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Bone marrow mesenchymal stem cells (MSCs) have 

shown potential for cardiac repair following myocardial 

injury, but this approach is limited by their poor viabil-

ity after transplantation. To reduce cell loss after trans-

plantation, we introduced the fibroblast growth factor-2 

(FGF-2) gene ex vivo before transplantation. The iso-

lated MSCs produced colonies with a fibroblast-like 

morphology in 2 weeks; over 95% expressed CD71, and 

28% expressed the cardiomyocyte-specific transcription 

factor, Nkx2.5, as well as α-skeletal actin, Nkx2.5, and 

GATA4. In hypoxic culture, the FGF-2-transfected MSCs 

(FGF-2-MSCs) secreted increased levels of FGF-2 and 

displayed a threefold increase in viability, as well as in-

creased expression of the anti-apoptotic gene, Bcl2, and 

reduced DNA laddering. They had functional adrenergic 

receptors, like cardiomyocytes, and exposure to norepi-

nephrine led to phosphorylation of ERK1/2. Viable cells 

persisted 4 weeks after implantation of 5.0 × 10
5 
FGF-2-

MSCs into infarcted myocardia. Expression of cardiac 

troponin T (CTn T) and a voltage-gated Ca
2+
 channel 

(CaV2.1) increased, and new blood vessels formed. These 

data suggest that genetic modification of MSCs before 

transplantation could be useful for treating myocardial 

infarction and end-stage cardiac failure. 
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Introduction 
 
Myocardial infarction leads to irreversible loss of tissue 

and deficits in cardiac performance (Ho et al., 1993). The 

remaining myocytes in infarcted tissues undergo progres-

sive replacement by fibroblasts, forming scar tissue (Ma-

kino et al., 1999). Recent attempts to repair infarcted 

hearts revealed that skeletal myoblasts or cardiomyocytes 

from fetal or neonatal mice can populate cardiac tissue 

after injury (Reinecke et al., 1999; Taylor et al., 1998). It 

is now clear that bone marrow stem cells (MSCs) are also 

able, when appropriately stimulated, to differentiate into 

cardiac myocytes, endothelial cells, and vascular smooth 

muscle cells (Orlic et al., 2001a; 2001b; 2002). They can 

be passaged several times and have an attached, well-

spread and undifferentiated appearance (Pittenger et al., 

1999; Wang et al., 2000). In clinical application to cellu-

lar cardiomyoplasty, MSCs have shown potential in terms 

of the number of cells needed to improve cardiac function. 

Although MSCs represent a suitable source of autologous 

cells in such cell therapy, MSC therapy is limited by poor 

cell viability after transplantation. 

Recently, there have been attempts, by in vitro expan-

sion (Bianchi et al., 2003) and in vivo genetic engineering 

(Mangi et al., 2003), to improve the viability of MSCs. 

FGF-2 has mitogenic activity for various cells of mesen-

chymal, neuronal, and epithelial origin. It also regulates 

events in normal embryonic development, angiogenesis, 

wound repair, and neoplasia (Houchen et al., 1999; Kim  

 

 

Abbreviations: FGF-2, fibroblast growth factor-2; MSCs, mesen-

chymal stem cells. 
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et al., 2003). Extracellular FGF-2 binds to cell surface 

receptors and heparan sulfate proteoglycans, and activates 

a number of intracellular signaling pathways leading to 

cell proliferation, while intracellular FGF-2 directly en-

hances mitogenic activity within the nucleus (Nugent and 

Iozzo, 2000). 

In this study, we tested whether transfection with the 

FGF-2 gene could improve the survival of MSCs after 

transplantation into infarcted myocardium. We present 

evidence that such FGF-2-MSCs survive better in hypoxic 

conditions and show significant retention in infarcted re-

gions of the myocardium. They also expressed cardiac-

specific markers and improved neovascularization. Our 

results suggest that genetic modification of MSCs with 

FGF-2 may improve treatment of myocardial infarction 

and end-stage cardiac failure. 

