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Abstract

Background: Pancreatic and biliary tract cancer (PC and BTC, respectively) are difficult to diagnose because of their
clinical characteristics; however, recent studies suggest that serum microRNAs (miRNAs) might be the key to
developing more efficient diagnostic methods for these cancers.

Methods: We analysed the genome-wide expression of serum miRNAs in PC and BTC patients to identify novel
biomarker candidates using high-throughput sequencing and experimentally validated miRNAs on clinical samples.

Results: Statistical and classification analysis of the serum miRNA-expression profiles of 55 patient samples showed
distinguishable patterns between cancer patients and healthy controls; however, we were unable to distinguish the
two cancers. We found that three of the highest performing miRNAs were capable of distinguishing cancer patients
from controls, with an accuracy of 92.7%. Additionally, dysregulation of these three cancer-specific miRNAs was
demonstrated in an independent sample group by quantitative reverse transcription polymerase chain reaction.

Conclusions: These results suggested three candidate serum miRNAs (mir-744-5p, mir-409-3p, and mir-128-3p) as
potential biomarkers for PC and BTC diagnosis.
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Background
Pancreatic and biliary tract cancer (PC and BTC) are as-
sociated with high mortality rates, with reported survival
rates for PC barely exceeding 17% in the United States
[1] while those for cholangiocarcinoma patients at ad-
vanced unresectable stage and with gallbladder cancer
are < 5% [2] and < 13% [3], respectively. The high fatality
rate has triggered extensive research on these cancers;
however, there has not been remarkable progress in PC
and BTC diagnosis. Diagnosis of these cancers is com-
plex due to the lack of symptoms and/or the difficulty of

performing direct and invasive methods because of the
anatomical positions of the pancreas and biliary tract.
Additionally, widely used non-invasive diagnostic
methods, including imaging technologies (computed
tomography, magnetic resonance imaging, and endo-
scopic ultrasound) and biomarkers [serum carbohydrate
antigen (i.e., CA 19–9)], are limited by their low sensitiv-
ity or specificity [4–7]. Therefore, developing better
diagnostic markers for PC and BTC represents an im-
portant clinical issue.
To overcome limitations associated with current diag-

nostic methods, studies have focused on the develop-
ment of reliable biomarkers [8–11], including noncoding
RNAs, such as microRNA (miRNA), which are typically
22 nucleotides long and capable of binding to specific
recognition sites on mRNAs. By silencing or reducing
the expression of ~ 60% of genes in the human genome
[12], miRNAs alter the activities of tumour suppressors
or key regulators associated with cancer [13]. Although
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the exact pathways involving many of these miRNAs are
not fully understood, miRNA dysregulation is frequently
observed in different types of cancers, resulting in exces-
sive cell proliferation, inhibition of apoptosis, and abnor-
mal cellular migration [14–18].
Some miRNAs localize within cell mass, whereas others

are found outside of a cell and in circulating blood,
thereby designating them as serum miRNAs, which are
stable and resistant to RNase attack, unlike the majority of
RNAs found within cells [19]. Additionally, serum miR-
NAs can be easily sampled using non-invasive methods,
making them promising biomarker candidates. Although
the detailed function of serum miRNAs is even
less-understood than other miRNAs, numerous studies
predict that these miRNAs represent an efficient bio-
marker for the diagnosis of cancers [20–22].
MiRNAs can be identified using next-generation se-

quencing technology. In particular, RNA sequencing en-
ables rapid and sensitive quantification of miRNA
profiles present in the human genome. Extremely low or
high expression levels can be detected using this method
relative to microarray analysis, increasing the reliability
of RNA-specific studies [23]. Therefore, cancer studies
have increasingly focused on the development of miRNA
biomarkers by employing sequencing-based quantifica-
tion [24–26].
In this study, we investigated the profiles of serum

miRNAs derived from PC and BTC patients and

compared these levels with those of healthy controls
(HCs) in order to discover candidate biomarkers for PC
and BTC classification. Sequence reads of serum miR-
NAs were generated using high-throughput sequencing,
and their expression levels were profiled by quantifying
the sequence reads. Statistical and classification analyses
were employed to profile and detect significantly dysreg-
ulated serum miRNAs between the groups, which were
finally validated in independent sample groups.

