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ABSTRACT

Mesenchymal stem cells inhibit transmission of α-synuclein by modulating clathrin-

mediated endocytosis in parkinsonian models

Ha Na Kim

Division of Medical Science

The Graduate School, Yonsei University

(Directed by Professor Phil Hyu Lee)

Ample evidence has suggested that misfolded α-synuclein can be released from cells and transmitted 

from one brain area to others through cell-to-cell propagation in Parkinson’s disease (PD). In terms of 

prion-like behavior, extracellular α-synuclein plays key roles in the pathogenesis and progression of 

α-synucleinopathies. Mesenchymal stem cells (MSCs) secrete various cytotropic factors that have 

neuroprotective effects through complex mechanisms, such as modulation of neuroinflammation, 

enhancement of cell survival signals, increased neurogenesis, and modulation of autophagy. In the 

present study, we investigated whether MSCs could exert neuroprotective effects through modulation 

of cell-to-cell transmission on extracellular α-synuclein. Using α-synuclein-enriched models, we 

showed that mesenchymal stem cells (MSCs) inhibited cell-to-cell transmission by blocking the 

clathrin-mediated endocytosis of extracellular α-synuclein via modulation of the interaction with N-

methyl-D-aspartate receptors, which led to a prosurvival effect on neurons with functional 

improvement of motor deficits. Moreover, MSC treatment significantly inhibited transmission of α-

synuclein from ipsilateral to contralateral hemisphere of α-synuclein inoculation compared to α-

synuclein treated PD animals. Furthermore, Galectin-1, soluble factors derived from MSCs, played an 
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important role in the transmission control of extracellular α-synuclein in these models. Our data 

suggest that MSCs exert neuroprotective properties through inhibition of cell-to-cell transmission of 

extracellular α-synuclein, which may be applicable to clinical strategies for treatment of PD patients.

---------------------------------------------------------------------------------------------------------------------------

Key words: mesenchymal stem cell, α-synuclein, transmission, parkinson’s disease
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Mesenchymal stem cells inhibit transmission of α-synuclein by modulating clathrin-

mediated endocytosis in parkinsonian models

Ha Na Kim

Department of Medical Science

The Graduate School, Yonsei University

(Directed by Professor Phil Hyu Lee)

I. INTRODUCTION

α-Synuclein consists of 140 amino acids and is found naturally as an unfolded cytoplasmic protein in 

neuronal synaptic terminals. However, overexpression of α-synuclein interrupts normal cell functions 

and leads to decreases in neurite outgrowth and cell adhesion.1 α-Synuclein aggregates comprised of 

monomeric, oligomeric intermediate, or fibrillar forms are thought to be involved a critical step in the 

pathogenesis of Parkinson’s disease (PD) and in other α-synucleinopathies, such as multiple system 

atrophy and dementia with Lewy bodies.2

Oligomeric and monomeric α-synuclein have both been detected in cerebrospinal fluid and plasma 

samples from PD patients, suggesting that small aggregates of α-synuclein access the extracellular 

space.3-5 Previous animal and clinical data suggest that misfolded α-synuclein can be released from 

cells by exocytosis and transmitted from one brain area to another via cell-to-cell propagation.6,7

Although the exact mechanism of α-synuclein transmission remains unknown, evidence suggests that 

clathrin-mediated endocytosis (CME) may have an important role in internalization of extracellular α-

synuclein.8,9 As the cargo protein for endocytosis is usually recognized by a specific receptor on the 
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cell surface,10-12 it is possible that α-synuclein may interact with cell-surface receptors that have not 

been well specified until now. N-methyl-D-aspartate (NMDA) receptor subunits contain motifs that 

bind the endocytic adaptor protein involved in CME,13 and a recent study provided the evidence that 

α-synuclein participates in CME through interaction with an NMDA receptor.9 Accordingly, α-

synuclein propagation from one area of the brain to others via cell-to-cell transmission is closely 

related with disease progression or clinical severity. Thus, strategies targeting modulation of α-

synuclein transmission be important for development of future disease modifying therapies in 

individuals with α-synucleinopathies.

