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Purpose. We aimed to investigate the expression of pentose phosphate pathway- (PPP-) related proteins in metastatic breast cancer
and its relationship with clinicopathologic factors.Methods. Tissue samples from 126 metastatic breast cancers were included in a
tissuemicroarray. Expression of PPP-related proteins [glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconolactonase
(6PGL), 6-phosphogluconate dehydrogenase (6PGDH), and nuclear factor erythroid 2-related factor (NRF2)] was determined by
immunohistochemistry. Results. G6PDH (𝑝 = 0.011) and cytoplasmic NRF2 (𝑝 = 0.001) showed the highest expression in brain
metastases. Human epidermal growth factor receptor (HER-2) positivity was associated with G6PDH (𝑝 < 0.001) and cytoplasmic
NRF2 (𝑝 = 0.015) positivity. A high Ki-67 labeling index (LI) was correlated with nuclear NRF2 positivity (𝑝 = 0.037), and HER-2-
positive luminal B type was associated with G6PDH positivity (𝑝 = 0.001). On multivariate Cox analysis, independent risk factors
of short overall survival were 6PGL positivity in bone metastasis (HR 4.180, 95% CI 1.160–15.06, 𝑝 = 0.029) and low Ki-67 LI in
lung metastasis (HR 11.853, 95% CI 1.841–76.30, 𝑝 = 0.009). Conclusion. Differential expression of PPP-related proteins correlated
with different prognoses and metastatic sites, with the highest expression in brain metastases, and could be a potential therapeutic
target.

1. Introduction

Thepentose phosphate pathway (PPP) is ametabolic pathway
parallel to glycolysis. The PPP links glucose metabolism
with ribose production and NADPH generation. The PPP
comprises oxidative and nonoxidative branches. The oxida-
tive branch generates NADPH and ribonucleotides, with
enzymatic regulation by glucose-6-phosphate dehydroge-
nase (G6PDH), 6-phosphogluconolactonase (6PGL), and 6-
phosphogluconate dehydrogenase (6PGDH). Most of the
pentose phosphate in the body, which is required in rapidly
proliferative cells, is derived from the PPP. In cancer cells, the
PPP generates pentose phosphate as well as NADPH,which is
important in lipid synthesis and cell survival under stressful
conditions. Thus, the PPP plays a pivotal role in constantly
proliferating cancer cells, and increased expression of PPP-
related enzymes in cancer tissue has been reported [1–3].

Breast cancer has high morbidity and mortality rates,
caused by distantmetastasis of primary tumors. Breast cancer
commonly metastasizes to the lung, brain, liver, and bone
[4, 5], and brain and bone metastases have been thoroughly
investigated [6–11]. Tumor metastasis generally occurs by
reciprocal interaction between tumor cells and host tissue
via adhesion, proteolysis, invasion, and angiogenesis [4, 12].
Because not all tumors have similar metastatic patterns, the
seed and soil hypothesis was proposed to explain tumor
metastasis as the survival of a specific tumor (seed) in a
specific visceral organ (soil) [13]. Breast cancer metastases
have different signatures according to the metastatic sites.
Brain metastases have specific clinical characteristics such as
young patient age, estrogen receptor (ER) negativity, prior
lung metastasis, human epidermal growth factor receptor-
(HER-) 2 amplification, epidermal growth factor receptor
(EGFR) overexpression, and basal subtype [8, 9, 11]. In
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Table 1: Source, clone, and dilution of antibodies.

Antibody Company Clone Dilution
Pentose phosphate pathway-related
proteins
G6PDH Abcam, Cambridge, UK Polyclonal 1 : 100
6PGL Abcam, Cambridge, UK ERP1238(B) 1 : 200
6PGDH Abcam, Cambridge, UK Polyclonal 1 : 100
NRF2 Abcam, Cambridge, UK Polyclonal 1 : 50
Molecular subtype related proteins
ER Thermo Scientific, San Diego, CA, USA SP1 1 : 100
PR DAKO, Glostrup, Denmark PgR 1 : 50
HER-2 DAKO, Glostrup, Denmark Polyclonal 1 : 1500
Ki-67 Abcam, Cambridge, UK MIB 1 : 1000
G6PDH, glucose-6-phosphate dehydrogenase; 6PGL, 6-phosphogluconolactonase; 6PGDH, 6-phosphogluconate dehydrogenase; NRF2, nuclear factor
erythroid 2- (NF-E2-) related factor 2; ER, estrogen receptor; PR, progesterone receptor; HER-2, human epidermal growth factor-2.

