a different cell line, Huh 7.5, that originated from a different
human tissue.10 Site-specific integration PCR analysis was performed
on single cell-derived clones, and a similar finding was reported as
that seen in K562 cells (Figure S3B). Out of the EGFP+ sorted clones,
11/23 for AAVS1, 4/18 for CNVR7, and 6/20 for CNVR22 were
EGFP+-targeted integrations representing 47.8%, 17.8%, and 26.1%
(Figures 3C; Figure S3A), respectively, as analyzed by flow cytometry.
The MFI of EGFP+ cells showed significance between AAVS1 and
CNVR7 sites (p = 0.0032) and between CNVR7 and CNVR22 sites
(p = 0.0092) (Figure 3C).

Extragenic Integration into CNVR7 and CNVR22 Did Not

Regulate Nearby Genes as It Did into AAVS1

The AAVS1 site has already been reported as a possible safe harbor
site, where integration into the AAVS1 site leads to stable expression
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Table 3. Disease-Association Results of CNVR7 at Chromosome 3

Disease Criteria Trait Type Beta SE p Value

Diabetes GLU CC 0.3723 0.190 0.051

Hypertension HTN CC 0.04717 0.116 0.685

Osteoporosis
AS1_DT_cc CC 0.1335 0.191 0.484

AS1_MT_cc CC 0.1018 0.140 0.469

Obesity BMI QT �0.02699 0.156 0.863

Dyslipidemia

HDL CC �0.2041 0.098 0.037*

HDL_QT QT �0.02704 0.020 0.178

TCHL CC 0.2272 0.151 0.133

TG CC �0.05246 0.129 0.684

LDL CC 0.2654 0.179 0.139

Metabolic syndrome MS_cc CC �0.1092 0.106 0.303

Tumor – – – – –

Respiratory disease AS1_BrDs CC �0.2258 0.122 0.065

Joint disease
AS1_DgnArth CC 0.1001 0.151 0.507

AS1_RhmArth CC �0.2885 0.189 0.127

Insomnia AS1_Insm CC �0.143 0.126 0.255

Clinical test
(blood and urea)

AS1_BCTRIA CC 0.3731 0.233 0.109

AS1_CRYSTAL1 CC �0.09184 0.140 0.513

AS1_CRYSTAL2 CC �0.1044 0.168 0.535

AS1_CRYSTAL3 CC �1.4017 0.633 0.027*

AS1_CRYSTAL4 CC 0.1265 0.252 0.616

AS1_CRYSTAL5 CC �0.5284 0.736 0.470

AS1_U_OTHR QT 0.002803 0.006 0.632

AS1_VB12 QT 30.2 92.440 0.744

AS1_FOLATE QT 1.622 2.363 0.494

AS1_VDRL CC 15.76 2,982.630 0.996

AS1_FREET4 QT 0.04362 0.056 0.436

AS1_TSH QT 0.2098 0.254 0.409

AS1_CD QT 0.5005 0.434 0.252

AS1_PB QT 0.4125 0.618 0.506

AS1_AL QT �0.2763 0.244 0.261

Body metrics
HEIGHT QT �0.2409 0.435 0.580

WEIGHT QT �0.2539 0.506 0.616

Lung function test

AS1_SP1_3 QT 0.3502 0.756 0.643

AS1_SP2_3 QT 0.1732 0.906 0.848

AS1_SP3_1 QT �0.08605 0.092 0.351

Electrocardiogram AS1_EKG CC 0.1157 0.115 0.314

Chest X-ray AS1_CH0 CC �0.07924 0.105 0.449

Gender SEX QT �0.000376 0.024 0.988

Age AGE QT 0.4554 0.440 0.301

Wearing glasses AS1_Glasses CC �0.033432 0.098 0.733

Hearing aid AS1_Acst CC �0.4761 0.396 0.229

Been in accidents AS1_AccFq QT 0.04335 0.101 0.668

Tooth problem AS1_Tooth QT �0.06614 0.038 0.084

(Continued)

Table 3. Continued

Disease Criteria Trait Type Beta SE p Value

Medical history

AS1_PdHn CC �0.4883 0.521 0.348

AS1_PdUt CC �0.6173 0.469 0.188

AS1_PdGt CC �0.2853 0.169 0.091

Current medical
diagnosis and
treatment

AS1_PdIm CC �0.3394 0.518 0.512

AS1_TrtAr CC �0.1249 0.256 0.626

AS1_TrtGt CC 15 3,563.75 0.997

A p value of each trait has been rounded off the numbers to the nearest thousandth.
*p < 0.05. QT, quantitative trait; CC, case control.
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with no upregulation of nearby genes.15We next investigated whether
extragenic integration into CNVR7 and CNVR22 in K562 cells would
lead to a stable and reliable expression with no neighboring gene
perturbation beyond 300 kb up- and downstream of the target locus.
We analyzed 9 genes for AAVS1 found within 300 kb upstream and
downstream of the integration site by quantitative real-time PCR.
5 out of 9 genes in AAVS1-targeted cells demonstrated a significant
downregulation, while PPPIR12C at the targeted integration point ex-
hibited the steepest downregulation (Figure 4A).

In order to satisfy the criteria for safe harbor (Figure S4A), CNVR7
and CNVR22 were found to not contain any nearest gene within
300 kb up- and downstream of the integration site. For example, as
to CNVR7 and CNVR22, the nearest genes to the target locus are
GBE1 and ZFAT, respectively, whose distances from the target locus
are 1.05 Mb and 426 kb (Figure S4B). After integrating a CAG-pro-
moter-driven EGFP cassette into CNVR7, we observed upregulation
of CADM2 and substantial downregulation of ROBO1 (Figure 4B).
When we additionally analyzed 6 single-cell-derived clones with
molecularly confirmed targeted integration in this locus, we could ac-
quire similar outcome (data not shown). This demonstrates that tran-
scriptional upregulation of the locus is independent of the extent of
EGFP expression, as mentioned earlier. Performing the same analysis
on single-cell-derived clones with molecularly confirmed targeted
integration in CNVR22 resulted in no significant neighbor gene dys-
regulation (Figure 4C). Therefore, a potency in stable and robust
transgene expression followed by specific target integration in our
safe-harbor candidates of CNVR7 and CNVR22 would be compara-
ble to AAVS1.