Mesenchymal stem cells (MSCs) secrete various cytotropic factors including neurotrophic growth 

factors, chemokines, cytokines, and extracellular matrix protein, which in turn, exert neuroprotective 

effects.14-16 In previous studies, we showed that MSCs have potent neuroprotective effects through 

modulation of neuroinflammation, inhibition of apoptotic cell death, increases in neurogenesis and 

neuronal differentiation, and enhancement of autophagy in neurodegenerative models.17-21 In the 

present study, we evaluated whether MSCs would inhibit cell-to-cell transmission of extracellular α-

synuclein and thus exert a neuroprotective effect using α-synuclein enriched models. Furthermore, we 

determined that galectin-1 (Gal-1), the biological molecule secreted from MSCs, plays a crucial role 

in modulation of extracellular α-synuclein transmission.

II. MATERIALS AND METHODS

1. α-Synuclein aggregate preparation and fluorescent dye labeling

Recombinant α-synuclein (200 μM in phosphate buffered saline (PBS; HyClone, Irvine, CA,USA)) 

was agitated at 37 ˚C (250 rpm) for 14 days. After brief sonication, the protein was incubated for 

another 7 days. Aggregated protein was collected by ultracentrifugation at 200,000 × g for 1 hr, and 

the pellet was resuspended in PBS with brief sonication. Alexa Fluor 488 labeling of α-synuclein

aggregate was performed according to the manufacturer’s instructions (Invitrogen, Carlsbad, CA, 



5

USA). Briefly, aggregate proteins were incubated with 24-fold molar excess of Alexa Fluor 488 at 

room temperature for 1 hr. Excess unbound Alexa Fluor 488 dye was removed by passing through a 

desalting column. 

2. MSCs and SH-SY5Y culture

Frozen vials of characterized human MSCs at passage 2 were obtained from the Severance Hospital 

Cell Therapy Center (Seoul, South Korea). The human neuroblastoma cell line, SH-SY5Y cells were 

obtained from the Korean Cell Line Bank (Seoul, South Korea). Both MSCs and SH-SY5Y cells were 

maintained in Dulbeccoʼs Modified Eagle Medium (DMEM; HyClone) supplemented with 10% fetal 

bovine serum (HyClone) and an antibiotic mixture of penicillin and streptomycin (1%, HyClone). 

When these cells reached 70–80% confluence, they were trypsinized and subcultured. These cells 

were cultivated in a humidified incubator at 37 ˚C and 5% CO2 before use. For in vitro experiments, 

SH-SY5Y was plated at a density (of 1.5×104/cm2) and treated with CM. For differentiation, SH-

SY5Y was plated at a density (of 5×105/ cm2) and grown as monolayer in DMEM. 1 day after plating, 

the cells were incubated in fresh DMEM with 10 mM retinoic acid (Sigma, St. Louis, MO, USA). The 

medium was changed on alternate days, and cultures were allowed to differentiate for 2 wk22 and then 

treated with α-synuclein (1 μM) or Gal-1 (100 ng) for 2 hr. Additionally, the effects of MSCs were 

tested in differentiated SH-SY5Y that was co-cultured without direct contact using a Costar transwell 

(Corning, Big Flats, NY, USA). The MSCs were cultured on the permeable membrane of Costar 

transwell insert and the differentiated SH-SY5Y cells were maintained on the bottom of a plate. For 

inhibition of α-synuclein clearance, Bafilomycin A1 (50 nM, Sigma) was added to the medium 

containing α-synuclein. For inhibition of endocytosis, Dynasore (80 mM, Sigma) was pre-treated to 

the replacement medium for 2 hr. For inhibition of endocytosis, MK-801 hydrogen maleate (50 mM, 

Sigma) was pre-treated to the replacement medium for 3 hr. All experiments were replicated 3 times. 

3. Plasmid Transfections

Transfection was performed using Superfect (Bioneer, Daejeon, South Korea) according to the 

manufacturer’s instructions. Differentiated SH-SY5Y cells were maintained in OPTI-MEM medium 
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supplemented with 10% FBS and incubated at 37 ˚C. Cells were plated 24 hr prior to transfection, 

growing to 80–90% confluence prior to transfection. The cells were performed using Lipofectamine 

2000 (Invitrogen) according to the manufacturer’s instructions. For culture of donor and acceptor cells, 

the acceptor cells were transfected with mCherry-tagged (Red) endosomal Rab5. The donor cells were 

prepared by incubating with Alexa Fluor 488 labeling of α-synuclein for 3 hr. After PBS washing and 

trypsinization, the donor cells (40,000 cells per dish mixed (1:1)) were co-cultured for 24 hr on the top 

of the acceptor cells. 

