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Abstract

Preconditioning of SIRT1 activator improves chondrogenic

differentiation potential of mesenchymal stem cell

Seong Mi Choi

Department of Medical Science

The Graduate School, Yonsei University

(Directed by Professor Jin Woo Lee)

Osteoarthritis (OA) is the most common degenerative disease of joints affecting
more than 70% of the aged population and can gradually lead to the deterioration of
extensive areas of cartilage due to the lack of regeneration capacity. The major
manifestations of OA are damage to cartilage, malfunction of chondrocyte
proliferation and hypertrophic maturation. There are currently several therapies for
cartilage regeneration, among them cell therapy is the most frequently used,
particularly with mesenchymal stem cells (MSCs). However, cell therapy
necessitates long-term expansion of MSCs, in vitro, and during this process, MSCs
lose their self-renewal and multipotential capacity as well as undergoing
hypertrophic maturation following chondrogenic differentiation. Therefore, a new
strategy to enhance chondrogenic differentiation potential and regenerate hyaline

cartilage is essential.



Resveratrol (RSV), a strong SIRT1 activator, is known to play critical roles in
cell survival, proliferation, and multipotency of MSCs. Our previous study
confirmed that when RSV is continuously delivered to MSCs from early passage
with the expression of SIRT1, MSCs maintain their self-renewal, osteogenic and
adipogenic differentiation potential. However, chondrogenic differentiation potential

was not confirmed.

In the present study, we investigated and confirmed the chondrogenic
differentiation potential of MSCs which are continuously treated with RSV.
Chondrogenic markers were upregulated, when RSV was continuously delivered to
MSCs compared to MSCs that were not treated with RSV. In addition, we
confirmed the cartilage regeneration potential of RSV treated MSCs in vivo. A
rabbit osteochondral defect model was used to evaluate the hyaline cartilage
formation by MSCs treated with RSV. MSCs treated with RSV had improved
delivery of RSV to MSCs maintained stemness similar to P1-MSCs as well as
enhanced their multipotential differentiation capacity resulting in increased cartilage

regeneration, in vivo.

Key words: chondrogenic differentiation, cartilage regeneration, resveratrol,
SIRT1



Preconditioning of SIRT1 activator improves chondrogenic
differentiation potential of mesenchymal stem cell

Seong Mi Choi

Department of Medical Science

The Graduate School, Yonsei University

(Directed by Professor Jin Woo Lee)

I. INTRODUCTION

Osteoarthritis (OA) is the most prevalent age-related or posttraumatic
degenerative disease of joints, affecting more than 70% of the aged population, that
can gradually deterioration of extensive areas of cartilage a due to the lack of
regeneration capacity." The major incidence of OA is damage joint. The major
indicators of OA are damage to cartilage, malfunction of chondrocyte proliferation
and hypertrophic maturation, thus the cartilage regeneration capacity is severely
impaired.®> There are currently, several types of therapy for cartilage regeneration
such as techniques for bone marrow stimulation, mosaicplasty and cell based
therapies.® Recently, cell based therapies have become regard as the most promising
prospective treatment among the various strategies. Autologous chondrocyte

implantation (ACI) is the most generally used approach for cartilage regeneration

3



that requires the in vitro expansion of autologous chondrocytes.”® There are,
however, several drawbacks to implementing this technique i.e., overall complexity,
cost and loss of cartilage regeneration capacity.®® Hence, a cell-based therapeutic
approach using mesenchymal stem cells (MSCs) has emerged most recently as a

new approach to cartilage regeneration. ***®

MSCs from adult tissues, with their multipotency capabilities, including
chondrogenic differentiation, have been identified as a promising cell source.**®
MSCs also possess anti-inflammatory and immunosuppressive properties and it has
been reported that the use of MSCs in clinical trials was highly successful in
promoting cartilage regeneration without severe side effects.'” Despite the proven

17-19

efficacy of MSCs in several clinical trials, there are several problems affecting

their use in clinical trials. As discussed above, these include loss of self-renewal and

20-23 and

multi-lineage differentiation potential during in vitro expansion,
hypertrophic maturation following chondrogenic differentiation.”**® Therefore, the
identification of new strategies that sustain stemness of MSCs during in vitro long-
term expansion and preserve chondrogenic differentiation potential and regulation of

hypertrophic maturation is vitally important.