To extend the generality of these findings, we assayed the impact of
equivalent CAG-promoter-driven EGFP cassette integration on the
three target loci in a different cell line, Huh 7.5 (Figure 4D). We
observed significant perturbation in 4 out of 9 genes in AAVS1-
targeted cells and 1 out of 5 genes in CNVR7-targeted cells. In
CNVR22-targeted cells, single-cell-derived clones were not perturbed
as much as in other loci, but we observed 13.5-fold downregulation of
the flanking gene, TG. Again, even though we could observe one sig-
nificant perturbation in both CNVR7 and CNVR22, it did not invoke
the perturbations as much as seen in AAVS1, and this further sup-
ports that our GSH candidates are comparable to AAVS1.
Molecular Therapy: Oncolytics Vol. 14 September 2019 257
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Table 4. Disease-Association Results of CNVR22 at Chromosome 8

Disease Criteria Trait Type Beta SE p Value

Diabetes glu0 CC �0.08322 0.185 0.653

Hypertension HTN CC 0.01781 0.097 0.854

Osteoporosis
AS1_DT_cc CC �0.01528 0.169 0.928

AS1_MT_cc CC 0.06409 0.118 0.587

Obesity bmi QT 0.08126 0.129 0.529

Dyslipidemia

hdl CC �0.1087 0.081 0.178

tchl CC �0.03003 0.134 0.823

tg CC �0.02894 0.103 0.779

ldl CC 0.1186 0.148 0.423

Metabolic syndrome MS_cc CC 0.08018 0.085 0.348

Tumor – – – – –

Respiratory disease AS1_BrDs CC 0.06889 0.108 0.525

Joint disease
AS1_DgnArth CC �0.04364 0.119 0.714

AS1_RhmArth CC �0.02562 0.173 0.882

Insomnia AS1_Insm CC �0.09224 0.106 0.384

Clinical test
(blood and urea)

AS1_BCTRIA CC �0.2135 0.155 0.168

AS1_CRYSTAL1 CC �0.05077 0.118 0.667

AS1_CRYSTAL2 CC �0.1755 0.138 0.202

AS1_CRYSTAL3 CC 0.387 1.061 0.715

AS1_CRYSTAL4 CC 0.1952 0.211 0.354

AS1_CRYSTAL5 CC 0.7935 1.042 0.446

AS1_U_OTHR QT 0.002045 0.005 0.673

AS1_VB12 QT 67.04 71.98 0.353

AS1_FOLATE QT 1.43 1.844 0.439

AS1_VDRL CC 15.84 2,242 0.994

AS1_FREET4 QT �0.01144 0.044 0.794

AS1_TSH QT �0.1704 0.198 0.390

AS1_CD QT �0.1904 0.334 0.569

AS1_PB QT 0.2346 0.473 0.621

AS1_AL QT �0.01982 0.188 0.916

Body metrics
height QT �0.02356 0.359 0.948

weight QT 0.142 0.418 0.734

Lung function test

AS1_SP1_3 QT 0.5637 0.626 0.368

AS1_SP2_3 QT 0.04428 0.75 0.953

AS1_SP3_1 QT 0.07714 0.076 0.313

Electrocardiogram AS1_EKG CC 0.04547 0.097 0.639

Chest X-ray AS1_CH0 CC 0.12262 0.089 0.170

Gender sex QT 0.002885 0.02 0.886

Age age QT �0.2904 0.364 0.425

Wearing glasses AS1_Glasses CC �0.03577 0.081 0.658

Hearing aid AS1_Acst CC 0.07041 0.411 0.864

Been in accidents AS1_AccFq QT �0.08382 0.082 0.305

Tooth problem AS1_Tooth QT 0.01922 0.032 0.542

(Continued)

Table 4. Continued

Disease Criteria Trait Type Beta SE p Value

Medical history

AS1_PdHn CC �0.2133 0.497 0.668

AS1_PdUt CC �0.8534 0.401 0.033*

AS1_PdGt CC 0.2599 0.168 0.123

AS1_PdIm CC 0.5432 0.609 0.372

Current medical
diagnosis and
treatment

AS1_TrtAr CC 0.1166 0.229 0.610

AS1_TrtGt CC 15.12 2,783 0.996

A p value of each trait has been rounded off the numbers to the nearest thousandth.
*p < 0.05. QT, quantitative trait; CC, case control.
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A Stronger Expression Promoter Did Not Affect the Perturbation

To test whether these findings were not promoter dependent, we
designed an EGFP cassette with a stronger promoter, SFFV. Again,
site-specific integration PCR analysis was performed on single-cell-
derived clones in K562 cells (Figure S5B). Out of the EGFP+ sorted
clones, 29/45 for AAVS1, 9/23 for CNVR7, and 39/80 for CNVR22
were EGFP+-targeted integrations representing 64.4%, 39.1%, and
48.8% (Figure 5A), respectively, as analyzed by flow cytometry. While
the type of promoter did not affect target integration efficiency, MFI
was higher in the SFFV promoter group than in the CAG promoter
group (Figure S5A). The MFI of EGFP+ cells showed significance be-
tween AAVS1 and CNVR7 sites (p = 0.0079) and between CNVR7
and CNVR22 sites (p = 0.0464).