4. Preparation of cell CM

CM were prepared as follows: 80% confluent MSCs at passage 5 and SH-SY5Y cells were fed with 

serum-free DMEM. The medium of MSCs and SH-SY5Y cells were both assumed to contain various 

paracrine molecules. These medium were collected. 

5. 2D-PAGE

2D-PAGE was basically performed as described previously.23 Briefly, 200 μg of protein extract were 

separated by isoelectric focusing using an IPG strip with a nonlinear pH gradient of 4–10 for the first 

dimension, and then sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE, 26×20-

cm format) for the second dimension. Proteins were detected by alkaline silver staining as described 

previously.24 Image analysis and quantification of protein spots were performed using the PDQuest 

software (Bio Rad, Hercules, CA, USA). The quantity of protein in each spot was normalized relative 

to the total valid spot intensity.

6. MALDI-TOF/MS analysis 

For PMF, protein spots were excised, digested with trypsin (Promega, Madison, Wisconsin, USA), 

mixed with α cyano-4-hydroxycinnamic acid in 50% acetonitrile/0.1% trifluoroacetic acid, and 

subjected to MALDI-TOF/MS analysis by Microflex LRF 20 (Bruker Daltonics, Billerica, MA, USA) 

as described.25 Spectra were collected from 300 shots per spectrum over the m/z range 600–3000 and 

calibrated by two-point internal calibration using trypsin autodigestion peaks (m/z 842.5099, 
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2211.1046). The peak list was generated using Flex Analysis 3.0 (Bruker Daltonics). The thresholds 

used for peak-picking were as follows: 5000 for minimum resolution of monoisotopic mass, 2.5 for 

S/N. The profound (http://prowl.rockefeller.edu/prowl-cgi/profound.exe) program was used to search 

the human NCBInr database for protein identification. The following parameters were used for the 

database search: trypsin as the cleaving enzyme, a maximum of one missed cleavage, iodoacetamide 

as a complete modification, oxidation as a partial modification, monoisotopic masses, and a mass 

tolerance of ± 0.1 Da. PMF acceptance criteria were based on probability scoring.

7. Cell viability analysis

SH-SY5Y cells were harvested and plated in 96-well polystyrene plates (Corning) at a 1.5×104 cells 

per 100 μL of medium per well. Plates were incubated at 37 ˚C for 24 hr to allow cells to attach. After 

24 hr, the medium was exchanged with 100 μL of the preincubated mixtures of α-synuclein with CM 

or SH-SY5Y cells were directly treated with α-synuclein. The same volume of DMEM was added to 

the control cultures. Plates were then incubated at 37 ˚C for an additional 24 and 48 hr. Cell viability 

was measured by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) reduction 

assays essentially as described.26 Briefly, after the cells were incubated with the various medium 

samples, MTT was added to a final concentration of 0.5 mg/mL. After incubation at 37 ˚C for 3 hr, 

the plats were centrifuged and the medium was aspirated from each well. The absorbance was 

measured by an ELISA microplate reader (VersaMax, Sunnyvale, CA, USA) at 490 nm. Cell viability 

was calculated by dividing the absorbance of wells containing samples (corrected for background) by 

the absorbance of wells containing medium alone (corrected for background).

8. Reverse transcription-polymerase chain reaction (RT-PCR)

To knock down Gal-1 in MSCs cells, Gal-1 small interfering RNA (siRNA) construct (Santa Cruz,

Santa Cruz, CA, USA) was purchased and tested for knockdown efficiency. MSCs were plated at a 

density of 1×105/cm2 and incubated with 8 μL of 20 μM siRNA (final concentration 40 nM) in 100 μL

of Opti-Minimum Essential Media (Gibco, Grand Island, NY, USA) containing 10 μL of 

Lipofectamine 2000 (Invitrogen). After 72 hr, total RNA was extracted from the MSCs using TRIzol®
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reagent (Invitrogen) in accordance with the manufacturer’s protocol. An equal amount of RNA (1 µg) 

in each experiment was reverse transcribed using amfiRivert cDNA Synthesis Premix (GenDEPOT,