Results
Differentially expressed miRNAs between three sample
groups
After alignment of miRNA sequence data against the
human miRNA database (miRBase v21; http://www.mir-
base.org/), 677 miRNAs were detected in blood samples.
Subsequent principal component analysis (PCA) visual-
ized sample distribution in a two-dimensional scatter
plot without using information concerning the desig-
nated group of individual samples, revealing separate
clusters between the cancer and HC groups. However,
PCA analysis was unable to distinguish PC and BTC in-
dividuals (Fig. 1). Additionally, the optimal number of
clusters was estimated at two according to silhouette
scoring using two types of correlation coefficients (Add-
itional file 1: Figure S1). These data indicated that the
overall miRNA-expression pattern was distinguished ac-
cording to the presence of cancer.

Fig. 1 PCA evaluation of differential serum miRNA expression. PCA for miRNA expression in the three sample groups (677 miRNAs and 42
differentially expressed miRNAs; FDR-adjusted p≤ 0.05)
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Statistical analysis of the 677 miRNAs was performed
to identify differentially expressed miRNAs potentially
capable of distinguishing the three groups (PC, BTC,
and HC). After multiple regression analysis and adjust-
ing for clinical covariates, including age, gender, and
body mass index (BMI), 42 candidate miRNAs differen-
tially expressed in one of the three groups were identi-
fied [false discovery rate (FDR)-adjusted p ≤ 0.05]. PCA
was then performed on the reduced set of miRNAs (Fig.
1), resulting in closely distributed samples between
groups. Additionally, PCA of the 42 differentially
expressed miRNAs separated most of the cancer patients
from the HCs; however, distribution of PC and BTC
samples remained nearly identical. PCA was also per-
formed on a different subset of miRNAs (p ≤ 0.01 and
0.001). The result of PCA demonstrated that the differ-
entially expressed miRNAs were effective for distinguish-
ing cancer patients from HCs but were ineffective at
distinguishing between the two cancers (Additional file
1: Figure S2).
Visualization of the expression levels of the 42 miR-

NAs from each sample (Fig. 2) showed clearly distin-
guishable patterns between cancer and HC groups,
except for a few outliers, including two individuals of
the HC group (N01 and N02) who were diagnosed with
intrahepatic and gallbladder stones. Similar to PCA re-
sults, miRNA-expression patterns in PC and BTC pa-
tients did not show distinct patterns. Additionally,
pairwise comparisons according to the fold change in
each of the 42 miRNAs were conducted between the
three groups (Fig. 2). Although the majority of the miR-
NAs displayed similar expression levels between the PC
and BTC groups, eight miRNAs showed fold changes > 2
(Additional file 1: Figure S3 and S4).

Efficacy of differentially expressed miRNAs as potential
biomarkers
To assess the efficacy of the 42 differentially expressed
miRNAs for cancer diagnosis, we evaluated their per-
formance as potential biomarkers, and selected an opti-
mal subset of miRNAs for PC and BTC detection. The
optimal accuracy in classification of the three groups
(PC, BTC, and HC) was 76.4%. This value could not be
improved by using additional miRNAs, which resulted in
fluctuating cumulative-accuracy values (Fig. 3a). The
highest sensitivity of > 90% was observed for PC; how-
ever, this classification could only detect ≤30% of BTC
patients. The cumulative sensitivity of BTC dropped to
0% upon the addition of more miRNAs for classification,
thereby interfering with the distinct miRNA patterns
specifically associated with BTC. This signified the high
similarity between the miRNA signatures of PC and
BTC, as additional miRNAs used for analysis resulted in
higher incidences of BTC being mistaken for PC, gener-
ating false positives (Fig. 3c). The candidate biomarkers
for classification of PC and BTC, including the eight
miRNAs exhibiting fold changes > 2 (Additional file 1:
Figure S3), also failed to distinguish the two cancers dur-
ing three-group classification (Additional file 1: Table
S1). However, when classification was conducted be-
tween the cancer and HC groups, the overall perform-
ance of classification improved. The highest accuracy of
92.7% was achieved for this two-group classification. Use
of only the four miRNAs that derived the best sensitiv-
ity, 97.1% of the cancer patients were accurately detected
(Fig. 3b).
In terms of accuracy, the miRNA with the highest per-

formance in two-group classification was
hsa-mir-142-5p (89.1%), followed by hsa-mir-128-3p