Table 2: Basal characteristics of patients with metastatic breast cancer.

Parameter Total
𝑁 = 126 (%)

Metastatic site
𝑝 value

Bone
𝑁 = 31 (%)

Brain
𝑁 = 36 (%)

Liver
𝑁 = 11 (%)

Lung
𝑁 = 48 (%)

Age (years)
≤50 65 (51.6) 17 (54.8) 17 (47.2) 4 (36.4) 27 (56.3) 0.605
>50 61 (48.4) 14 (45.2) 19 (52.8) 7 (63.6) 21 (43.8)

ER
Negative 59 (46.8) 6 (19.4) 25 (69.4) 2 (18.2) 26 (54.2)

<0.001
Positive 67 (53.2) 25 (80.6) 11 (30.6) 9 (81.8) 22 (45.8)

PR
Negative 86 (68.3) 16 (51.6) 35 (97.2) 3 (27.3) 32 (66.7)

<0.001
Positive 40 (31.7) 15 (48.4) 1 (2.8) 8 (72.7) 16 (33.3)

HER-2
Negative 86 (68.3) 25 (80.6) 18 (50.0) 9 (81.8) 34 (70.8) 0.032
Positive 40 (31.7) 6 (19.4) 18 (50.0) 2 (18.2) 14 (29.2)

Ki-67 LI
<14 84 (66.7) 27 (87.1) 18 (50.0) 9 (81.8) 30 (62.5) 0.008
≥14 42 (33.3) 4 (12.9) 18 (50.0) 2 (18.2) 18 (37.5)

Molecular subtype
Luminal A 44 (34.9) 21 (67.7) 3 (8.3) 6 (54.5) 14 (29.2)

<0.001Luminal B 24 (19.0) 5 (16.1) 8 (22.2) 3 (27.3) 8 (16.7)
HER-2 25 (19.8) 3 (9.7) 12 (33.3) 1 (9.1) 9 (18.8)
TNBC 33 (26.2) 2 (6.5) 13 (36.1) 1 (9.1) 17 (35.4)

Patient death 41 (32.5) 16 (51.6) 11 (30.6) 4 (36.4) 10 (20.8) 0.041
ER, estrogen receptor; PR, progesterone receptor; HER-2, human epidermal growth factor-2; LI, labeling index; TNBC, triple negative breast cancer.

contrast, bone metastases are correlated with low histologic
grade, ER positivity, ER positivity/progesterone receptor (PR)
negativity, strand growth pattern, and the presence of fibrotic
tumor stroma [7, 14, 15].Therefore, it is expected that different
metastatic sites would show different expression patterns of
PPP-related proteins; however, this has not been well studied.

In the present study, we aimed to analyze the expression of
PPP-related proteins at different metastatic sites of metastatic

breast cancer and to identify the relationship between protein
expression and clinicopathologic factors.

2. Materials and Methods

This study was approved by the Institutional Review Board of
Severance Hospital.
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Table 3: Expression of pentose phosphate pathway-related proteins according to the metastatic site in breast cancer metastases.

Parameter Total
𝑁 = 126 (%)

Metastatic site 𝑝 value
Bone
𝑁 = 31 (%)

Brain
𝑁 = 36 (%)

Liver
𝑁 = 11 (%)

Lung
𝑁 = 48 (%)

G6PDH
Negative 26 (20.6) 7 (22.6) 3 (8.3) 6 (54.5) 10 (20.8) 0.011
Positive 100 (79.4) 24 (77.4) 33 (91.7) 5 (45.5) 38 (79.2)

6PGL
Negative 89 (70.6) 21 (67.7) 23 (63.9) 11 (100.0) 34 (70.8) 0.139
Positive 37 (29.4) 10 (32.3) 13 (36.1) 0 (0.0) 14 (29.2)

6PGDH
Negative 122 (96.8) 30 (96.8) 34 (94.4) 11 (100.0) 47 (97.9) 0.750
Positive 4 (3.2) 1 (3.2) 2 (5.6) 0 (0.0) 1 (2.1)

NRF2 (cytoplasm)
Negative 113 (89.7) 31 (100.0) 26 (72.2) 11 (100.0) 45 (93.8) 0.001
Positive 13 (10.3) 0 (0.0) 10 (27.8) 0 (0.0) 3 (6.3)

NRF2 (nuclei)
Negative 110 (87.3) 28 (90.3) 28 (77.8) 11 (100.0) 43 (89.6) 0.170
Positive 16 (12.7) 3 (9.7) 8 (22.2) 0 (0.0) 5 (10.4)

G6PDH, glucose-6-phosphate dehydrogenase; 6PGL, 6-phosphogluconolactonase; 6PGDH, 6-phosphogluconate dehydrogenase; NRF2, nuclear factor
erythroid 2- (NF-E2-) related factor 2.