Barker, TX, USA). Subsequently, 2 µL of cDNA were used as a template for RT- PCR analysis in 

amfiRivert 1-Step RT-PCR Kit (GenDEPOT). PCR was performed using 10 pmol of primers for 

human Gal-1(Forward 5'- GCAACCTGAATCTCAAACC -3', Reverse 5'-

GGCCACACATTTGATCTTG -3'). After an initial denaturation at 95 ˚C for 2 min, 30 cycles of PCR 

were performed, consisting of denaturation (1 min, 95 ˚C), annealing (1 min, 49.8 ˚C) and extension 

(1 min, 72 ˚C) followed by a final extension step (5 min, 72 ˚C). The PCR products were separated by 

electrophoresis on 2% agarose gels (Intron, Seongnam-si, Kyungki-do, South Korea) and stained with 

ethidium bromide (Sigma). Gels were examined under UV illumination (Bio Imaging Systems, 

Jerusalem, Israel). Density was measured using the Image Gauge v.4.0 software (Fujifilm Science 

Laboratory, Tokyo, Japan).

9. Animal study

All procedures were performed in accordance with the Laboratory Animals Welfare Act, the Guide for 

the Care and Use of Laboratory Animals and the Guidelines and Policies for Rodent Experiment 

provided by the Institutional Animal Care and Use Committee (IACUC) at the Yonsei University 

Health System. Male C57BL/6 mice (Orient Bio, Seongnam-si, Kyungki-do, South Korea) were 

acclimated in a climate-controlled room with a constant 12 hr light/dark cycle for 1 week prior to the 

initiation of drug administration. At 6 weeks of age, the mice received α-synuclein (5 μg/mouse) with 

and without dynasore (80 μM/mouse) was administered via the neocortex. Cortical administration was 

carried out in accordance with the procedure described previously with minor modifications.7 Briefly, 

mice were anesthetized with isoflurane (Baxter, Deerfield, IL, USA), and slowly injected bilaterally 

into the cortex (0.4 mm posterior to bregma, -1.3 mm lateral to midline and -0.6 mm ventral to the 

brain surface) using a stainless-steel injection needle (26-gauge) connected to a 10 mL Hamilton 

microsyringe (Hamilton, Reno, NV, USA). The needle was left in place for 10 min before being 

withdrawn slowly. To evaluate the short-term effects of MSCs on α-synuclein transmission, the mice 

were randomly divided into three groups (n = 5 per group): (1) Control; (2) α-synuclein; (3) α-
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synuclein and MSC. Control mice were injected with saline via tail vein at 1 day after α-synuclein 

inoculation (postoperative day 1). Mice in the MSC group were subjected to MSCs into the tail vain 

(1 × 106 cells /200 mL) for stereotactic injection at the same time. All mice were sacrificed on post-

operative day 7. Additionally, to evaluate the modulation of α-synuclein transmission by MSC-CM or 

Gal-1, the mice were randomly divided into four groups (n=5 per group): (1) Control; (2) Fresh 

medium; (3) MSC-CM; (4) Gal-1. Mice in the each group were subjected to medium delivery on 

postoperative day 1, and all mice were sacrificed on postoperative day 7. Finally, to evaluate the long-

term effects of MSCs on α-synuclein transmission, the mice were randomly divided into three groups 

(n = 5 per group): (1) Control; (2) α-synuclein; (3) α-synuclein and MSC. α-Synuclein was slowly 

injected bilaterally into the striatum (0.2 mm posterior to bregma, ±2.0 mm lateral to midline, and -2.6 

mm ventral to the brain surface). Mice in the MSC group were subjected to MSCs into the tail vain (1 

× 106 cells /200 mL) on postoperative day 1 and postoperative day 10. All mice were sacrificed on 

postoperative day 30.

10. Brain sample preparation 

For immunochemical analysis, all mice were deeply anesthetized with chloral hydrate (I.P., 0.4 g/kg; 

Fluka, Steinheim, Germany) and then perfused with 4% paraformaldehyde (Sigma) in 0.1 M 

phosphate buffer (pH 7.4). The brains were embedded in paraffin, and coronal sections 4 µm thick 

were then cut and placed on slides.