Fig. 2 Serum miRNA expression in 55 samples. The leftmost three bar plots indicate the significant fold changes (> 2 fold) in miRNA expression
among the three pairwise comparisons (BP: BTC vs. PC; PN: PC vs. HC; and BN: BTC vs. HC). The directionality of the fold change was presented
by green (up) and red (down) colours
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(87.3%), hsa-mir-222-3p (85.5%), hsa-mir-6852-5p
(85.5%), and hsa-mir-744-5p (85.5%) (Additional file 1:
Table S2). Among these five miRNAs, the highest sensi-
tivity (91.2%) was achieved by hsa-mir-222-3p and
hsa-mir-6852-5p, followed by hsa-mir-142-5p (88.2%),
hsa-mir-744-5p (88.2%), and hsa-mir-128-3p (85.3%).
However, in terms of specificity, hsa-mir-142-5p and
hsa-mir-128-3p performed better (90.5%) than
hsa-mir-744-5p (81.0%), hsa-mir-222-3p (76.2%), and
hsa-mir-6852-5p (76.2%). Overall, the highest cumulative
accuracy of 92.7% was achieved when the first three of
the best performing miRNAs (hsa-mir-142-5p,
hsa-mir-128-3p, and hsa-mir-222-3p) were used for clas-
sification. The highest cumulative accuracy was main-
tained until the use of six miRNAs, which resulted in
fluctuating results up to 12 miRNAs, followed by a grad-
ual decrease in accuracy as more miRNAs were used for
classification (Fig. 3b).
Classification analysis indicated that the performance

of miRNAs as biomarkers was far more effective for

classification between the cancer and HC groups as
compared to three-group classification. The decreased
accuracy in three-group classification was due to the
lack of specificity in distinguishing between the two can-
cers (Fig. 3c). Although PC patients were predicted cor-
rectly and with high sensitivity, the majority of BTC
patients were incorrectly predicted as PC, resulting in
decreased overall accuracy and BTC sensitivity (Fig. 3c).

Functional annotation of candidate-biomarker targets
To infer the biological function of the selected miRNAs,
we investigated their potential involvement in different
biological processes. Functional annotation was per-
formed on the list of genes known to be regulated by the
42 differentially expressed miRNAs. The clustering re-
sults indicated high enrichment in biological process re-
lated to transcription-regulatory mechanisms, apoptotic
processes, and cell proliferation (Table 1). Additionally,
Kyoto Encyclopaedia of Genes and Genomes (KEGG)
analysis identified a number of pathways directly related
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Fig. 3 Classification accuracy and sensitivity. Classification accuracy and sensitivity for classifying (a) three groups (PC, BTC, and HC) and (b) two
groups (cancer and non-cancer). Green line indicates accuracy/sensitivity for each miRNA, and the red line shows cumulative accuracy/sensitivity
when each miRNA was added to the prediction model in descending order of accuracy/sensitivity. (c) Contingency table of classification results
for the highest accuracy. The proportion of samples falling into the predicted group (column) and the true group (row) is represented by colour
intensity (blue)
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to cancer. Moreover, of the 65 genes associated with
pathways related to “Pancreatic cancer”, 34 were regu-
lated by the 42 miRNAs (Table 2). These results sug-
gested that the identified miRNAs interact with genes
closely related to cancer or cancer-related biological pro-
cesses and implies that these miRNAs might represent
potential biomarkers for PC and BTC diagnosis.

Quantitative reverse transcription polymerase chain
reaction (qRT-PCR) validation of the candidate biomarkers
Validation was conducted on the miRNAs displaying
high performance (> 80% accuracy). MiRNA-expression
levels were re-examined against an independent sample
group (Additional file 1: Table S3) using qRT-PCR and a
pairwise t test between the cancer and control groups.
Results showed that two miRNAs, mir-128-3p and
mir-409-3p, were significantly dysregulated in the cancer
group as compared with the HC group (p = 2.85E− 9 and
p = 0.0405, respectively). Additionally, mir-744-5p, with
a p-value slightly higher than 0.05, was identified (p =
0.0562) (Fig. 4). The combination of the three serum
miRNAs showed 87.3% accuracy and 91.2% sensitivity in
classification analysis.