Accordingly, I investigated the critical environments which can sustain the self-
renewal and multi-lineage differentiation capacities of the cells. There are several
possible strategies to enhance stemness of MSCs such as genetic modification,?’
scaffolds as a carrier”” and growth factor treatment.”® However, these methods had
some disadvantages including safety issues and poor mechanical strength of
scaffolds.””® Therefore, our strategy to overcome these limitations was to provide a
stable environment for the MSCs to preserve stemness in MSCs. Thus, | considered
the use of resveratrol (RSV; 3,5,4"-hydroxystilbene), a phytoalexin made from plants

damaged by environmental stress and strong activator of SIRT1, a class Il histone



deacetylase protein.”®** RSV is also known to strongly influence cell survival and

proliferation®*

enhancing the osteogenic and adipogenic differentiation potential of
MSCs.***® However, there are some negative effects of RSV on self-renewal and
differentiation capacity of MSCs.* In our previous study, we have demonstrated that
the appropriate application of RSV to MSCs could enhance self-renewal as well as
the osteogenic and adipogenic potential of MSCs during long-term in vitro

expansion.®’

In the present study, | have elucidated the improvement of chondrogenic
differentiation potential of MSCs treated with RSV during the long-term in vitro
expansion. Moreover, RSV treatment inhibited hypertrophic maturation leading to

the regeneration of hyaline cartilage, in vivo.



II. MATERIALS AND METHODS

1. Isolation of MSCs from human bone marrow aspirates

Bone marrow aspirates obtained from the posterior iliac crests of ten adult
donors, with approval from the Institutional Review Board of Yonsei University
College of Medicine. MSCs were selected and cultured for seven days in Dulbecco’s
modified Eagle medium-low glucose (DMEM-LG; Gibco, Carlsbad, CA) containing
10% fetal bovine serum (FBS; Gibco) and 1% antibiotic antimycotic solution (Gibco)
and incubated at 37°C in 5% CO, humidity. MSCs were subcultured at a 1:3 ratio

when they were 80% confluent.

2. Chemical treatment of MSCs

Resveratrol (RSV; Sigma, St. Louis, MO) was dissolved in ethanol (EtOH)
which has concentration of 1uM. The RSV is continuously treated from passage (P)
1 to P5 MSCs (P5-RMSC) and subcultured as previously described.”*® Since MSCs
lower than P5 are considered as optimal passage for clinical application, they were

cultured up to P5.

3. Invitro chondrogenic differentiation of MSCs via micromass culture method

Micromass culture method was used for in vitro chondrogenic differentiation of
MSCs. MSCs that are 80% confluent was harvested using 0.05% trypsin-EDTA
(Gibco). Cells were washed, centrifuged and resuspended at density of 1 x 10’

cells/mL, and 10 ul of the resuspended cells was dotted on the center of individual
6



wells of 24-well plates (1 x 10° cells/well). The cells were allowed to adhere at 37°C
for 2h, and then chondrogenic medium, consisting of Dulbecco’s modified Eagle
medium-high glucose (DMEM-HG; Gibco) supplemented with 1% antibiotic-
antimycotic solution, 1% Insulin Transferrin Selenium-A (ITS; Invitrogen, Carlsbad,
CA), 50 mg/mL ascorbic acid (Invitrogen), and 10ng/mL TGF-3 (R&D System,
Minneapolis, MN), was gently added. The chondrogenic medium was changed

every 2 days during in vitro differentiation periods.