 

 

Materials and Methods 

 

Isolation and culture of MSCs MSCs were isolated from the 

femoral and tibial bones of rats (Wang et al., 2000). We col-

lected bone marrow-derived mesenchymal stem cells from aspi-

rates of the femurs and tibias of 4-week-old male Sprague-

Dawley rats (about 100 g) with 10 ml of MSC medium consist-

ing of Dulbecco’s modified Eagle’s medium (DMEM)-low glu-

cose, supplemented with 10% fetal bovine serum and 1% antibi-

otic-penicillin and streptomycin solution. Mononuclear cells 

recovered from the interface after centrifugation in Percoll were 

washed twice, resuspended in 10% FBS-DMEM, and plated in 

flasks at 1 × 106 cells/100 cm2. Cultures were maintained at 

37°C in a humidified atmosphere containing 5% CO2. After 48 

or 72 h, nonadherent cells were discarded, and the adherent cells 

were thoroughly washed twice with PBS. Fresh complete me-

dium was added and replaced every 3 or 4 days for about 10 d. 

To further purify the MSCs, we used the Isolex magnetic cell 

selection system (Nexell Therapeutics Inc., USA). Briefly, cells 

were incubated with Dynabeads® M-450 coated with anti-CD34 

monoclonal antibody. A magnetic field was applied to the 

chamber, and the CD34+ cell-bead complexes were separated 

magnetically from the rest of the cell suspension. The remaining 

CD34-negative fraction was cultured further. The cells were 

harvested after incubation with 0.25% trypsin and 1 mM EDTA 

for 5 min at 37°C, replated in 100 cm2 plates, and again grown 

for about 10 d. To estimate their proliferation rate, cell numbers 

were measured with the non-radioactive colorimetric assay 

WST-1 (Boehringer Mannheim), based on the cleavage of a 

tetrazolium salt. To generate hypoxic conditions, the cells were 

incubated anaerobically for 24 h in deoxygenated DMEM plus 

0.5% FBS in an anaerobic chamber (Thermo Forma Anaerobic 

System Model 1025, USA). To measure activation of ERKs by 

norepinephrine via adrenergic receptors, neonatal rat cardio-

myocytes, MSCs and FGF-2-MSCs were pretreated with pra-

zosin (PRA) (100 nM) or propranolol (PRO) (2 µM) for 30 min, 

and exposed to norepinephrine (NE) (1 µM) for 10 min. 

MSC labeling After transfection, MSCs were labeled with green 

fluorescent protein (GFP) to detect expression of FGF-2. To gen-

erate GFP-FGF2, an FGF-2 DNA fragment produced by EcoRI 

was cloned into pEGFP-N3 (Clontech, USA). Intracellular GFP 

expression was detected by fluorescence and light microscopy 

(BX 51TR, Olympus Korea) using a GFP filter set (excitation 

maximum 488 nm; emission maximum 507 nm) and photo-

graphed, or captured digitally with Image Analysis Software using 

a CCD color video camera (U-CMAP3, Olympus Korea). To label 

viable MSCs with DAPI, sterile DAPI solution was added to the 

culture medium on the day of implantation at a final concentration 

of 50 µg/ml for 30 min. The cells were rinsed 6 times in PBS to 

remove unbound DAPI, detached with 0.25% (w/v) trypsin and 

suspended in serum-free medium for grafting. 