Discussion
The lack of symptoms combined with inefficient diag-
nostic methods pose a challenge for detecting PC and
BTC. Even direct diagnostic methods involving invasive
procedures, such as endoscopic ultrasonography guided
fine-needle aspiration biopsy, are not effective due to the
difficulty of performing the method and its low sensitiv-
ity [27, 28]. Additionally, it is commonly accepted that
more than cytological evidence is needed for reliable
diagnosis. Therefore, diagnosis of these cancers can

benefit from the use of efficient biomarkers, of which
serum miRNAs are considered attractive potential candi-
dates. Strengths of their use include inexpensive cost
and convenient sampling; therefore, in response to rising
demands for cancer biomarkers, numerous studies have
attempted to detect serum miRNA expression in various
cancer types, including PC and BTC. Chen et al. [29]
identified serum miRNAs biomarker candidates for lung
and colorectal cancers, whereas Mar-Aguilar et al. [30]
suggested that serum miRNA profiles were capable of
distinguishing breast cancer patients from HCs with
high sensitivity and specificity. These findings suggested
that serum miRNAs are promising biomarkers for
cancers.
In this study, the expression profiles of serum miRNAs

were compared with those of normal individuals in
order to identify novel biomarkers for PC and BTC. Our
results showed that the PC and BTC groups could not
be distinguished according to serum miRNA profiles. A
possible explanation is the shared biological processes
between PC and BTC, which would result in similar
miRNA-expression patterns. Another possible reason
concerns differences in the clinical conditions of each
patient. Although we attempted to minimize these differ-
ences by adjusting for clinical covariates, including age,
gender, and BMI, other clinical information, including
cancer stage, was not addressed. Such differences can re-
sult in noise, making it difficult to distinguish PC and
BTC. Some of the patients diagnosed with stage IV PC
and BTC also represent a problem for classification. Be-
cause cancer cells at this stage spread to other tissues,
miRNA profiles might be altered, resulting in indistin-
guishable patterns. Therefore, we concluded that the
current data were unable to distinguish between cancer

Table 1 Biological processes (Gene Ontology terms) associated with the 42 differentially expressed miRNAs

Biological process Count % P-value Fold Enrichment Bonferroni

transcription, DNA-templated 581 13.30 4.86E-13 1.29 3.52E-09

positive regulation of transcription, DNA-templated 188 4.30 4.20E-12 1.58 3.04E-08

regulation of transcription, DNA-templated 448 10.25 2.78E-10 1.29 2.01E-06

negative regulation of transcription from RNA polymerase II promoter 238 5.45 4.90E-10 1.43 3.54E-06

positive regulation of transcription from RNA polymerase II promoter 304 6.96 4.36E-09 1.34 3.16E-05

cellular response to hypoxia 48 1.10 2.53E-08 2.17 1.83E-04

negative regulation of transcription, DNA-templated 168 3.84 5.34E-08 1.46 3.86E-04

positive regulation of cell migration 76 1.74 6.07E-08 1.79 4.39E-04

transforming growth factor beta receptor signalling pathway 45 1.03 1.66E-07 2.12 0.001199

apoptotic process 181 4.14 9.54E-07 1.38 0.00688

peptidyl-serine phosphorylation 54 1.24 1.21E-06 1.87 0.008702

positive regulation of cell proliferation 151 3.46 3.27E-06 1.40 0.02335

protein autophosphorylation 67 1.53 4.51E-06 1.69 0.03212

G1/S transition of mitotic cell cycle 45 1.03 5.50E-06 1.91 0.03899

Gene Ontology designations were generated via DAVID functional annotation. Only terms with a Bonferroni-adjusted p ≤ 0.05 are presented
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groups. Similar miRNA-expression profiles between PC
and BTC patients were also reported previously [29].
We then focused on classifying the two groups (the

cancer groups and HCs). Compared to three-group clas-
sification (PC, BTC, and HC), two-group classification
exhibited improved performance in classification; how-
ever, the presence of outlier miRNA-expression profiles
(N01 and N02) decreased accuracy and sensitivity. Spe-
cifically, these outliers in the HC group, who showed
miRNA profiles similar to those of PC and BTC patients,

were diagnosed with intrahepatic and gallbladder stones,
leading to false-positive results during classification. This
might suggest an association between gallstone disease
and cancers, agreeing with previous studies reporting
that the risk of BTC and PC increases 2-fold in patients
with gallstones [30, 31]. Moreover, a positive correlation
between gallstone volume and the risk of gallbladder
cancer was also reported [32]. Similar diseases related to
PC or BTC were also found to complicate PC and BTC
diagnosis [27, 33]. These findings suggest that PC and