4. Quantitative real-time polymerase chain reaction

Total RNAs from MSCs were isolated using Trizol (Invitrogen) following the
manufacturer’s instructions. For cDNA reverse transcription, RNAS were reverse
transcribed using an Omniscript Reverse-Transcription Kit (Qiagen, Hilden,
Germany). The cDNA was used in real-time polymerase chain reaction (PCR) with
an SYBR Green PCR Master Mix (Applied Biosystems, London, UK). Real-time
PCR was performed using an ABI7500 real-time machine by Applied Biosystems.
All primers were purchased from Bioneer. The primers that have no validation were
designed as following Table 1. The validated primer, SOX9 (P232240), IHH
(P101104) and ALP (P324388), was purchased from Bioneer. The PCR procedure
was initiated for 30 s at 95°C, followed by 40 thermal cycles of 5 s at 95°C and 20 s
at 60°C. SYBR fluorescence was detected during the annealing/extension phase and
all real-time PCR products had a final size of 100 base pair. Values from each

samples were normalized to B-Actin as an internal control.



Table 1. A list of primers used for real-time PCR

Gene symbol Sequence (5’ — 3')
Forward GTCCTCTCCCAAGTCCACACAG
B-ACTIN
Reverse GGGCACGAAGGCTCATCATTC
Forward AGCCCCACATAAAGCGTCCAAT
SOX5
Reverse GGTCCTCCTCCTCCTCATCGTA
Forward AGCAGAGCCTGTGAAGTCC
SOX6
Reverse GGTCCTCCTCCTCCTCATCGTA
Forward GGCAATAGCAGGTTCACGTACA
COL2A1
Reverse CGATAACAGTCTTGCCCCACTT
Forward CCTGGCCTGACATGGAGCTG
AGGRECAN
Reverse GGACTGGGGGAGACCTCGAA
Forward CCCAGTATGAGAGTAGGTGTCC
RUNX2
Reverse GGGTAAGACTGGTCATAGGACC
Forward AGCAAAGGTGCAGCCTTTGT
OSTEOCALCIN
Reverse CTTCACTACCTCGCTGCCCT
Forward GACGGGGTTTTGCCACACTG
MMP13
Reverse ATTGGGTGTGGTGGCTCACG
Forward GCCCTGCTGGAGAGGAAGGA
COL1Al
Reverse ATTGGGTGTGGTGGCTCACG
Forward CCAGGACAGCCAGGCATCAA
COL10A1
Reverse ATTGGGTGTGGTGGCTCACG




5. Western blotting

For protein extraction, cell pellets were suspended in lysis buffer containing 50
mM Tris (pH 7.4), 150 mM NaCl, 1% NP-40, and 0.1% sodium dodecyl sulfate
(SDS), followed by gentle pipetting and heating at 100°C for 10 min with vortex
mixing every 3 min. Lysates were centrifuged at 13,000 rpm for 10 min and
supernatants were collected into new tube. To measure the concentration of proteins,
we used the bicinchoninic acid (BCA) protein assay kit (Pierce, Rockford, IL). Prior
to western blotting, 30ug protein was mixed with 5x loading dye (Pierce) and heated
at 10°C for 3 min. The protein samples were run on 10% SDS polyacrylamide gel
electrophoresis (PAGE) gels. Then proteins were transferred onto polyvinylidene
difluoride (PVDF) membranes (Hybond, Escondido, CA) for 90 min. Membranes
were blocked within 5% skim milk (BD Biosciences, San Jose, CA) for 1h,
following the incubation of primary antibodies at 4°C overnight. Antibodies used
were anti-SOX9 (Millipore, Billerica, MA, 1:1,000 in 1% skim milk); anti-B-ACTIN
(Santa Cruz Biotechnology, Santa Cruz, CA, 1:1,000 in 1% skim milk); and anti-
COL2A1 (Santa Cruz Biotechnology, 1:500 in 1% BSA). Finally, membranes were
developed using enhanced chemiluminescence (ECL) solution (Amersham,

Buckinghamshire, UK).