11. Immunocytochemistry and immunohistochemistry

SH-SY5Y cells and brain sections on deparaffinized tissue sections were washed twice in PBS and 

incubated in 0.2% Triton X-100 (Sigma) for 30 min at room temperature. They were blocked with 0.5% 

bovine serum albumin (BSA; Sigma) for 30 min. After blocking, they were rinsed three times with 0.5% 

BSA and incubated overnight at 4 °C with specific primary antibodies. The primary antibodies used 

as follows: mouse anti-α-synuclein (Millipore, Billerica, MA, USA), rabbit anti-α-synuclein (phospho 

S129, Abcam, Cambridge, UK), rabbit anti-EEA1 (Abcam), mouse anti-Clathrin (Sigma), mouse anti-

NuMA (Millipore), rabbit anti-Gal-1 (Abcam) and mouse anti-TH (Sigma). For detection of surface 
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NR1 and NR2A subunits, the cells and tissues were directly treated overnight at 4 ˚C with mouse anti-

NR1 (Abcam) and rabbit anti-NR2A (Millipore) without permeabilization with Triton X-100. 

Immunofluorescence labeling was carried out by incubating the cells with rabbit anti-IgG Alexa 

Fluor-555 (Invitrogen), mouse anti-IgG Cy-3 (Chemicon, Temecula, CA, USA), rabbit anti-IgG Cy-3 

(Chemicon) and rabbit anti-IgG FITC (AP132F, green; Chemicon). The cell nuclei were 

counterstained with 4',6-diamidino-2-phenylindole (DAPI; Invitrogen). The TH antibodies and 

phosphorylated α-synuclein antibodies were detected with 0.05 % diaminobenzidine (DAB, Vector 

Laboratories, Burlingame, CA, USA). The immunostained cells were analyzed using bright-field 

microscopy and viewed under a Zeiss LSM 700 confocal imaging system (Zeiss, Heidelberg, 

Germany). To analyze the localizations of antigens in double-stained samples, immunofluorescence 

images were created from the same tissue sections and merged using the Zeiss ZEN software (Zeiss).

12. Western blotting analysis

To extract membrane protein, we used Qproteome cell compartment kit (QIAGEN, Redwood City, 

CA, USA) following the manufacturer`s instructions. Cells and brain tissues were dissolved in ice-

cold RIPA buffer (50 mM Tris-HCl, pH 8.0, with 150 mM sodium chloride, 1.0% Igepal CA-630, 0.5% 

sodium deoxycholate, and 0.1% sodium dodecyl sulfate) (Sigma) plus protease inhibitor cocktail 

(Sigma). The lysates were centrifuged at 4 ˚C for 20 min (14,000 × g) and supernatants were 

transferred to fresh tubes. Briefly, 50 μg and 100 μg of protein were separated by SDS-gel 

electrophoresis and transferred onto hydrophobic PVDF membranes (GE Healthcare, 

Buckinghamshire, UK). The membranes were blocked in nonfat milk (BD, Franklin Lakes, New 

Jersey, USA). Membranes were probed with the following primary antibodies: rabbit anti-α-synuclein 

(Millipore), rabbit anti-α-synuclein (phospho S129, Abcam), rabbit anti-EEA1 (Abcam), mouse anti-

Clathrin (Sigma), mouse anti-NR1 (Abcam), rabbit anti-NR2A (Millipore), rabbit anti-Gal-1 (Abcam),

rabbit anti-caspase-3 (Cell Signaling, Danvers, MA, USA), mouse anti-actin (Santa Cruz), and rabbit 

anti-α-tubulin (Santa Cruz). As secondary antibodies, a 1:10000 dilution of horseradish peroxidase-

conjugated goat anti-rabbit antibody (GenDEPOT) and anti-mouse antibody (GenDEPOT) were used. 

Antigen–antibody complexes were visualized with a chemiluminescence system (Santa cruz), 
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followed by exposure to X-ray film (Fujifilm). For semiquantitative analysis, immunoblotting band 

densities were measured by computer imaging.

13. TUNEL Assay

Fragmented DNA was detected in apoptotic cells by adding Fluorescein 12-dUTP to nicked ends of 

DNA (In Situ Cell Death Detection Kit, Roche, Basel, Schweiz). Slides were incubated for 1 hr at 

37 °C in the dark, followed by a wash with PBS three times and stained with DAPI. Red fluorescence 

was correlated with DNA fragmentation. For quantitative measure of apoptosis, it was defined as a 

percentage of apoptotic cells per total number of cells. For the purpose of this study, we used the 

following terminology: TUNEL labelling index (LI) = Number of TUNEL-positive cells × 100 / Total 

number of nuclei. We selected eight random 200× fields per sample for all indices and counted 

approximately 1,000 cells for each sample.