Table 2 KEGG pathways of the 42 differentially expressed miRNAs

KEGG Pathway Count % P-value Fold Enrichment Bonferroni

Pathways in cancer 158 3.62 1.19E-13 1.69 3.49E-11

FoxO signalling pathway 68 1.56 2.26E-11 2.14 6.65E-09

Glioma 40 0.92 3.67E-10 2.59 1.08E-07

Chronic myeloid leukaemia 42 0.96 1.22E-09 2.46 3.58E-07

Prostate cancer 47 1.08 5.20E-09 2.25 1.53E-06

Neurotrophin signalling pathway 56 1.28 7.08E-08 1.97 2.08E-05

Cell cycle 57 1.30 1.01E-07 1.94 2.97E-05

ErbB signalling pathway 44 1.01 1.37E-07 2.13 4.03E-05

Hepatitis B 63 1.44 2.44E-07 1.83 7.16E-05

p53 signalling pathway 36 0.82 3.64E-07 2.27 1.07E-04

PI3K-Akt signalling pathway 122 2.79 6.84E-07 1.49 2.01E-04

Viral carcinogenesis 80 1.83 1.08E-06 1.65 3.16E-04

Non-small cell lung cancer 31 0.71 1.24E-06 2.33 3.64E-04

Bladder cancer 25 0.57 1.76E-06 2.57 5.17E-04

Renal cell carcinoma 34 0.78 1.82E-06 2.21 5.35E-04

Pancreatic cancer 34 0.78 1.82E-06 2.21 5.35E-04

Proteoglycans in cancer 77 1.76 3.21E-06 1.62 9.43E-04

TGF-beta signalling pathway 40 0.92 3.82E-06 2.01 0.001123

MAPK signalling pathway 93 2.13 4.08E-06 1.54 0.001198

Signalling pathways regulating pluripotency of stem cells 58 1.33 4.85E-06 1.75 0.001425

Fc epsilon RI signalling pathway 34 0.78 6.49E-06 2.11 0.001905

Small cell lung cancer 39 0.89 1.52E-05 1.93 0.004457

Ras signalling pathway 82 1.88 2.03E-05 1.53 0.00595

Melanoma 34 0.78 2.05E-05 2.02 0.005999

T cell receptor signalling pathway 44 1.01 3.41E-05 1.80 0.009978

Endocytosis 90 2.06 4.31E-05 1.47 0.01259

Epstein-Barr virus infection 70 1.60 5.12E-05 1.55 0.014945

Hippo signalling pathway 58 1.33 6.68E-05 1.62 0.019459

Insulin signalling pathway 54 1.24 7.01E-05 1.65 0.020398

Thyroid hormone signalling pathway 46 1.05 1.15E-04 1.70 0.033145

Oestrogen signalling pathway 41 0.94 1.50E-04 1.75 0.043177

Acute myeloid leukaemia 27 0.62 1.56E-04 2.03 0.044742

Rap1 signalling pathway 74 1.69 1.58E-04 1.49 0.045381

Colorectal cancer 29 0.66 1.59E-04 1.97 0.045785

KEGG pathways were generated by DAVID functional annotation. Only terms with a Bonferroni-adjusted p ≤ 0.05 are presented
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BTC might be closely related to stone-related diseases.
The inability to distinguish such conditions from PC or
BTC represents a limitation for the use of the serum
miRNA identified in this study as potential biomarkers.
However, our findings also indicated that classification
performance using serum miRNAs might be improved
in the absence of outlier consideration through the in-
corporation of a prescreening step specific for
stone-related diseases.
Early diagnosis of PC and BTC is difficult due to a lack

of symptoms, as well as the anatomical positions of the
organs. This leads to high mortality rates. Therefore,
biomarkers that can detect early stages of PC and BTC
can be more effective in improving the survival rate of
patients. However, we included all stages of PC and BTC
in our analysis, as the difficulty in early diagnosis and
sampling resulted in a lack of samples with early stage
disease. In addition, we did not account for stage infor-
mation in the differential expression analysis. The ex-
pression of miRNAs fluctuates throughout stage
progression. Thus, accounting for stage information is
generally preferable, as this may increase the total num-
ber of candidate markers by identifying differential ex-
pression across different stages. However, in our case,
the reliability of markers identified in stages with ex-
tremely small sample sizes needs to be considered. We
thus used the all of the PC and BTC samples as a factor
instead of adjusting for stage information. In addition,
the expression of serum miRNAs among different stages
was analysed using PCA and heatmaps (Additional file
1: Figure S5 and Figure S6), which did not show distinct-
ive patterns according to different stages. Using this
method, only strong signals of miRNAs that can distin-
guish these cancers from control subjects, regardless of
stage, can be detected. Since the aim of our study was to
identify a small number of efficient markers with strong
signals that can distinguish cancers, we believe that ap-
plication of our model without adjusting for stage