Similar to the results shown in CAG-promoter-driven integration,
AAVS1-targeted cells exhibited three significant gene perturbations
(Figure 5B), whereas neither CNVR7 nor CNVR22 demonstrated sig-
nificant gene dysregulation, except for the CNVR22 group’s flanking
gene, TG, which showed a similar degree of downregulation (13.1-
fold). Therefore, changing the promoter type did not induce any
detectable trend in neighboring gene perturbation in the three groups.
DISCUSSION
The integration of transgene into human chromosomes should be
very careful, because it may cause unpredictable adverse effects, de-
pending on the integration site. Hence, it is very important to check
whether the integration leads to not only unpredictable effects on the
cell but also undesirable outcomes for the human phenotype. Here, in
order to find the GSH candidate region, we used real-world data based
on already known CNVRs and concurrent disease statuses from
cohort participants. Then, we performed the experimental analysis
on transgene insertion into GSH candidates and validated their suit-
ability by comparison to AAVS1.

We first proceeded with genomic approaches to find appropriate safe-
harbor candidates, especially from the Korean population, as
described in Figure S1A.10,15 Depending on target cell type, transgene,
or disease type, safe harbors may be sub-categorized into specific
types, yet we aimed to identify universal GSHs for the general Korean
population. Throughout the disease-association analysis in 4,694



Figure 2. Site-Specific Integration and Transgene

Expression of EGFP in AAVS1, Chromosome 3, and

Chromosome 8 of K562 Cells

(A) Schematic illustrating the GSH candidate sites. Chro-

mosome 8 is >450 kbp from the 30 end of the ST3GAL1

gene (gene nearby) and >400 kbp from the 50 end of the

ZFAT gene. On the other hand, chromosome 3 is >300 kbp

from the 30 end of BC031255 (a Homo sapiens cDNA

clone), >1 Mbp from the 30 end of GBE1, and >1.8 Mbp

from the 50 end of BC068246 (a Homo sapiens cDNA

clone) and LINC00971 (long intergenic non-protein coding

RNA 971). (B) The structure of the targeting construct

(donor EGFP) contains the expression cassette (green box)

flanked by the homology sequences (black boxes) to

AAVS1, chromosome 3, and chromosome 8. BGHpA,

poly(A) site from the bovine growth hormone gene.
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Korean adults aged 40 to 69, we could select two safe-harbor candi-
dates of CNVR7 and CNVR22. Since this in silico analysis pre-
confirmed that extragenic insertion into two selected regions barely
influenced copy number change, we experimentally inserted the
EGFP donor cassette by TALEN pairs into AAVS1, CNVR7, and
CNVR22 to observe whether site-specific extragenic expression
would incur any significant endogenous gene perturbation.

Our in vitro data demonstrate that both CNVR7 and CNVR22 are
comparable to AAVS1. Especially, CNVR22 can be more feasibly
utilized as a new GSH in human cells, in that neighboring gene
expression beyond at least 426 kb on either side of the insertion site
was not significantly expressed as maintaining adequate EGFP inten-
sity. CNVR7 was enough to be categorized into GSH, yet less
neighboring gene perturbation unwaveringly supports CNVR22 as
a more suitable GSH candidate. After transfecting the EGFP donor
cassette into CNVR7 and CNVR22 target loci, integrated clones
Molecular Th
were thoroughly analyzed to observe the
neighbor gene expressions. Since CNVR7 and
CNVR22 were chosen by safe-harbor criteria of
excluding the genomic region within 300 kb of
any miRNA and 500 kb of oncogenes, there
was no genome within this range, unlike
AAVS1, adjacent to the immediate vicinity
within 100 kb. While the most common inser-
tional oncogenesis comes from transactivation
of neighboring oncogenes,16 transgene insertion
at CNVR7 and CNVR22 will not suffer from
undesirable transcription caused by unwanted
normal gene dysregulation, which tends to
occur up to a distance of�275 kb from the vector
insertion site.17 Although AAVS1 is known
to resist neighboring gene perturbation due
to the presence of chromatin insulator prevent-
ing enhancer-stimulated gene expression,18 the
AAVS1 locus was still exposed to uncontrolled
gene dysregulation, as shown in our data. This
further supports the suitability of CNVR7 and CNVR22 as compara-
ble safe-harbor candidates to AAVS1.

When it comes to a broader application in clinical therapeutics,
CNVR22 is well suited to the definition of universal GSH, owing to
its appropriate expression independent of cell type and promoter.
However, a reason for conspicuous TG downregulation upon altering
the cell line and promoter is not clearly assumed, albeit TG-adjacent
genes were not significantly perturbed. In domain-wide regulation
spanning megabases, the activation or silencing of genes can be often
accompanied by changing histone code or DNAmethylation that can
spread over considerable genomic distances, and this can disturb
chromatin condensation.13 Since TALEN binds to 5-methylated cyto-
sine in its endogenous cognate target,19 this could influence epigenetic
modification, which may disturb endogenous TG expression. This
phenomenon may also raise safety issues with regard to target locus
containing transgene integration. In this sense, the CRISPR-Cas9
erapy: Oncolytics Vol. 14 September 2019 259
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Figure 3. Site-Specific Integration and Transgene Expression of EGFP

Cassette Driven by CAG Promoter

(A) Target integration percentage from EGFP+ sorted clones in each target locus in

K562 cells. (B) Scattered dot plot representing MFI from site-specific integration

PCR confirmed single clones from K562-targeted cells after 3 weeks of transfecting

EGFP+ donor cassette and TALEN constructs (p = 0.0256, one-way ANOVA with

Bonferroni’s multiple comparison post-test). Graph indicates themean ±SD. (C) For

Huh 7.5 cells, target integration percentage from EGFP+ sorted clones in each

target locus and scattered dot plot representing MFI from site-specific integration

PCR confirmed single clones from each target site after 3 weeks of transfecting

EGFP+ donor cassette and TALEN constructs. (p = 0.0032; *p = 0.0092, one-way

ANOVA with Bonferroni’s multiple comparison post-test). Graphs indicate the

mean ± SEM.
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system can be adapted to improve targeting efficiency and safety, and
optimal design of the transgene cassette would be another alternative
strategy to diminish endogenous transcription around the insertion
site.