 

Flow cytometry The MSCs were harvested by standard trypsini-

zation, washed once in PBS and fixed in 70% ethanol at 4°C for 

30 min, with agitation. They were then washed twice in PBS, 

resuspended at 2 × 106 cells/ml in blocking buffer (1% BSA, 

0.1% FBS) containing anti-Nkx2.5 rabbit antibody (Santa Cruz 

Biotechnology, Inc., USA) diluted 1:200, and agitated for 20 

min at room temperature. They were washed twice more and 

labeled with FITC conjugated anti rabbit IgG (Jackson 

ImmunoResearch Laboratories, Inc., USA) diluted 1:400 for 20 

min at room temperature in the dark. After two more washes, 

flow cytometric analysis was performed on a FACSCalibur 

system (Becton Dickinson, USA) using CellQuest software 

with 10,000 events recorded for each sample. Data was acquired 

in single parameter histograms with appropriate gating for 

particle size and light scattering. 

 

Transfection Transfection of pEGFP fused to FGF-2 was per-

formed with LIPOFECTAMINE PLUS reagent (Invitrogen, 

USA) according to the manufacturer’s instructions. DNA frag-

mentation was measured with a TACS™ Apoptotic DNA Lad-

dering kit (R&D Systems, Minneapolis, MN). 

 

Production of myocardial scars, and cell transplantation 8-

week-old male Sprague-Dawley rats (about 250 g) were intu-

bated under general anesthesia, and positive-pressure ventilation 

(180 ml/min) was maintained with room air supplemented with 

oxygen (2 L/min) using a Harvard ventilator. The rat hearts were 

exposed through a 2-cm left lateral thoracotomy. Cryoinjury was 

produced with a metal probe (8 × 10 mm in diameter) cooled to 

−190°C by immersion in liquid nitrogen and applied to the left 

ventricular free wall for 15 s. This procedure was repeated 5 

times, and then for a total of 10 times each for 1 min. The mus-

cle layer and skin incision were closed with 3-0 silk sutures. For 

cell transplantation, MSCs (5.0 × 105 cells) were suspended in 

30 µl serum-free medium and injected from the injured region to 

the border with a Hamilton syringe and a 30-gauge needle. The 

rats were divided into 3 groups of 6 rats each: MSCs, MSCs 

transfected with GFP, and MSCs transfected with FGF-2. 

 

Immunoblot analysis Proteins were separated by SDS-PAGE 
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Fig. 1. A. Immunocytochemical characterization of MSCs. Cells cultured from bone marrow after density fractionation are shown 10 

days after plating. At 14 days, the cells were 95 to 99% homogeneous and were negative for antigen CD34, which is found on hema-

topoietic cells. Merged image of double staining of cells for the transferrin receptor, CD71 (red) and for the transcription factor, 

Nkx2.5 (green) demonstrates colocalization of the surface marker with the cardiac specific transcription factor. B. RT-PCR analysis of 

cardiac-specific genes, α-skeletal actin, Nkx2.5, and GATA4, in MSCs. 

 

 

using 10−12% polyacrylamide gels and electrotransferred to 

methanol-treated polyvinylidene difluoride membranes. The 

blotted membranes were blocked by incubation with 5% nonfat 

dried milk in PBS buffer. After one hour at room temperature, the 

membranes were probed overnight at 4°C with mouse polyclonal 

antibodies against ERK1/2 and bcl2 followed by rabbit anti-

mouse IgG-peroxidase. The blots were detected by enhanced 

chemiluminescence (ECL, Amersham Pharmacia Biotech.). 

 