information is a more suitable approach, although the
usage of the candidate markers cannot be confined to
the diagnosis of early-stage PC and BTC.
Given the distinguishing pattern of miRNA expression

between the cancer and HC groups, it is possible that
dysregulated miRNAs play roles in pathways associated
with cancer. Indeed, this argument was supported by the
results of functional annotation analysis (Table 1), which
revealed that the cluster of genes regulated by the dys-
regulated miRNAs were significantly enriched in bio-
logical pathways associated with cancer. Based on this
observation, we investigated the potential function of
each of the three miRNAs validated in this study in
cancer-related pathways.
Few studies have focused on the association of

miR-744 with PC and BTC, with one study reporting its
overexpression in a tumour cell isolated from a PC pa-
tient and resulting in its role promoting tumorigenicity
by repressing negative regulators of the Wnt/β-catenin--
signalling pathway [34]. Another study reported overex-
pression of plasma miR-744 and suggested its potential
as a diagnostic and prognostic biomarker for PC [35].
However, in the present study, we observed significant
downregulation of serum mir-744-5p, which is the pri-
mary form of miR-744. The same observation was con-
firmed in a validation experiment using an independent
dataset. Although the precise reason for this difference
in findings could not be ascertained, it is predicted that
the discrepancy in this miRNA-expression pattern might
result from other layers of negative regulation.
MiR-409-3p is implicated in various types of cancer,

with tissue miR-409-3p levels downregulated in bladder
cancer, lung adenocarcinoma, gastric cancer, and breast
cancer, and circulating miR-409-3p levels also downreg-
ulated in prostate cancer [34, 36–39]. In prostate cancer,
circulating miR-409-3p functions as repressor of metas-
tasis, with this miRNA binding to the 3′ untranslated re-
gion of the pro-metastatic gene radixin to suppress its

Fig. 4 Box plot demonstrating the expression of three miRNAs validated by qRT-PCR. Red, green, and blue colours represent PC, BTC, and HC
groups, respectively
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expression. A previous study also reported that
miR-409-3p downregulation is associated with metasta-
sis [37]. Similar these previous findings, we observed
downregulation of mir-409-3p in the PC and BTC
groups in our study, supporting its reported role as a
tumour suppressor in PC and BTC.
A previous study showed downregulation of tissue

miR-128-3p in hepatocellular carcinoma, suggesting that
miR-128-3p suppresses cancer by repressing the expres-
sion of phosphoinositide 3-kinase (PI3K), which is key to
the PI3K/AKT-signalling pathway [40]. However, in
other cancers, including acute lymphoblastic leukaemia
and gastric cancer, miR-128-3p is upregulated [41, 42],
functioning as a negative regulator of the
tumour-suppressor gene plant homeodomain finger 6 in
leukaemia specifically, and supporting its various roles in
different cancers. In the present study, we observed that
serum miR-128-3p was upregulated in the PC and BTC
groups, suggesting its oncogenic role in these cancers.
In summary, our findings identified three serum miR-

NAs (mir-744-5p, mir-409-3p, and mir-128-3p) dysregu-
lated in various types of cancer, including PC and BTC;
however, the expression patterns of these miRNAs varied
between cancer types. Although further studies are re-
quired to explain the inconsistencies observed in these
expression patterns, we suggest these serum miRNAs as
potential biomarkers for PC and BTC based on their dis-
tinct expression patterns relative to the HC group in our
study.

Conclusions
In this study, we profiled serum miRNA expression in
samples derived from PC and BTC patients and HCs.
Serum miRNA-expression profiles failed to distinguish
between the two types of cancer; however, statistical and
classification analyses revealed three serum miRNAs
(mir-744-5p, mir-409-3p, and mir-128-3p) as effective
for discriminating PC and BTC. Although tissue or cir-
culatory levels of the three miRNAs have been suggested
as representing biomarkers for PC or other cancers, our
findings suggested that serum miRNAs can be also use-
ful for PC and BTC detection.