Throughout our GSH screening strategy, combining both genomic
data with disease association in a general Korean population and
experimental analysis on transgene insertion, we could discover the
new GSH candidate of CNVR22 in the human genome and charac-
terize putative universal GSHs preventing genotoxicity and achieving
stable extragenic insertion near endogenous neighboring genes,
which was less significantly disrupted than those of AAVS1. While
such a rapid advance in genome editing field challenges us to
260 Molecular Therapy: Oncolytics Vol. 14 September 2019
constantly focus on seeking novel techniques for effective clinical
studies, our findings on new GSHs specialized to Korean populations
will broaden the horizon to search for prospective therapeutics by sus-
tainable gene transfer.

MATERIALS AND METHODS
Samples and CNVRs

We first used the 3,601 CNVRs from the previous Korean CNV
study using 4,694 individuals.20 These were part of 8,842 Korea As-
sociation Resource (KARE) Project genome-wide association study
(GWAS) subjects who satisfied quality control criteria, including
exclusion of any kind of cancer samples (n = 101) from 10,038 sub-
jects (Figure S1A).21 Table 5 shows a summary of the 4,694 partici-
pants’ characteristics. Moreover, the Supplemental Materials and
Methods show CNV detection methods such as characteristics of
genotyping array and CNV detection tools or parameters in detail.
All procedures were in accordance with the ethical standards of
the responsible committee on human experimentation (approved
IRB number of Korea Centers for Disease Control and Prevention
in Korea: 2016-02-20-T-A). Informed written consent was obtained
from all participants.

Many of the copy number duplications are tandem, and this means
that duplicated regions are located very near to each other. However,
a significant number of copy number duplications are located far
from the original locus in humans.22 Moreover, these dispersed dupli-
cations appear randomly distributed among the genome.23,24 A cur-
rent CNV detection approach that we chose enabled us to discover
copy number duplication but cannot determine the location of dupli-
cation. In this region of the initial set of CNVRs, we excluded copy
number duplication regions.

CNVR Selection Criteria for GSH Candidate Regions

We postulated that a certain genome region could be a GSH candidate
as long as deletion of a corresponding region does not lead to any
abnormal health problems, including neoplasm. As some adverse
phenotypes of genetic difference can be observed as the individuals
become old, we analyzed the genome sequences from 4,964 of men
and women who do not have a history of cancer. To fulfill the safety
issue, we set the criteria for safe-harbor candidates to be more strin-
gent than previously proposed10 (Figure S1A). Then, we mainly
considered well-genotyped common CNVRs (>5% frequency rate)
to be 2- or 3-class CNV genotypes, with the distribution of minor
CNV state ranging from 5% to 25%, because it is known that the com-
mon CNVs have a much lower effect on disease than rare CNVs.24

Moreover, disease-association analysis with well-genotyped CNVRs
is more reliable than that with poorly genotyped CNVRs. Regarding
CNV with 3 classes, we calculated minor CNV state as the sum of two
minor states. For example, if frequencies of CNV state with 3 classes
were 85%, 12%, and 3%, we calculated minor CNV state as 15%.

To investigate CNVs on a gene-poor region, we used an annotation
script of the PennCNV using refGene annotation of the NCBI Refer-
ence Sequence Database for human hg18 genome build.25 We



Figure 4. Endogenous Neighboring Gene

Expressions Near the Integration Site

(A–C) Representation of genomic region on AAVS1 (A),

CNVR7 (B), and CNVR22 (C) with their neighboring

genes. Fold changes were analyzed by quantitative real-

time PCR. EGFP+ sorted K562 cells relative to mock-

treated cells upon targeting the indicated cassettes into

AAVS1, CNVR7, and CNVR22. For all genes, n = 7–8.

Dashed line indicates the reference value in mock-treated

cells. Graphs indicate the mean ± SEM. (D) Fold changes

were analyzed by quantitative real-time PCR. EGFP+

sorted Huh 7.5 cells relative to mock-treated cells upon

targeting the indicated cassettes into AAVS1, CNVR7,

and CNVR22. For all genes, n = 6. Dashed line indicates

the reference value in mock-treated cells. Graphs indicate

the mean ± SEM.
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examined whether identified candidate CNV regions are correlated
to disease-related genetic components or not. To do this, we
selected CNVs with a neighboring distance of >300 kb from the
50 end of any genes, including cancer-related genes, and a distance
of >100 kb from any miRNA. We also selected CNVs outside of a
gene transcription unit and ultra-conserved regions. Each CNV re-
gion was assessed for the existence of protein-coding genes and also
non-coding RNA elements on the GENCODE database (human
genome build HG38).

We also examined cancer-related elements near GSH candidate
regions using the COSMIC genome browser of the COSMIC data-
Molecular The
base (http://cancer.sanger.ac.uk/cancergenome/
projects/cosmic/). Genomic locations for GSH
candidate regions based on human genome
assembly hg18 were converted to those
based on hg19 by the liftOver tool from
the UCSC genome browser. Cancer-related
elements with a neighboring distance of
>300 kb from each GSH candidate region were
investigated.

To observe potential regulatory elements in re-
gions around CNVs (±300 kb), we assessed
common DNase I hypersensitivity regions
(Broad ChromHMM, UW DNaseI DGF, and
UW DNaseI HS) and transcription factor bind-
ing sites (Yale TFBS) among multiple cell types
on the UCSC database.