Histology and immunohistochemistry Rats with transplants 

were killed at intervals after implantation and their hearts ex-

cised. The hearts were perfusion-fixed with 10% (v/v) neutral 

buffered formaldehyde for 24 h, sectioned transversely into four 

comparably thick sections, and embedded in paraffin by routine 

methods. Sections 2 µm in thickness were mounted on gelatin-

coated glass slides to ensure that different stains could be used 

on successive sections through the implantation areas. After 

deparaffinization and rehydration, the sections were stained with 

hematoxylin and eosin. Other sections were analyzed with 

mouse anti-FGF-2 (Upstate Biotechnology, USA), rabbit anti-

CaV2.1 (alamone labs, Israel), goat anti-CTn T (Santa Cruz 

Biotechnology Inc., USA), and rabbit anti-Nkx2.5 (Santa Cruz 

Biotechnology Inc., USA). Fluorescein isothiocyanate (FITC)-

conjugated goat anti-rabbit IgG (Jackson ImmunoResearch Lab., 

USA) and Texas red-conjugated goat anti-mouse IgG or mouse 

anti-goat IgG (Jackson ImmunoResearch Lab., USA) were used 

as secondary antibodies. All images were made with an excita-

tion filter and a reflected light fluorescence microscope, and 

transferred to a computer equipped with MetaMorph software  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Expression of FGF-2 in transfected MSCs. MSCs were 

transfected with a CMV-based pEGFP vector encoding native 

FGF-2. GFP expression in transfected cells was detected by 

fluorescence microscopy with a GFP filter set (excitation 488 

nm; emission 507 nm). After 24 h exposure to hypoxia, intracel-

lular and secreted FGF-2 was detected with an FGF-2 ELISA kit. 

 

 

ver. 4.6 (Universal Imaging Corp.). 

 

Statistical analysis All data are expressed as means ± SE. P 
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values less than 0.05 were considered statistically significant 

(ANOVA and Student’s t-test). 

 

 

Results 

 

Isolation and characteristics of MSCs MSCs were iso-

lated from mixed cultures of hematopoietic cells as de-

scribed in Materials and Methods. They retained a fi-

broblastic morphology through repeated passages, and 

their identity was confirmed by immunocytochemistry: 

over 95% of the MSCs expressed CD71, 28% expressed 

the cardiac transcription factor Nkx2.5, and the hemato-

poietic marker CD34 (Fig. 1A) was not expressed. RT-

PCR analysis showed that they also expressed a-skeletal 

actin, Nkx2.5 and GATA 4 (Fig. 1B). 

 

Transfection of FGF-2 into MSCs improves cell sur-

vival and function GFP-FGF-2 was introduced into the 

MSCs using Lipofectamine Plus with over 70% effi-

ciency. The expressed FGF-2 totaled 4200 ± 52 pg/ml; 

secreted and intracellular FGF-2 were 2604 ± 29 pg/ml 

and 1596 ± 23 pg/ml, respectively, during twenty-four 

hours’ exposure to hypoxia (85% N2, 10% CO2, and 5% 

H2) and serum starvation (0.5% FBS) (Fig. 2). Overex-

pression of FGF-2 led to a threefold increase in viable 

cells under hypoxic conditions, and was associated with 

increased expression of the antiapoptotic gene Bcl2 and a 

reduction in DNA laddering (Fig. 3). To evaluate the ex-

tent of differentiation of FGF-2-MSCs into cardiomyo-

cyte-like cells, we measured Nkx2.5 expression by flow 

cytometry. Nkx2.5 expression was significantly higher 

than in control MSCs, 60 ± 3% compared to 28 ± 6% (p < 

0.001) (Fig. 4). Interestingly, MSCs directly exposed to 

FGF-2 also expressed higher levels of Nkx2.5 than con-

trol MSCs. To further evaluate the phenotype of FGF-2-

MSCs as cardiomyocyte-like cells, we stimulated them 

with norepinephrine and measured phosphorylation of 

ERK1/2 to estimate their adrenergic response (Fig. 5). In 

neonatal cardiomyocytes, norepinephrine-induced phos-

phorylation is completely inhibited by prazosin and par-

tially inhibited by propranolol. Control MSCs hardly gave 

rise to any phosphorylation in response to norepinephrine, 

whereas phosphorylation took place in the FGF-2-MSCs 

and was inhibited by prazosin and propranolol, as in neo-

natal cardiomyocytes. These results indicate that the FGF-

2-MSCs have functional adrenergic receptors. 