6. Preparation of Hydrogel

Hydrogel (Hy) was prepared as previously described.***° In short, the cosolvent,
consists of water and dimethylformamide within the ratio of 3:2, was added with 1-
ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) and N-hydroxysuccinimide
(NHS) that activates the 3-(4-hydroxyphenyl)propionic acid (HPA) and solution
was added to preheated gelatin solution. After 24h of reaction at 40 °C, the solution

was dialyzed with deionized water, filtered and lyophilized.

9



7. Animal experiments

Twelve New Zealand white rabbits (male, 3.5 — 4 kg; Doo Yeol Biotech, Seocho-
gu, Seoul) were used for osteochondral defect model which had been previously
established.* Briefly, the cylindrical osteochondral defect (6 mm diameter, 3 mm
depth) was formed and applied with following: None (Defect), hydrogel only (Hy),
Hy + P5 MSCs (Hy/MSC) and Hy+ P5 RSV-MSCs (Hy/RMSC). Each cell is
applied with 2 x 10° cells. 8 weeks after operation, the rabbits are euthanized and
defect sites are extracted for histological analysis in vitro. All animal experiments
are approved by the Committee on the Ethics of Animal Experiments of Yonsei
University College of Medicine (Permit No. 2016-0200).

8. Histological analysis and immunohistochemistry

8 weeks post-operation, the regenerated cartilage tissues were fixed for 7 days in
10% formalin. After fixation, the formalin-fixed specimens were embedded in
paraffin and then paraffin blocks were sliced at a thickness of 4mm. The sections
were deparaffinized, rehydrated and washed twice with PBS and stained with
hematoxylin-eosin (HE) to observe the cell morphology and Masson’s trichrome
(MT) to assess total collagen synthesis and safranin O/fast green to detect
glycosaminoglycans (GAGSs). The stained samples were observed using VS120
virtual microscope (Olympus, Tokyo, Japan), and images were analyzed using
OlyVIA 2.5 program (Olympus). We used O’Driscoll scoring system for
histological examination and the regenerated cartilage was evaluated by three
independent experts using grading scale. All scores were the means of the three

independent evaluations.

10



9. Statistical analysis

Each experiment was performed in triplicate using samples more than three
donors. For detection of difference between two groups are confirmed by t-test. The
statistical significance of the differences among three or more groups was calculated
using one-way analysis of variance (ANOVA) with Tukey’s post hoc analysis. All

data are presented as mean and 95% Cls of the values from different donors per

group.
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Ill. RESULTS

1. Enhanced stemness and inhibited senescence of MSCs via continuous
treatment of RSV

During long-term in vitro expansin of MSCs, we have continuously treated RSV
from PO to P5 MSCs (P5-RMSC) while the other cells are cultured up to P5 without
RSV treatment (P5-RSV) (Figure 1).

I e
I L
/EISC P5-MSC
Cell selection
(plastic adherent) PO
~7 days I
| I > —> -RSVuuM
P1-RMSC P5-RMSC —> +RSVI1uM

Figure 1. Long-term in vitro expansion of MSCs with or without treatment of
RSV. MSCs were isolated from bone marrow aspirates and cultured for 7 days.
From PO-MSC, the cells were treated with 1uM of resveratrol up to P5.
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To identify the similar stemness with P1-MSC, we compared the morphological
changes between P1- and P5-MSC with and withour RSV treatment. The P5-RMSC
showed similar morphology with P1-MSC whereas P5-MSC showed opposite
morphology as flat and large size (Figure 2A). Also, the proliferation assay was
performed to evaluate sustained proilferative capacity of P5-RMSC. As a result, the
P5-RMSC had improved proliferation capacity in comparison with P5-MSC (Figure
2B).