Validation of Estimated CNV Genotype on

Two Candidate Regions by Experiment

Estimated CNV genotypes had three copy-
number classes, composed of homozygous
deletion (0 copies), heterozygous deletion
(1 copy), and normal copy (2 copies) (Fig-
ure 1B). To validate whether the estimated
CNV genotype is true or not, we carried out quantitative real-
time PCR using the TaqMan Copy Number Assay (Life Technolo-
gies, Foster City, CA, USA) according to the manufacturer’s
protocols. Two pre-designed TaqMan probes, Hs03453765_cn and
Hs_06238257_cn, were used to validate the genotype of the two
CNVs at chromosomes 3 and 8, respectively. All experiments
were replicated three times to increase the validation accuracy.
Moreover, validation samples were randomly selected from each
CNV region, and genotypes of the reference DNA (NA10851)
were observed together. CopyCaller v.2.0 (Life Technologies, Foster
City, CA, USA) was used to analyze data generated by the TaqMan
Copy Number Assay.
rapy: Oncolytics Vol. 14 September 2019 261
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Figure 5. Site-Specific Integration and Transgene Expression of EGFP

Cassette Driven by SFFV Promoter in K562 Cells

(A) Target integration percentage from EGFP+ sorted clones in each target locus in

K562 cells and scattered dot plot representing MFI from site-specific integration

PCR confirmed single clones from each target site after 3 weeks of transfecting

EGFP donor cassette and TALEN constructs (p = 0.0079; *p = 0.0464, one-way

ANOVA with Bonferroni’s multiple comparison post-test). Graph indicates the

mean ± SD. (B) Fold changes were analyzed by quantitative real-time PCR. EGFP+

sorted K562 cells relative to mock-treated cells upon targeting the indicated cas-

settes into AAVS1, CNVR7, and CNVR22. For all genes, n = 5–8. Dashed line in-

dicates the reference value in mock-treated cells. Graphs indicate the mean ± SEM.

Table 5. Basic Characteristics of Samples Used in This Study

Traits KARE CNV Study Total (N = 4,694)

Age (years) 54.0 ± 9.04

Male 2,210 (47.08%)

Female 2,484 (52.92%)

Height (cm) 159.5 ± 8.92

BMI (kg/m2) 24.7 ± 3.20

SBP (mmHg) 121.3 ± 19.31

DBP (mmHg) 77.2 ± 11.91

Pulse rate (BPM) 64.2 ± 7.98

WHR 0.89 ± 0.07

ALT (IU/L) 28.9 ± 32.94

AST (IU/L) 30.2 ± 20.09

GGT (IU/L) 37.0 ± 63.69

FPG (mg/dL) 82.6 ± 8.34

ALB (g/dL) 4.26 ± 0.33

BUN (mg/dL) 14.5 ± 3.86

HDL-C (mg/dL) 44.7 ± 10.09

LDL-C (mg/dL) 116.5 ± 33.03

TG (mg/dL) 165.9 ± 106.01

Continuous variables were log transformed before analysis if not normally distributed.
Mean ± SD. BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood
pressure; WHR, waist-hip ratio; ALT, alanine aminotransferase, AST, asperate amino-
transferase; GGT, gamma glutamyl transferase; FPG, fasting plasma glucose; ALB, albu-
min; BUN, blood urea nitrogen; HDL-C, high-density lipoprotein cholesterol; LDL-C,
low-density lipoprotein cholesterol; TG, triglyceride.
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Statistical Analysis of Disease/Trait Association Using

Epidemiology Data

Subsequently, statistical analyses were conducted to find a correlation
between candidate CNV regions and diseases or traits. Using the
epidemiological information of 4,694 individuals, we grouped
datasets for each trait. In total, 23 diseases and traits, including
T2D, hypertension, and obesity, were considered as well (Table 6).
We did not conduct an association study for cancer, because 101
cancer patients and/or individuals with a medical history of cancer
were already excluded. Logistic or linear regression analysis adjusting
262 Molecular Therapy: Oncolytics Vol. 14 September 2019
for gender and age as covariates was used to calculate statistical
significance.

Cell Culture and Electroporation

The human myelogenous leukemia cell line (K562) was purchased
from American Type Culture Collection (ATCC) and the human
heptacellular carcinoma cell line (Huh 7.5) was purchased from
Korean Cell Line Bank (KCLB). K-562 cells were cultured in RPMI
(GIBCO) and Huh 7.5 cells were cultured in DMEM-high glucose
(GIBCO). All media were supplemented with 10% fetal bovine serum
(FBS), penicillin (100 U/mL), and streptomycin (100 mg/mL). 1.5 �
106 K-562 cells and 4 � 105 Huh 7.5 cells were electroporated
(Neon Transfection System, Invitrogen), with a 1:1:4 ratio of left
TALEN:right TALEN:EGFP donor DNA (total, 6 mg).

Flow Cytometry

Suspension cells were collected while adherent cells were trypsinized
and resuspended in PBS. Single-cell suspensions were analyzed and
sorted using the FACSAria II (BD Biosciences).