 

Behavior of implanted FGF-2-MSCs and neovascu-

larization H&E staining of implants in the infarcted heart 

showed alignment of the FGF-2-MSCs with non-labeled 

cells (host cardiomyocytes), in DAPI-stained regions, 

indicating that DAPI-labeled donor cells were incorpo- 

rated into the host myocardium (Fig. 6). Expression per-

sisted in the DAPI-labeled cells, but the regions of ex- 

A               B            C 

 

 

 

 

 

 

 

 

 

Fig. 3. Effect of transfection of MSCs with FGF-2. A. Assay of 

MSC proliferation. MSCs (1.5 × 104) were seeded in 96-well 

culture plates and cultured for 24 h. After 24 h exposure to hy-

poxia and serum starvation (0.5% FBS), 10 µl of WST-1 reagent 

was added to each well for 30 min at 37°C, and cell numbers 

were assessed spectrophotometrically (λ=440 nm). The data 

shown are means ± SEM (n = 4). * P ≤ 0.05. B. Representative 

Western blot and relative amounts of the apoptotic gene Bcl2 in 

three experiments. C. DNA fragmentation in MSCs. Genomic 

DNA (10 µg) from FGF-2-transfected and control MSCs was 

resolved on a 1% agarose gel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Flow cytometric analysis of Nkx2.5 expression in FGF-

2-transfected MSCs. MSCs, GFP-MSCs, FGF-2-MSCs and 

MSCs treated with FGF-2 (20 ng/ml) were labeled with FITC-

conjugated antibody against Nkx2.5, and prepared for FACS 

analysis as described in Materials and Methods. The results 

are presented as fluorescence intensity histograms.  

 

 

pression of FGF-2 did not match with the DAPI staining, 

indicating that some of the FGF-2 was secreted, as it is in 

vitro. To confirm that the implanted cells had formed car-

diac myocytes, we showed by immunohistochemistry that 

the cardiac specific markers, CTn T and Cav2.1, were 

detectible in the regions that were DAPI stained and con-

tained FGF-2. To evaluate the extent of development of 

collateral vessels in the regions overexpressing FGF-2, 

we investigated the expression of alpha smooth muscle  
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Fig. 5. Activation of ERKs by norepinephrine via adrenergic 

receptors in FGF-2-transfected MSCs. After 30 min pretreat-

ment with prazosin (PRA) (100 nM) or propranolol (PRO) (2 

µM), neonatal rat cardiomyocytes (NCM), MSCs and FGF-2-

MSCs were stimulated with norepinephrine (NE) (1 µM) for 10 

min. Signals were quantified by scanning densitometry and are 

shown relative to the maximal level of ERK activity in the con-

trol (CTL). Results are means of three independent experiments.  

 

 

actin and von Willebrand factor (VWF) by immunohisto-

chemistry. New vessel formation was much greater in the 

FGF-2-MSC group than in the control MSCs as judged by 

the levels of alpha smooth muscle actin and VWF, sug-

gesting that the FGF-2 promoted angiogenesis. 

 

 

Discussion 

 

In this study, we established that FGF-2-transfected MSCs 

delivered into the myocardium after cryoinjury survive 

better and form more cells with cardiomyocyte character-

istics than control MSCs. Moreover, norepinephrine in-

duced phosphorylation of ERK1/2 in these cells, and this 

phosphorylation was regulated by prazosin and pro-

pranolol, as in neonatal cardiomyocytes. 

Therapeutic trials of cells for the treatment of ischemic 

myocardium can be divided into two types: differentiation 

and therapeutic implantation. Despite several differentia-

tion studies, the mechanism by which MSCs differentiate 

into cardiac myocyte-like cells remains controversial, 

even though several in vitro investigations have shown 

that such differentiation does occur (Makino et al., 1999; 

Pittenger et al., 1999; Prockop, 1997). After treatment 

with 5-azacytidine, murine bone marrow MSCs generated 

a cardiomyogenic cell line (CMG) that formed myotubes 

connected by intercalated discs, and beat synchronously 

(Makino et al., 1999). Several cell types, including skele-

tal myoblasts (Murry et al., 1996; Reinecke et al., 2000; 