13
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Figure 2. Comparison of morphological change and proliferation capacity
between P1 and P5 MSCs. (A) Small and spindle-like morphology of P1-MSC and
large and flat morphology of P5-MSC. P5-RMSC had similar morphology with P1-
MSC. (B) Proliferative potential of P5-RMSC had similar potential with P1-MSC.
*p<0.05, **p<0.01.
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Furthermore, to demonstrate the effects of RSV in cell senecence, we assessed
protein level of senecence and stemness markers. When MSCs are culutred up to P5,
senescence markers were upregulated whereas P5-RMSC had downregulated that
had similar expression with P1-MSC (Figure 3A). The stemness markers were
highly expressed in P5-RMSC which has similar expression level of P1-MSC
(Figure 3B). Therefore, when resveratrol is continuously treated to MSC from P1 to

P5, the stemness of MSC was upregulated while senecence was inhibited.

A B

P1 Ps P1 Ps

RSVIeM - + - + RSVIaM - + - %
plé .""- — NANOG | e e
P2l | e e —— oct:| b B & T
i |
p53 | e SOX2 | “see i _.ﬂ

HSP90 HSP90

Figure 3. Sustained expression of stemness markers and inhibited expression of
senescence markers. (A) P1-MSC had low expression of senescence markers, pl16,
p21, and p53, whereas P5-MSC had higher expression of that. However, the P5-
RMSC had decreased level of senescence marker in comparison with P5-MSC. (B)
Stemness markers, NANOG, OCT4, and SOX2, showed opposite result of
senescence markers. When RSV is continuously treated, P5-RMSC had similar
expression of stemness markers with P1-MSC.
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2. Evaluation of in vitro chondrogenic differentiation of P5-RMSC

To compare enhanced chondrogenic differentiation potential of P5-RMSC, we
performed micromass culture of P1-MSC, P5-MSC and P5-RMSC. The mRNA
level of chondrogenic markers, SOX-5,-6,-9, COL2A1, and AGGRECAN, were up-
regulated up to similar level with P1-MSC in P5-RMSC while P5-MSC was down-
regulated (Figure 4). The western blot demonstrated that protein expression level of
chondrogenic markers were up-regulated up to similar level with P1-MSC in P5-
RMSC while P5-MSC was down-regulated (Figure 5A and B).

16
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Figure 4. The mRNA expression level of chondrogenic markers in MSCs
following chondrogenic differentiation. mRNA expression level of chondrogenic
markers, SOX-5,-6,-9, COL2A1, and AGGRECAN, was highly up-regulated in P5-
RMSC when comparison to P5-MSC, and has similar expression level with P1-MSC
on day 5. ***p < 0.001.
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Figure 5. The protein expression of chondrogenic markers in MSCs following
chondrogenic differentiation. (A) Enhanced protein expression level of P5-RMSC
in chondrogenic markers, SOX-9, COL2A1 and AGGRECAN on day 10. (B)
Quantitative analysis of protein expression level in each group was confirmed by
Image J Software Ver. 1.48. *p < 0.05, **p < 0.01, ***p < 0.001.
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To further demonstrate the enhanced capacity of chondrogenic differentiation of
P5-RMSC, we performed the safranin O and alcian blue staining. The P5-MSC had
smaller size of micromass in comparison with both P1-MSC and P5-RMSC which
has larger size and higher contents of glycosaminoglycan (GAG) and proteoglycan
(PG) (Figure 6A). We preformed immunocytochemistry to confirm the increased
expression level of COL2A1 and AGGRECAN in P5-RMSC (Figure 6B) and the
quantitative analysis of those was conducted (Figure 6C). Thus, the P5-RMSC had
increased chondrogenic potential when compared with P5-MSC in concurrence with
similar level of P1-MSC.
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Figure 6. Histological analysis of GAGs and PGs in chondrogenic micromass
and detection of chondrogenic markers by immunocytochemistry. (A) The
safranin O and alcian blue staining demonstrated increased contents of GAGs and
PGs, respectively, on day 14. (B) Immunocytochemistry of COL2Al (PE; red
fluorescence) and AGGRECAN (FITC; green fluorescence) showed higher
expression level in P5-RMSC on day 14. DAPI is stained with nucleus (blue). (C)
Quantitative analysis of COL2A1 and AGGRECAN was confirmed via Image J
Software Ver. 1.48. **p < 0.01, ***p < 0.001.
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3. Inhibition of hypertrophic maturation of RSV treated MSCs