Methods
Sample information and miRNA-seq experiments
A summary of information concerning the 55 samples is
presented in Table 3. Serum miRNA-expression levels
were quantified for each sample, including those for 24
PC patients, 10 BTC patients, and 21 HCs. Note that
two of the HCs (N01 and N02) were diagnosed as having
intrahepatic and gallbladder stones. The average age of
the HCs (43.9 years) was lower than that of the PC and
BTC patients (mean ages: 62.75 and 62.8 years, respect-
ively). The proportion of males in the PC group (54.2%)
was higher than that of females, whereas this was not
the case in the BTC (30% males) and HC (28.5% males)
groups.
Serum samples were collected in 10-mL BD serum

tubes and centrifuged at 4 °C for 20 min at 3000 rpm.

Table 3 Summary of sample information

Pancreatic cancer (n = 24) Biliary tract cancer (n = 10) Healthy control (n = 21)

Age, year, mean ± SD 62.8 ± 11.1 62.8 ± 7.8 43.9 ± 11.8

Sex (%)

Male 11 (45.8%) 7 (70.0%) 15 (71.4%)

Female 13 (54.2%) 3 (30.0%) 6 (28.6%)

Diabetes (%) 8 (33.3%) 5 (50.0%) 1 (4.8%)

Hypertension (%) 12 (50.0%) 3 (30.0%) 1 (4.8%)

Smoking (%) 4 (16.7%) 5 (50%) 0 (0.0%)

BMI, kg/m2, mean ± SD 21.7 ± 2.9 23.2 ± 3.9 23.8 ± 3.8

CA19–9, U/ml, mean ± SD 3444.5 ± 6543.2 807.1 ± 1457.9 7.9 ± 6.9

Tumor size, mm, mean ± SD 31.2 ± 11.1 34.2 ± 26.5 n/a

Stage (%)

I 2 (8.3%) 2 (20.0%) n/a

II 9 (37.5%) 3 (60.0%) n/a

III 0 (0.0%) 1 (10.0%) n/a

IV 13 (54.2%) 4 (40.0%) n/a

Recurrence after surgery (%) 4/11 (36.4%) 7/8 (87.5%) n/a

DFS, median (range) 10.5 (3.1–46.8) 15.9 (2.1–44.1) n/a

OS, month, median (range) 15.2 (3.7–56.8) 21.7 (2.8–44.7) n/a

Abbreviations: SD, standard deviation; BMI, body mass index; DFS, disease-free survival; OS, overall survival
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The supernatant was then aliquoted, and total RNA con-
taining miRNA was extracted from the samples using
the serum miRNA purification kit (Genolution, Seoul,
Korea) according to manufacturer instructions. Libraries
were prepared for 50-bp single-end sequencing using the
NEXTflex small RNA-seq kit (Bioo Scientific, Austin,
TX, USA). Small RNA molecules were isolated from
1 μg of total RNA via adapter ligation, followed by syn-
thesis as single-stranded cDNAs through
reverse-transcription priming. By applying these prod-
ucts as a template for second-strand synthesis,
double-stranded cDNA was prepared by PCR, and frag-
ments (~ 150 bp) were extracted for sequencing accord-
ing to size selection following gel electrophoresis. The
quality of the cDNA libraries was evaluated using the
Agilent 2100 BioAnalyzer (Agilent Technologies, Santa
Clara, CA, USA), followed by quantification with the
KAPA library quantification kit (Kapa Biosystems, Wil-
mington, MA, USA) according to manufacturer proto-
col. Following cluster amplification of the denatured
templates, single-end (50 bp) sequencing progressed
using an Illumina HiSeq2500 system (Illumina, San
Diego, CA, USA).

miRNA-seq data pre-processing and expression
quantification
Quality control was performed on raw sequence data
using fastQC-0.11.3 [43], followed by the deletion of po-
tential adapter and low-quality sequences using
Trimmomatic-0.32 [44] prior to sequence alignment.
Trimmed reads with lengths not within ~ 16–35 bp were
filtered out. Reads were aligned against miRBase version
21 [45] and quantified using miRDeep2 [46]. Unique
matches with miRNA sequences were quantified, allow-
ing one mismatch. MiRNAs expressed (> 10 reads) in at
least two samples were retrieved.