Sorting Strong EGFP+ Cells Containing TALEN-Induced Knockin

Untransfected cells were used as controls. Sorted cells were then used
to obtain single-cell-derived clones by limiting dilution (0.25 cells per
well of a 96-well plate). After 2 weeks, wells with cell populations from



Table 6. Disease Criteria for Finding No Disease Correlation Region

Disease Criteria Trait Type Case Control

T2D glu0 CC %126 <110

Hypertension HTN CC SBP R 140 and DBP R 90 90 % SBP < 120, 60 % DBP < 80

Osteoporosis
AS1_DT_cc CC T value % �2.5 T value R �1.0

AS1_MT_cc CC T value % �2.5 T value R �1.0

Obesity bmi QT – –

Dyslipidemia

hdl CC <40 %60

tchl CC %240 <200

tg CC %200 (except for more than 400) <150

ldl CC %160 <100

Metabolic syndrome MS_cc CC

anyone with the presence of three or more following components:
1. central or abdominal obesity (measured by waist circumference) men: R102 cm;
women: R88 cm (Asian: men: R90 cm; women: R80 cm)
2. fasting blood triglycerides R150 mg/dL
3. blood HDL cholesterol: men: <40 mg/dL; women: < 50 mg/dL
4. blood pressure R130/85 mmHg
5. fasting glucose R100 mg/dL

Respiratory diseases AS1_BrDs CC history of diagnosis for respiratory diseases no

Arthritis
AS1_DgnArth CC history of diagnosis for degenerative arthritis no

AS1_RhmArth CC history of diagnosis for rheumatoid arthritis no

Insomnia AS1_Insm CC insomnia no

Clinical test (blood and urea)

AS1_BCTRIA CC some bacteria was found not found

AS1_CRYSTAL1 CC urine (16)-crystals were found not found

AS1_CRYSTAL2 CC urine (16)-crystals: Ca.oxalate was found not found

AS1_CRYSTAL3 CC urine (16)-crystals: triple phosphate was found not found

AS1_CRYSTAL4 CC urine (16)-crystals: uric acid was found not found

AS1_CRYSTAL5 CC urine (16)-crystals: Ca.phosphate was found not found

AS1_U_OTHR QT – –

AS1_VB12 QT – –

AS1_FOLATE QT – –

AS1_VDRL CC venereal disease research laboratories test reactive (1:1) not reactive

AS1_FREET4 QT – –

AS1_TSH QT – –

AS1_CD QT – –

AS1_PB QT – –

AS1_AL QT – –

Body metrics
height QT – –

weight QT – –

Lung function test

AS1_SP1_3 QT – –

AS1_SP2_3 QT – –

AS1_SP3_1 QT – –

Electrocardiogram AS1_EKG CC EKG overall judgment: abnormal normal

Chest X-ray AS1_CH0 CC chest X-ray overall opinion: abnormal normal

Gender sex QT – –

Age age QT – –

Glasses AS1_Glasses CC wearing glasses no

Hearing aid AS1_Acst CC wearing hearing aid no

(Continued on next page)
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Table 6. Continued

Disease Criteria Trait Type Case Control

Been in accidents AS1_AccFq QT – –

Tooth problem AS1_Tooth QT – –

Medical history

AS1_PdHn CC been diagnosed with head injury: yes no

AS1_PdUt CC been diagnosed with urinary tract infection: yes no

AS1_PdGt CC been diagnosed with gout: yes no

AS1_PdIm CC been diagnosed with erectile dysfunction: yes no

Current medical diagnosis and treatment
AS1_TrtAr CC arthritis (degenerative, rheumatoid): yes no

AS1_TrtGt CC gout: yes no

Complex diseases and complex disease-related traits were analyzed. Association study for cancer was not conducted because cancer patients were already excluded in the previous
KARE GWAS. QT, quantitative trait; CC, case control; AS1_DT, distal radius T; AS1_MT, midshaft tibia T; AS1_DgnArth, degenerative arthritis; AS1_RhmArth, rheumatoid
arthritis; AS1_BCTRIA, Urine_Bacteria; AS1_CRYSTAL1, Urine_Crystals; AS1_CRYSTAL2, Urine_Crystals_Ca.oxalate; AS1_CRYSTAL3, Urine_Crystals_Triple phosphate;
AS1_CRYSTAL4, Urine_Crystals_Uric Acid; AS1_CRYSTAL5, Urine_Crystals_Ca.phosphate; AS1_U_OTHR, Urine_Others (found, not found); AS1_VB12, Vitamin B-12;
AS1_FOLATE, folate; AS1_VDRL, venereal disease research laboratory test; AS1_FREET4, free T (thyroxine) 4; AS1_TSH, thyroid stimulation hormone; AS1_CD, cadmium;
AS1_PB, plumbum; AS1_AL, aluminum; AS1_SP1, spirometry; AS1_CH0, chest X-ray (normal, abnormal); AS1_AccFq, frequency of accident; AS1_PdHn, diagnosis experience
of external head injury; AS1_PdUt, positive diagnosis experience of urinary tract infection; AS1_PdGt, positive diagnosis experience of gout; AS1_PdIm, positive diagnosis experience
of erectile dysfunction; AS1_TrtAr, treatment of arthritis; AS1_TrtGt, treatment of gout.
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a single clone (round colony) were selected and expanded to perform
flow cytometry using the BD FACSCanto system (MFI) and molecu-
lar analysis.

Clonal Analysis of Single Cells and Colonies

Before and after cell sorting, single cells were isolated using a mouth
pipette under a microscope and transferred to PCR tubes. To obtain
clonal populations of cells, sorted and unsorted cells were plated at a
density of 1,000 cells per 100-mm plate, and colonies were manually
picked after 2 weeks. For site-specific PCR analysis, the same donor-
specific primer was used commonly among cells with locus-specific
primer (AAVS1, CNVR7, and CNVR22). Then, PCR amplicons
were cast on agarose gel and visualized by ethidium bromide staining.

Gene Expression Analysis

For gene expression analysis, total RNA was extracted from 1 � 106

cells using the TRIzol-chloroform method and reverse-transcribed
with random primers according to the RT-&GOMastermix (MP Bio-
medicals Asia Pacific, RTRAG100) manufacturer’s protocol. We
analyzed 200 ng cDNA from K562 or Huh 7.5 cells, respectively, in
triplicate with TOPreal qRT-PCR 2X PreMIX (Enzynomics,
RT500M) in a CFX96 real-time PCR detection system (Bio-Rad,
C1000 real-time PCR thermal cycler). The relative expression level
of each gene was B2M and YWHAZ expression (housekeeping
gene controls) and represented as fold change relative to the mock-
treated samples (calibrator).