The primary limitation to use MSCs in cartilage regeneration is their tendency to
become hypertrophic maturation during chondrogenic differentiation followed by
increased expression of COL10Al1, matrix metalloproteinase 13 (MMP13) and
alkaline phosphatase (ALP).?*** Thus, we investigated whether the P5-RMSC could
inhibit hypertrophic maturation during in vitro chondrogenic differentiation. In
MRNA level of hypertrophic markers are down-regulated in P5-RMSC when
compared to P5-MSC (Figure 7). Also, the western blot demonstrated the decreased
protein level of hypertrophic markers (Figure 8A). Moreover, the
immunocytochemistry showed decreased expression level of COL10A1, the major
hypertrophic marker (Figure 8B and C). These results suggest that continuous
treatment of RSV could inhibit the hypertrophic maturation during chondrogenic
differentiation of MSC.
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Figure 7. Effects of RSV treatment on MSCs in hypertrophic maturation
during chondrogenic differentiation. Continuous treatment of RSV on MSCs had
decreased expression level of hypertrophic markers following chondrogenic

differentiation, on day 21. ***p<0.001.
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Figure 8. Expression of representative hypertrophic markers in protein level.
(A) Western blot analysis of hypertrophic markers, RUNX2, COL1A1 and MMP13,
on day 21. (B) On day 21, immunocytochemistry determines the expression level of
COL10AL (PE; red fluorescence) and nucleus was stained with DAPI (blue). (C)
Quantitative analysis of COL10A1 expression by Image J Software Ver. 1.48. **p <

0.01.
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4. Enhanced cartilage regeneration potential in vivo

To identify whether the continuous treatment of RSV to MSCs could acquire
increased cartilage regeneration capacity in vivo, we have developed osteochondral

defect model (Figure 9).

(artilage —"' A -

Subchondral

2X10%/site e M el U '

Figure 9. Establishment of rabbit osteochondral defect model. The size of defect
is 6mm diameter and 3mm depth. 2x10° cells are applied onto the defect site to
compare the effectiveness of P5-RMSC in cartilage regeneration.
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8weeks post-operation, we observed the gross morphology of regenerated
cartilage. In HY/RMSC group, the surface of defect site was almost fully filled with
cartilage-like tissue as the nearby cartilage while other groups were not fully filled
with cartilage like tissue and in some parts it had lamination and cysts on the surface.
Moreover, the HY/RMSC group showed more transparent cartilage-like tissues
(Figure 10A). Furthermore, we observed regenerated cartilage tissues via safranin
Offastgreen staining. The results showed enhanced GAG formation in Hy/RMSC
group whereas the Hy/MSC group had slightly increased synthesis of GAG when
compared to other groups (Figure 10B, upper lane). Then, we analyzed HE and MT
staining to confirm the histological characteristics of newly formed cartilage in
osteochondral defects. In HE stain, we observed that more chondrocyte-like cells
were formed and also the there was no clustering. However, the other groups had a
few chondrocyte-like cells and they formed fibrous tissues on cartilage (Figure 10B,
middle lane). The MT stain demonstrated higher collagen deposition and no fibrous
tissue formation on the surface of the cartilage in Hy/RMSC group in comparison
with other groups (Figure 10B, bottom lane). Moreover, we performed O'Driscoll
scoring which shows the Hy/MSC groups had slightly higher score than defect or
Hy group however the HY/RMSC group had significantly higher score than other
groups (Figure 11). These results suggest that the Hy/MSC group had slightly
increased effects in cartilage regeneration while the Hy/RMSC group had