Clustering analysis according to serum miRNA expression
profiles
To investigate relationships between samples, we
employed PCA using different miRNA subsets, and sil-
houette score [47] was used to estimate the optimal
number of clusters. We used the cluster package imple-
mented in R to calculate the silhouette score [48] using
hierarchical clustering, with Pearson and Spearman cor-
relation coefficients as distance measures.

Statistical analysis associated with detection of
differentially expressed miRNAs
The expression levels of 677 miRNAs were normalized
using the trimmed mean of M-values method [49] im-
plemented in edgeR to account for sequence depth for
each samples [50]. For each normalized
miRNA-expression value, a statistical test was performed

to identify differentially expressed miRNAs between dif-
ferent groups (PC, BTC, and HC) while adjusting for co-
variates using edgeR [50]. Among the patient
information available in our data, age, gender, and BMI
were selected as covariates [51–53]. Stage information
(I–IV) was not considered due to the small subgroup
size of each cancer stage, which could potentially lead to
misleading results (i.e. reduced statistical power and reli-
ability of the analysis due to small sample size). The
model focused on the cancer group as a whole, rather
than focusing on individual stages. Given the null hy-
pothesis that effects of the group were zero, the signifi-
cance of statistical testing for each miRNA-expression
value was calculated using the likelihood ratio test and
adjusted by the Benjamini and Hochberg method [54] to
control for multiple testing errors.

Classification analysis to test the performance of
potential biomarkers
The K-nearest neighbour (KNN) algorithm, a represen-
tative heuristic method, classifies an instance according
to a majority vote of its k nearest neighbours [55]. Sev-
eral studies have successfully employed this algorithm
for cancer classification based on miRNA expression
[56–58]. The KNN algorithm was used here to select
miRNAs and classify patients with different health sta-
tuses according to a Euclidean distance metric between
miRNA-expression values.
Choosing an optimal k value for the KNN classifier is a

critical step in improving the performance of the classifi-
cation model. Optimal nearest neighbour of K = 11 was
selected in this study based on the proportion of majority
votes and accuracies generated by bootstrapping (Add-
itional file 1: Figure S7). The performance of the classifica-
tion model constructed by the given set of miRNAs was
evaluated by leave-one-out cross-validation.

Functional annotation of candidate-miRNA-target genes
To infer the biological function of candidate miRNAs,
functional annotation was performed on the list of genes
known to be regulated by the miRNAs using DAVID
[59]. The experimentally curated miRNA-target gene in-
teractions were retrieved from miRTarBase version 7.0
[60].

qRT-PCR validation of detected miRNAs
Reverse transcription and qRT-PCR were performed
using a TaqMan Advanced miRNA cDNA synthesis kit
(Applied Biosystems, Foster City, CA, USA), TaqMan
Advanced miRNA assays (Applied Biosystems), and Taq-
Man Fast Advanced master mix (Applied Biosystems)
according to manufacturer protocols. qRT-PCR was per-
formed using an ABI Prism 7300 system (Applied Bio-
systems), and primers for mature miRNAs were
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purchased from Applied Biosystems. PCR amplification
consisted of an initiation step at 95 °C for 10 min,
followed by 45 cycles at 95 °C for 30 s, 56 °C for 30 s, and
72 °C for 15 s. All qRT-PCR assays were performed in
triplicate using total RNA samples from 17 PC patients,
17 BTC patients, and 19 HCs. To identify dysregulated
miRNAs, a pairwise t test was performed to compare the
miRNA-expression levels of cancer and HC groups.

Additional file

Additional file1: Figure S1. Optimal cluster estimation based on
silhouette score. Figure S2. Principal component analysis using different
miRNA subsets. Figure S3. Box plot of miRNA expression for PC (P), BTC
(B), and HC (N) groups. Figure S4. Volcano plot of miRNAs. Figure S5.
Principal component analysis of serum miRNA expression according to
stage. Figure S6. Serum miRNA expression according to stage. Figure
S7. Parameter optimization of the K-nearest neighbour algorithm. Table
S1. Three-group classification performance by the miRNAs. Table S2.
Two-group classification performance by the miRNAs. Table S3. Sum-
mary of validation sample information. (DOCX 967 kb)
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