SUPPLEMENTAL INFORMATION
Supplemental Information can be found online at https://doi.org/10.
1016/j.omto.2019.07.001.

AUTHOR CONTRIBUTIONS
S.M., S.K., H.H.K., and B.-J.K. conceived and designed this study.
Y.K.K., M.Y.H., and Y.J.K. conducted genome and epidemiological
264 Molecular Therapy: Oncolytics Vol. 14 September 2019
data analysis. E.-S.L. and K.D.A.-B. performed experiments. E.-S.L.,
S.M., H.H.K., and B.-J.K. wrote the manuscript. E-.S.L., S.M., S.K.,
N.S.H., H.H.K., and B.-J.K. revised the manuscript.

CONFLICTS OF INTEREST
The authors declare no competing interests.

ACKNOWLEDGMENTS
This work was supported by an intramural grant from the Korea Na-
tional Institute of Health (2016-NI73001-00), the Institute of Basic
Science (IBS-R026-D1), a National Research Foundation of Korea
(NRF) grant funded by the Korean Government (MSIT) (NRF-
2018R1A5A2025079), and the Ministry of Education of the Republic
of Korea (0668-20180123). The data used in this study were provided
by the Korean Genome Analysis Project (4845-301), Korean Genome
and Epidemiology Study (4851-302), and Korea Biobank Project
(4851-307), which were supported by the Korea Centers for Disease
Control and Prevention, Republic of Korea.

REFERENCES
1. Cideciyan, A.V., Hauswirth, W.W., Aleman, T.S., Kaushal, S., Schwartz, S.B., Boye,

S.L., Windsor, E.A., Conlon, T.J., Sumaroka, A., Pang, J.J., et al. (2009). Human
RPE65 gene therapy for Leber congenital amaurosis: persistence of early visual im-
provements and safety at 1 year. Hum. Gene Ther. 20, 999–1004.

2. Aiuti, A., Cassani, B., Andolfi, G., Mirolo, M., Biasco, L., Recchia, A., Urbinati, F.,
Valacca, C., Scaramuzza, S., Aker, M., et al. (2007). Multilineage hematopoietic recon-
stitution without clonal selection in ADA-SCID patients treated with stem cell gene
therapy. J. Clin. Invest. 117, 2233–2240.

3. LeWitt, P., Schultz, L., Auinger, P., and Lu, M.; Parkinson Study Group DATATOP
Investigators (2011). CSF xanthine, homovanillic acid, and their ratio as biomarkers
of Parkinson’s disease. Brain Res. 1408, 88–97.

4. Wu, X., Li, Y., Crise, B., and Burgess, S.M. (2003). Transcription start regions in the
human genome are favored targets for MLV integration. Science 300, 1749–1751.

5. Mitchell, R.S., Beitzel, B.F., Schroder, A.R., Shinn, P., Chen, H., Berry, C.C., Ecker,
J.R., and Bushman, F.D. (2004). Retroviral DNA integration: ASLV, HIV, and
MLV show distinct target site preferences. PLoS Biol. 2, E234.

https://doi.org/10.1016/j.omto.2019.07.001
https://doi.org/10.1016/j.omto.2019.07.001
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref1
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref1
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref1
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref1
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref2
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref2
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref2
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref2
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref3
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref3
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref3
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref4
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref4
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref5
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref5
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref5


www.moleculartherapy.org
6. Schröder, A.R., Shinn, P., Chen, H., Berry, C., Ecker, J.R., and Bushman, F. (2002).
HIV-1 integration in the human genome favors active genes and local hotspots.
Cell 110, 521–529.

7. Hacein-Bey-Abina, S., Von Kalle, C., Schmidt, M., McCormack, M.P., Wulffraat, N.,
Leboulch, P., Lim, A., Osborne, C.S., Pawliuk, R., Morillon, E., et al. (2003). LMO2-
associated clonal T cell proliferation in two patients after gene therapy for SCID-X1.
Science 302, 415–419.

8. Woods, N.B., Bottero, V., Schmidt, M., von Kalle, C., and Verma, I.M. (2006). Gene
therapy: therapeutic gene causing lymphoma. Nature 440, 1123.

9. Kim, H., and Kim, J.S. (2014). A guide to genome engineering with programmable
nucleases. Nat. Rev. Genet. 15, 321–334.

10. Sadelain, M., Papapetrou, E.P., and Bushman, F.D. (2011). Safe harbours for the inte-
gration of new DNA in the human genome. Nat. Rev. Cancer 12, 51–58.

11. Smith, J.R., Maguire, S., Davis, L.A., Alexander, M., Yang, F., Chandran, S., ffrench-
Constant, C., and Pedersen, R.A. (2008). Robust, persistent transgene expression in
human embryonic stem cells is achieved with AAVS1-targeted integration. Stem
Cells 26, 496–504.

12. Ramachandra, C.J., Shahbazi,M., Kwang, T.W., Choudhury, Y., Bak, X.Y., Yang, J., and
Wang, S. (2011). Efficient recombinase-mediated cassette exchange at theAAVS1 locus
in human embryonic stem cells using baculoviral vectors. Nucleic Acids Res. 39, e107.

13. Gierman, H.J., Indemans, M.H., Koster, J., Goetze, S., Seppen, J., Geerts, D., van Driel,
R., and Versteeg, R. (2007). Domain-wide regulation of gene expression in the human
genome. Genome Res. 17, 1286–1295.

14. Freeman, J.L., Perry, G.H., Feuk, L., Redon, R., McCarroll, S.A., Altshuler, D.M.,
Aburatani, H., Jones, K.W., Tyler-Smith, C., Hurles, M.E., et al. (2006). Copy number
variation: new insights in genome diversity. Genome Res. 16, 949–961.