14. Rotarod test

To assess motor function and coordination, and balance, mice were tested on the Rotarod apparatus 

(MED-Associates). On the day before the training session started, mice were habituated to the 

apparatus for 15 min. In training trials, mice were trained to run on the rotarod (20 rpm) for 10 min 

without falling, twice a day for three consecutive days before α-synuclein administration. In test trials, 

mice were placed on the rotarod with increasing speed, from 4 rpm to 40 rpm and were placed on the 

rotarod at 30 rpm (cut-off time 700 s maximum). The latency time to fall was recorded.

15. Pole test 

The pole test was performed according to a previous study.27 Each mouse was placed on the top of a 

vertical wooden rough-surfaced pole (1 cm in diameter and 50 cm in height). On the day prior to 

testing, mice were habituated to the apparatus by placing them at the top of the pole and allowing 

them to descend five times. The total time that it took each mouse to reach the base of the pole and 

place all four paws on the floor was recorded. For each session of five descents, the best performance 

was recorded as the total time. If the mouse was unable to turn completely downward, fell off, or 
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slipped down the pole, a default value of 120s was recorded.

16. Measurement of α-synuclein

The amount of a-Synuclein was measured using sandwich ELISA kit (AnaSpec, San Jose, CA, USA). 

10 μL of each diluted samples, and standards included in the kit were applied to microtiter plates 

precoated with antibody that specifically recognized a-Synuclein. Following an overnight incubation 

at 4 ˚C and washing, a detection antibody indirectly linked to an enzyme was applied. After 

incubation and washing, 350 μL of wash solutions were added to each well and then invert plate dry 

by hitting plate until no moisture appears. The substrate was added and incubated for 15 min at 37 ˚C, 

and then the reaction was stopped with stop solution. The color reaction was measured with an 

automatic ELISA microplate reader (BIOTECH, Winooski, VT, USA) with the wavelength set at 450 

nm. The software (Bio Rad) was used to create standard curves and to calculate the concentration of 

the samples.

17. Stereological cell counts

TH-stained neurons were counted in the right and left SN pars compacta (SNpc) of every fourth 

section throughout the entire extent of the SNpc. Each midbrain section was viewed at low power at a 

random start and then the number of TH-stained cells was counted at high power. To avoid double 

counting of neurons with unusual shapes, TH-stained cells were counted only when their nuclei were 

optimally visualized, which occurred only in one focal plane. After all of the TH-stained neurons were 

counted, the total numbers of TH-stained neurons in the SNpc were calculated by using the formula 

described.28

18. Statistical analysis 

The group means were compared using the Mann-Whitney U-test for pairs and the Kruskal-Wallis 

analysis for multiple groups. P values less than 0.05 were considered statistically significant. 

Statistical analyses were performed using commercially available software (version 12.0; SPSS Inc.).
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III. RESULTS

1. MSCs inhibit internalization and cell-to-cell transmission of extracellular α-synuclein in 

neuronal cells

When α-synuclein fibrils labeled with Alexa 488 were incubated with SH-SY5Y cells, punctate and 

vesicular patterns of α-synuclein were revealed in the cytoplasm. Co-culture with MSCs (Figure 1A) 

markedly decreased internalization of labeled α-synuclein fibrils (Figure 2A); however, co-culture 

with neuronal cells had no modulatory effects on α-synuclein internalization (data not shown). A 

donor-acceptor co-culture method (Figure 1B) demonstrated that the transfer of α-synuclein from 

donor cells to connected acceptor cells occurred in the α-synuclein treatment group; however, 

transmission of α-synuclein from donor cells to acceptor cells was observed infrequently in the group 

of co-culture with MSCs (Figure 2B). Thus, co-culture with MSCs significantly decreased the levels 

of internalized cytosolic α-synuclein with a concomitant increase in extracellular α-synuclein of 

culture medium compared with those of the α-synuclein treatment group (Figure 2C). To exclude

lysosomal degradation of α-synuclein by SH-SY5Y and internalization of α-synuclein by MSCs, a 