Taylor et al., 1998), cardiac myocytes (adult, fetal or neo- 

natal myocytes) (Li et al., 1997; Watanabe et al., 1998), 

and embryonic stem cell-derived cardiac myocytes (Min  

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Analysis of myocardial repair 4 weeks after implantation 

of MSCs into cryo-injured hearts. H&E staining shows infiltra-

tion of viable, mature cardiac myocytes from the border zone 

into the scar area. Fluorescent images are of DAPI staining, and 

immunohistochemical analysis for FGF-2, cardiac-specific volt-

age-gated Ca2+ channel (Cav2.1), cardiac troponin T (CTn T), 

smooth muscle actin and vonWillebrand Factor (VWF). 

 

 

et al., 2002), have been investigated in cell implantation 

studies for cardiac infarction, but each cell type had clini-

cal limitations. We also have shown above that MSCs 

have the potential to form cardiomyocyte-like cells, based 

on the expression of the cardiac-specific transcription 

factors, Nkx2.5 and GATA4, and the presence of tran-

scripts of the cardiomyocyte-specific protein, α-skeletal 

actin (Figs. 1A and 1B). 

Autologous MSCs have advantages for generating 

functional cardiac myocytes in the infarcted myocardium 

because of the ease with which they can be prepared from 

adult patients, and their immunologic safety. However, 

the frequency of MSC engraftment was extremely low, 

despite implanting large numbers of cells (Wang et al., 

2000), and the exact mechanism of therapeutic cardiac 

repair by MSCs was ill-defined. Recently, in a new ap-

proach to enhancing the viability of MSCs, they were 

exposed to the survival signal, Akt, in the early post-

transplant period (Mangi et al., 2003). 

Our attempt to enhance the survival of MSCs and 

hence to increase neovascularization involved introduc-

tion of the FGF-2 gene into the implanted MSCs. FGF-2 

activates several signaling components related to cell sur-

vival, including mitogen-activated protein kinase (MAPK) 

(Tokuda et al., 2000), src, and protein kinase C (PKC) 

(Nugent and Iozzo, 2000). It also has a role in stimulating 

the growth and development of new blood vessels (De-

biais et al., 2004). When FGF-2 is added to the culture 

medium of MSCs, it may act via receptor-mediated 

mechanisms. But after transfection of the FGF-2 gene, it 

can act both intracellularly and extracellularly, and modu-

lates several signals (Fig. 2). Transfection with FGF-2 

increased the viability of the MSCs and promoted the 

formation and survival of myocytes in the border regions 

of the infarcted myocardium. In addition, flow cytometric 
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analysis showed that Nkx2.5 expression was significantly 

higher in the FGF-2-MSCs, than in control MSCs. 

The activation of ERKs plays an important role in gene 

regulation in cardiac hypertrophy, and is a sensitive and 

quantitative marker for the hypertrophic response of car-

diac myocytes (Lee et al., 2003). Stimulation of protein 

synthesis by α1-AR as well as β-AR agonists is a symp-

tom of hypertrophy, and the pathways by which norepi-

nephrine induces cardiomyocyte hypertrophy are well 

defined. Interestingly, we found that adrenergic signal 

transduction in FGF-2-MSCs is similar to that in neonatal 

cardiomyocytes, indicating that FGF-2-MSCs have func-

tionally active adrenergic receptors, unlike control MSCs.  

We have shown here that FGF-2-transfected MSCs sur-

vived better in hypoxic conditions and were significantly 

retained in infarcted regions of myocardium. They also 

expressed cardiac-specific markers and improved neovas-

cularization. Our results suggest that genetic modification 

of MSCs with FGF-2 before transplantation offers a novel 

therapeutic approach to the treatment of myocardial in-

farction and end-stage cardiac failure. 
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