2.1. Patient Selection. Invasive primary breast cancers and
their metastases to distant organs (liver, lung, brain, and
bone) were retrieved from the data files of the Department
of Pathology of Severance Hospital. Only patients with a
diagnosis of invasive ductal carcinoma were included. A total
of 162 cases were selectedwith 49 pairs of primary tumors and
their metastases. All slides were re-reviewed and pathologic
diagnoses were approved by two pathologists (JSK and WJ).
The histological grade was assessed using the Nottingham
grading system [16].

2.2. Tissue Microarray. Hematoxylin and eosin- (H&E-)
stained tumor samples were mounted on slides, a representa-
tive area was selected, and a corresponding spot was marked
on the surface of the paraffin block. Using a biopsy needle,
the selected area was punched out and a 3mm tissue core was
placed onto a 6 × 5 recipient block. Tissue was extracted from
invasive tumors. More than two tissue cores were extracted
to minimize extraction bias. Each tissue core was assigned a
unique tissue microarray location number that was linked to
a database containing other clinicopathologic data.

2.3. Immunohistochemistry. The antibodies used for immun-
ohistochemistry (IHC) in this study are listed in Table 1.
IHC was performed with formalin-fixed, paraffin-embedded
tissue sections. Briefly, 3 𝜇m thick tissue sections from paraf-
fin blocks were deparaffinized, rehydrated with xylene and
alcohol solution, and stained using Ventana Discovery XT
automated stainer (Ventana Medical System, Tucson, AZ,
USA). CC1 buffer (Cell Conditioning 1; citrate buffer pH

6.0, Ventana Medical System) was used for antigen retrieval.
Appropriate positive and negative controls were included.

2.4. Interpretation of Immunohistochemical Results. A cut-
off value of 1% or more positively stained nuclei was used
to define ER and PR positivity [17]. HER-2 staining was
analyzed according to the American Society of Clinical
Oncology/College of American Pathologists guidelines using
the following categories: 0 = no immunostaining; 1+ = weak
incomplete membranous staining in less than 10% of tumor
cells; 2+ = complete membranous staining that is either uni-
form or weak in at least 10% of tumor cells; and 3+ = uniform
intense membranous staining in at least 30% of tumor cells
[18]. HER-2 immunostaining was considered positive when
strong (3+) membranous staining was observed and was
considered negative for tumors with 0 to 1+ staining. The
tumors showing 2+HER-2 expression were further evaluated
for HER-2 amplification by using silver in situ hybridization
(SISH).

IHC results were interpreted after multiplying the stain-
ing intensity score (negative, 0; weak, 1; moderate, 2; strong,
3) and the proportion of stained cells (negative, 0; <30%
stained, 1; ≥30% stained, 2). Scores of 0 and 1 were considered
negative, and scores of 2–4 and 5-6 were considered low and
high positivity, respectively [19].TheKi-67 labeling index (LI)
was defined as the percentage of nuclear-stained tumor cells.

2.5. Tumor Phenotype Classification. We classified breast
cancer phenotypes according to the IHC results for ER, PR,
HER-2 and Ki-67, and SISH results for HER-2 as follows
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Figure 1: Expression of pentose phosphate pathway-related proteins in metastatic breast cancer. The expression of G6PDH and cytoplasmic
NRF2 in brain metastases is higher than that at other sites.

[20]: luminal A type: ER or/and PR positive and HER-2
negative andKi-67 LI<14%; luminal B type: (HER-2 negative)
ER or/and PR positive and HER-2 negative and Ki-67 LI
≥14% and (HER-2 positive) ER or/and PR positive and HER-
2 overexpressed or/and amplified; HER-2 type: ER and PR
negative and HER-2 overexpressed or/and amplified; and
triple negative breast cancer (TNBC) type: ER, PR, and HER-2
negative.

2.6. Statistical Analysis. Data were statistically analyzed
using SPSS for Windows, version 12.0 (SPSS Inc., Chicago,
IL, USA). Correlation analysis of immunostaining results
between primary breast cancer and metastatic breast cancer
was performed using the McNemar test. Student’s 𝑡-test and
Fisher’s exact test were used to examine any differences in
continuous and categorical variables, respectively. A cor-
rected 𝑝 value and the Bonferroni method were used for
multiple comparisons. Statistical significance was assumed

when 𝑝 < 0.05. Kaplan-Meier survival curves and log-rank
statistics were employed to evaluate time to tumor metastasis
and time to survival. Multivariate regression analysis was
performed using a Cox proportional hazards model.