15. Lombardo, A., Cesana, D., Genovese, P., Di Stefano, B., Provasi, E., Colombo, D.F.,
Neri, M., Magnani, Z., Cantore, A., Lo Riso, P., et al. (2011). Site-specific integration
and tailoring of cassette design for sustainable gene transfer. Nat.Methods 8, 861–869.

16. Kustikova, O., Fehse, B., Modlich, U., Yang, M., Düllmann, J., Kamino, K., von
Neuhoff, N., Schlegelberger, B., Li, Z., and Baum, C. (2005). Clonal dominance of he-
matopoietic stem cells triggered by retroviral gene marking. Science 308, 1171–1174.
17. Papapetrou, E.P., Lee, G., Malani, N., Setty, M., Riviere, I., Tirunagari, L.M., Kadota,
K., Roth, S.L., Giardina, P., Viale, A., et al. (2011). Genomic safe harbors permit high
b-globin transgene expression in thalassemia induced pluripotent stem cells. Nat.
Biotechnol. 29, 73–78.

18. Ogata, T., Kozuka, T., and Kanda, T. (2003). Identification of an insulator in AAVS1,
a preferred region for integration of adeno-associated virus DNA. J. Virol. 77, 9000–
9007.

19. Bultmann, S., Morbitzer, R., Schmidt, C.S., Thanisch, K., Spada, F., Elsaesser, J.,
Lahaye, T., and Leonhardt, H. (2012). Targeted transcriptional activation of silent
oct4 pluripotency gene by combining designer TALEs and inhibition of epigenetic
modifiers. Nucleic Acids Res. 40, 5368–5377.

20. Moon, S., Jung, K.S., Kim, Y.J., Hwang, M.Y., Han, K., Lee, J.Y., Park, K., and Kim, B.J.
(2013). KGVDB: a population-based genomic map of CNVs tagged by SNPs in
Koreans. Bioinformatics 29, 1481–1483.

21. Cho, Y.S., Go, M.J., Kim, Y.J., Heo, J.Y., Oh, J.H., Ban, H.J., Yoon, D., Lee, M.H., Kim,
D.J., Park, M., et al. (2009). A large-scale genome-wide association study of Asian
populations uncovers genetic factors influencing eight quantitative traits. Nat.
Genet. 41, 527–534.

22. Bailey, J.A., Gu, Z., Clark, R.A., Reinert, K., Samonte, R.V., Schwartz, S., Adams, M.D.,
Myers, E.W., Li, P.W., and Eichler, E.E. (2002). Recent segmental duplications in the
human genome. Science 297, 1003–1007.

23. Schrider, D.R., andHahn, M.W. (2010). Gene copy-number polymorphism in nature.
Proc. Biol. Sci. 277, 3213–3221.

24. Conrad, D.F., Pinto, D., Redon, R., Feuk, L., Gokcumen, O., Zhang, Y., Aerts, J.,
Andrews, T.D., Barnes, C., Campbell, P., et al.; Wellcome Trust Case Control
Consortium (2010). Origins and functional impact of copy number variation in the
human genome. Nature 464, 704–712.

25. Wang, K., Li, M., Hadley, D., Liu, R., Glessner, J., Grant, S.F., Hakonarson, H., and
Bucan, M. (2007). PennCNV: an integrated hidden Markov model designed for
high-resolution copy number variation detection in whole-genome SNP genotyping
data. Genome Res. 17, 1665–1674.
Molecular Therapy: Oncolytics Vol. 14 September 2019 265

http://refhub.elsevier.com/S2372-7705(19)30067-1/sref6
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref6
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref6
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref7
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref7
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref7
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref7
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref8
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref8
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref9
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref9
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref10
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref10
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref11
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref11
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref11
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref11
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref12
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref12
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref12
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref13
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref13
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref13
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref14
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref14
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref14
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref15
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref15
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref15
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref16
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref16
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref16
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref17
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref17
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref17
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref17
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref18
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref18
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref18
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref19
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref19
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref19
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref19
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref20
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref20
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref20
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref21
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref21
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref21
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref21
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref22
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref22
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref22
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref23
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref23
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref24
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref24
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref24
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref24
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref25
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref25
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref25
http://refhub.elsevier.com/S2372-7705(19)30067-1/sref25
http://www.moleculartherapy.org

	Programmable Nuclease-Based Integration into Novel Extragenic Genomic Safe Harbor Identified from Korean Population-Based C ...
	Introduction
	Results
	Selected CNVRs for GSH Site
	Validation of Estimated CNV Genotype on Two Selected Regions by Quantitative Real-Time PCR
	Disease-Association Results of Two Candidate Regions
	EGFP Cassette Integration and Expression into AAVS1, CNVR7, and CNVR22
	Extragenic Integration into CNVR7 and CNVR22 Did Not Regulate Nearby Genes as It Did into AAVS1
	A Stronger Expression Promoter Did Not Affect the Perturbation

	Discussion
	Materials and Methods
	Samples and CNVRs
	CNVR Selection Criteria for GSH Candidate Regions
	Validation of Estimated CNV Genotype on Two Candidate Regions by Experiment
	Statistical Analysis of Disease/Trait Association Using Epidemiology Data
	Cell Culture and Electroporation
	Flow Cytometry
	Sorting Strong EGFP+ Cells Containing TALEN-Induced Knockin
	Clonal Analysis of Single Cells and Colonies
	Gene Expression Analysis

	Supplemental Information
	Author Contributions
	Acknowledgments
	References