significantly enhance cartilage regeneration.
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Figure 10. Gross morphology and histological analysis of rabbit osteochondral
defect sites after 8 weeks of surgery. (A) The gross morphology of osteochondral
defect sites was photographed. (B) Formation of GAGs at osteochondral defect sites
was evaluated by safranin O/fast green staining. GAGs were stained with cartilage
tissue and fast green was stained in non-collagenous proteins (upper lane). HE stain
shows the chondrocyte-like cell morphology (middle lane). MT stain demonstrates
the collagen fiber formation which is stained with blue (bottom lane). (C)
Quantitative histological analysis of regenerated cartilage tissue was performed via
O'Driscoll scoring system. Three independent experts assessed the cartilage
regeneration and all scores were means of three independent assessments (n = 3).
**p<0.01.
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Figure 11. Evaluation of cartilage regeneration potential in vivo via
immunohistochemical analysis. The effects of RSV treated MSCs in cartilage
regeneration was confirmed by detecting (A) type Il collagen (PE; red fluorescence)
and (B) aggrecan (FITC; green fluorescence). (C) Quantitative analysis of type Il
collagen and aggrecan was confirmed via Image J Software Ver. 1.48. Hydrogel
only vs. *p<0.05, **p < 0.01, ***p < 0.001.
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5. Inhibition of hypertrophic maturation of cartilage

In order to identify the regeneration of hyaline cartilage, the
immunohistochemistry was performed to detect expression of type X collagen, the
hypertrophic marker. The Hy/RMSC group had scarce expression level of type X
collagen while the defect, Hy, and Hy/MSC groups showed high expression level of
that (Figure 12A and B). Consequentially, the P5-RMSC could inhibit the

hypertrophic maturation in vivo, thus regenerated the hyaline cartilage.
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Figure 12. Inhibition of hypertrophic maturation in RSV treated MSCs. Type X
collagen (PE; red fluorescence), the hypertrophic maturation marker, was detected to
confirm the inhibition of hypertrophic maturation in RSV treated MSCs. (B)
Quantitative analysis of type X collagen was confirmed by Image J Software ver.

1.48. Hydrogel only vs. *p < 0.05, **p < 0.01.
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IV. DISCUSSION

In cartilage regeneration, the MSCs are the most commonly used cell type but
they have some limitations to use them. When we use MSCs as clinical application,
the long-term in vitro expansion is necessary which cause the cellular senescence
that leads to loss of self-renewal and muItipotency.43 In present study, | found that
MSCs treated with RSV from PO to P5 had enhanced stemness and inhibited
senescence (Figure 2 and 3), simultaneously. When chondrogenic differentiation
was performed, | found that P5-RMSC had increased chondrogenic differentiation
potential when compared with other groups (Figure 4). Also, the expression levels of
hypertrophic markers were confirmed to investigate the inhibition of hypertrophic
maturation. The P5-RMSC had decreased expression level of hypertrophic markers
while P5-MSC had increased hypertrophic maturation (Figure 7 and 8).

After confirmation of enhanced chondrogenic differentiation of P5-RMSC in
vitro, | investigated whether the P5-RMSC could enhance the hyaline cartilage
regeneration in vivo. | established osteochondral defect model in rabbit and
evaluated the regenerated cartilage. The histological analysis demonstrated that P5-
RMSC had improved regeneration of hyaline cartilage. Typically, when the MSCs
that have high potential of stemness are used in cartilage regeneration, there are
several shortcomings including formation of fibrous tissue and hypertrophic
maturation**. However, in my study, | have overcome these limitations as described
in Figure 7 and 8. Consequentially, the P5-RMSC had enhanced hyaline cartilage
regeneration in concurrence with inhibited hypertrophic maturation because the
maintenance of stemness via treatment of RSV.