3. Results

3.1. Clinicopathologic Characteristics ofMetastatic Breast Can-
cer. A total of 126 metastatic breast cancers comprised 31
(24.6%) bone metastases, 36 (28.6%) brain metastases, 11
(8.7%) liver metastases, and 48 (38.1%) lung metastases
(Table 2). ER (𝑝 < 0.001), PR (𝑝 < 0.001),HER-2 (𝑝 = 0.032),
Ki-67 LI (𝑝 = 0.008), and molecular subtype (𝑝 < 0.001)
differed with regard to the metastatic sites. ER negativity, PR
negativity, and HER-2 positivity were more frequent and Ki-
67 LI was higher for brain metastases than for the other sites.
Predominant molecular subtype was luminal A in bone and
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Figure 2: Expression status of pentose phosphate pathway-related proteins in paired primary and metastatic breast cancer (red, positive;
green, negative).

liver metastases, HER-2 in brain metastases, and TNBC in
lung metastases.

3.2. Expression of Pentose Phosphate Pathway-Related Proteins
in Metastatic Breast Cancer. G6PDH (𝑝 = 0.011) and cyto-
plasmic NRF2 (𝑝 = 0.001) in metastatic breast cancers were
differentially expressed depending on the metastatic sites,
with brain metastases showing higher expression of G6PDH
and cytoplasmic NRF2 than the other sites (Figure 1 and
Table 3). Comparisons of the 28 paired primary metastatic
breast cancers revealed differential expression patterns of
G6PDH (𝑛 = 6, 21.4%, 𝑝 = 0.688), 6PGL (𝑛 = 4, 14.3%, 𝑝 =
1.000), 6PGDH (𝑛 = 1, 3.6%, 𝑝 = 1.000), cytoplasmic NRF2
(𝑛 = 3, 10.7%, 𝑝 = 1.000), and nuclear NRF2 (𝑛 = 3, 10.7%,
𝑝 = 1.000) (Figure 2). Expression rates of 6PGL, 6PGDH,
and cytoplasmicNRF2were relatively low inmetastatic breast
cancer and primary breast cancer; the mentioned rates were
29.4%, 3.2%, and 10.3% inmetastatic breast cancer and 10.7%,
3.6%, and 7.1% in primary breast cancer, respectively.

3.3. Correlation between Clinicopathologic Factors and Expres-
sion of Pentose Phosphate Pathway-Related Proteins. HER-2
amplification was associated with G6PDH positivity (𝑝 <

0.001) and cytoplasmic NRF2 positivity (𝑝 = 0.015). Higher
Ki-67 LI was correlated with higher nuclear NRF2 expression
(𝑝 = 0.037). Luminal B (HER-2 positive) type was associated
with G6PDH positivity (𝑝 = 0.001) (Figure 3).

3.4. The Impact of Expression of Pentose Phosphate Pathway-
Related Proteins on Prognosis in Metastatic Breast Cancer.
Univariate analysis of all metastatic breast cancer cases
revealed that the expression of PPP-related proteins had no
effect on patient prognosis (Table 4). However, in terms
of metastatic sites, expression of 6PGL in bone metastases
and 6PGDH in lung metastases was associated with shorter
overall survival (𝑝 = 0.040 and𝑝 = 0.002, resp., Figure 4). On
multivariate Cox analysis, 6PGL positivity (hazard ratio [HR]
4.180; 95% confidential interval [CI] 1.160–15.06; 𝑝 = 0.029)
and lowerKi-67 LI (HR 11.853; 95%CI 1.841–76.30;𝑝 = 0.009)
were independent risk factors for shorter overall survival in
bone metastasis and lung metastasis, respectively (Table 5).