RSV is known to play critical roles in not only cell survival and proliferationaz'34

but also enhances multipotential differentiation.>*3° However, the RSV had

contradictory effects when it is treated to MSCs.*? Several studies have
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demonstrated that RSV treatment could enhance multipotential

3435 \while others demonstrated that successive treatment of

differentiation
RSV to MSCs could increase cellular senescence.®* Thus, in our previous
study, we confirmed that when RSV is treated to MSCs at appropriate time
point, they can enhance the stemness and multipotency.®” Yoon et al.
demonstrated that early passage MSCs which has high expression of SIRT1
were treated with RSV and these early passage MSCs treated with RSV could
sustain the stemness. However, the late passage MSCs which has low
expression of SIRT1 were treated by RSV could induce the cellular
senescence. Also, other studies have treated RSV in high dose while yoon et
al. confirmed the optimal concentration of RSV with consistent results of
MSCs which have enhanced cartilage regeneration. Therefore, we treated
1uM of RSV from PO to P5-MSCs.

In cellular therapy, the recommendable passages for MSCs are between 3 and
5.%4 Generally, the MSCs at passage 1~2 have high multipotency but MSCs at
passage 4~5 start to lose their multipotency.?*’ To utilize MSCs in cellular therapy,
the large numbers of cells are required for the treatment.*® To obtain large number of
cells, maintaining the stemness of MSCs is essential. Bonab et al. demonstrated that
bone marrow derived MSCs lose the number of population doubling and also
possess decreased telomere length as cells are subcultured.?! Thus, | cultured MSCs
up to passage 5 and obtained higher number of cells when RSV is treated (data not
shown).

In my study, | have used human bone marrow derived MSCs not rabbit MSCs.
Since the MSCs have anti-inflammatory and immunosuppressive effects,’” the

utilization of human MSCs on rabbit osteochondral defct model did not cause any

35



side effects. Additionally, there are several studies using human MSCs in animal
model experiments.***

In my in vivo study, | have made critical size (diameter 6mm, depth 3mm) of
osteochondral defects on rabbit, which is the size that was not able to self-heal.
During establishing rabbit osteochondral defect model, the bone marrow from rabbit
was emerged. In previous study, Gobbi et al, have demonstrated that the usage of
bone marrow concentrate for cartilage regeneration was effective.* However, in our
previous study, we have proven that the bone marrow concentrates did not have
significant effects in cartilage regeneration.**? Despite the presence of bone marrow
concentrates, the defect and Hy groups did not regenerate cartilage. Thus, the
evaluation of effectiveness of RSV treated MSCs is sufficient to compare each other
without any other disturbance.

Taken together, the continuous treatment of RSV on MSCs had sustained
stemness which is similar to P1-MSCs. Consequently, the RSV treated MSCs had
not only enhanced the chondrogenic differentiation potential but also promoted the

regeneration of hyaline cartilage via maintenance of stemness.

V. CONCLUSION

In summary, the treatment of RSV from PO to P5 MSCs could enhance the
stemness of MSCs and inhibited senescence of cells. Since the differentiation
potential is up-regulated via continuous treatment of RSV to MSCs, they had
enhanced chondrogenic differentiation potential and also inhibited hypertrophic
maturation to synthesize hyaline cartilage. Furthermore, the MSCs that are
continuously treated with RSV were applied onto the rabbit osteochondral defect
sites. The osteochondral defect sites that had P5-RMSC transplantation showed

enhanced cartilage regeneration in concurrence with formation of hyaline cartilage
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which inhibited the hypertrophic maturation. In conclusion, the continuous treatment
of RSV from PO to P5 MSCs could support the environment for maintaining
stemness result in enhanced chondrogenic differentiation. Thus, the methods which
continuously treat RSV to MSCs can be a promising method of MSCs for cellular

therapy.
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