4. Discussion

We investigated the expression of PPP-related proteins in
metastatic breast cancers and observed differential expression
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Figure 3: Correlation between clinicopathologic factors and expression of pentose phosphate pathway-related proteins.

patterns depending on the metastatic sites. Brain metastases
showed higher expression of G6PDH and cytoplasmic NRF2.
The site-based variations in the cell biology of metastatic
tumors could result in the differential expression of PPP-
related proteins at each metastatic site. In the present study,
we found that HER-2 positivity correlated with G6PDH
and cytoplasmic NRF2 expression. A previous study in
an ErbB2-positive breast cancer cell line BT-474 revealed
that knockdown of NRF2 inhibited HER-2 expression [21].
NRF2 is key molecule in the regulation of the PPP and
also regulates PPP-related protein expression in tumors
[22], which would be affected by specific tumor cells types.
Another potential mechanism for differential expression of
PPP-related proteins is tumor microenvironment. Various
tumor environments could influence the PPP. Compared
to the PPP in healthy tissue, the PPP flux is higher in

traumatically injured brain tissue [23, 24], as well as in brain
tumors because of the involvement of NRF2 [22]; thus, an
increase in PPP activity is possible in brain metastasis. NRF2
is a nuclear transcription factor that contributes to cellular
differentiation, proliferation, and inflammation and that is
involved in antioxidant gene activity in neurodegeneration
[25] and cardiovascular disease [26]. In human cancers,
overexpression of nuclear NRF2 is associated with tumor
progression and drug resistance [27, 28], and a correlation
between nuclear NRF2 expression and higher Ki-67 LI was
observed in the present study. Moreover, we found that
cytoplasmic NRF2 expression was correlated with HER-2
positivity, mostly in brain metastases. Cytoplasmic expres-
sion of NRF2 represents aberrant subcellular localization.
In colorectal cancer, cytoplasmic NRF2 expression has been
reported to promote cancer cell invasion via regulation of
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Figure 4: Overall survival according to the expression of pentose phosphate pathway-related proteins in bone metastases (a) and lung
metastases (b). Shorter overall survival is associated with 6PGL positivity in bone metastases and 6PGDH positivity in lung metastases.

Table 5: Multivariate Cox analysis of the association between expression levels of pentose phosphate pathway-related proteins in metastatic
breast cancers and overall survival.

Included parameters
Bone metastasis Lung metastasis
Overall survival Overall survival

HR 95% CI 𝑝 value HR 95% CI 𝑝 value
ER status

Negative versus positive 1.768 0.113–27.61 0.685 n/a n/a n/a
PR status

Negative versus positive 0.453 0.119–1.730 0.247 n/a n/a n/a
HER-2 status

Negative versus positive 1.025 0.217–4.833 0.975 n/a n/a n/a
Ki-67 LI
≤14 versus >14 0.961 0.031–29.98 0.982 11.853 1.841–76.30 0.009

Molecular subtype
TNBC versus non-TNBC 0.647 0.002–254.8 0.886 n/a n/a n/a

6PGL
Negative versus positive 4.180 1.160–15.06 0.029 n/a n/a n/a

6PGDH
Negative versus positive n/a n/a n/a 1.362 0.130–14.29 0.797

HR, hazard ratio; CI, confidential interval; ER, estrogen receptor; n/a, not applicable; PR, progesterone receptor; HER-2, human epidermal growth factor-2;
LI, labeling index; TNBC, triple negative breast cancer; 6PGL, 6-phosphogluconolactonase; n/a, not applicable; 6PGDH, 6-phosphogluconate dehydrogenase.

PSMD4 [29], and a higher frequency of cytoplasmic NRF2
in HER-2-positive cancers and brain metastases might reflect
greater invasiveness and aggressiveness.

We found that shorter overall survival was associatedwith
6PGL positivity in bone metastases and 6PGDH positivity
in lung metastases. Expression of PPP-related proteins is
associated with poor prognosis in esophageal cancer [30],
colon cancer [31], and ocular adnexal tumor [32]. These

findings are consistent with our results, suggesting that PPP-
related proteins could be prognostic factors in patients with
metastatic breast cancer, especially in patients with bone
metastasis. However, further study is required to validate
our findings before their application in clinical practice. The
results of the present study indicate that PPP-related proteins
could be a potential therapeutic target in metastatic breast
cancer, particularly for brain metastases, which had a higher
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expression of PPP-related proteins. In previous studies, inhi-
bition of PPP-related proteins induced growth suppression
and cell death in leukemia [33], ovary cancer [34], urinary
bladder cancer [35], and breast and prostate cancer [36],
which suggested that control of expression of PPP-related
proteins could be an effective treatment strategy. Therefore,
further development of PPP-related protein targeting agent
should be evaluated in metastatic breast cancer patients
through clinical trials. In conclusion, PPP-related proteins in
metastatic breast cancer showed different expression patterns
that were specific to the metastatic sites, with increased
expression in brain metastases. Expression of PPP-related
proteins at specific metastatic sites correlated with prognosis.
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