lysosomal inhibitor (bafilomycin) and endocytosis blocker (dynasore) were added to the SH-SY5Y 

and MSC co-cultures, respectively (Figure 1C,D). These drugs did not influence α-synuclein 

internalization or change the intracellular and extracellular α-synuclein levels (Figure 2C,D), 

indicating that soluble factors secreted from MSCs might be responsible for modulation of α-

synuclein internalization. Incubation of α-synuclein fibrils for 24 hr and 48 hr decreased SH-SY5Y 

cell viability, whereas co-culture with MSCs recovered α-synuclein-induced cell viability (Figure 2E). 
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Figure 1. Schematic illustrations of in vitro experiments of α-synuclein transmission. (A) SH-

SY5Y cells maintained on the bottom of a plate were co-cultured with MSCs using Costar transwell 

insert and simultaneously were treated with α-synuclein fibrils labeled with Alexa 488. (B) A donor-

acceptor co-culture method. The donor cells labeled with α-synuclein were co-cultured on the top of 

the acceptor cells transfected with mCherry-tagged (Red). Simultaneously, these cells were co-

cultured with MSCs using Costar transwell insert. (C,D) To exclude lysosomal degradation of α-

synuclein by SH-SY5Y and internalization of α-synuclein by MSCs, bafilomycin was simultaneously

added to the SH-SY5Y and MSC co-cultures (C) and MSCs were pre-treated with dynasore and then

co-cultured with SH-SY5Y cells (D). (E) The effects of treatment with MK-801 or dynasore on 

internalization of α-synuclein. (F) The effects of MSC-CM, Gal-1 siRNA-treated MSC-CM, or Gal-1 

treatment on internalization of α-synuclein.
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Figure 2. MSCs inhibit internalization and cell-to-cell transmission of extracellular α-synuclein.

(A) Immunostaining for internalization of labeled α-synuclein (αS, green) in neuronal cells after 

treatment with α-synuclein or co-culture with MSCs (MSC). Scale bar, 10 μm. (B) A donor-acceptor 

co-culture method for transmission (white boxed area) of α-synuclein from donor cells (green arrows) 

to connected acceptor cells (red arrows) after either α-synuclein treatment alone (upper panel) or co-

culture with MSCs (lower panel). Scale bar, 10 μm. (C) Quantification of internalized cytosolic α-

synuclein and extracellular α-synuclein in the culture medium of the α-synuclein treatment group, the 
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co-culture group with MSCs, and the bafilomycin-treated MSC group (n=3, each group). (D) 

Immunostaining for internalization of labeled α-synuclein in neuronal cells co-cultured with MSCs 

after treatment with either bafilomycin or dynasore. Scale bar, 10 μm. (E) Quantification of cell 

viability in the α-synuclein group, the co-culture group with MSCs, and the bafilomycin-treated MSC 

group (n=3, each group). All data are presented as the means ± s.e (independent sample t test). *P < 

0.05, **P < 0.01. 

2. MSCs inhibit CME of extracellular α-synuclein fibrils through modulation of surface 

NMDA receptors

We examned the expression and immnucoreactivity of clathrin to determine the role of CME in α-

synuclein internalization. When α-synuclein fibrils were incubated in SH-SY5Y cells, the expression 

of clathrin was significantly increased compared with that of the control. However, co-culutre with 

MSCs or treatment with MK-801 (Figure 1A,E), a noncompetitive NMDA receptor antagonist, 

significantly attenuated the expression of α-synuclein-induced clathrin (Figure 3A). Using confocal 

microscopy, we confirmed that co-culture with MSCs or treatment with MK-801 in α-synuclein-

treated neuronal cells markedly decreased the immnuoreactivity of clathrin that was co-localized with 

α-synuclein (Figure 3B). Additionally, the expression of early endosome antigen 1 (EEA1) was 

increased significantly in α-synuclein-treated neuronal cells compared with that of the control. 

However, co-culure with MSCs or treatment with dysnasore (Figure 1A,E) significantly decreased the 

expression of EEA1, the level of which corresponded to that of an endocytosis inhibitor treatment

(Figure 3C). Confocal microscopy showed that co-culture with MSCs or dynasore treatment in α-

synuclein-treated neuronal cells markedly decreased the immnuoreactivity of EEA1 that was co-

localized with α-synuclein (Figure 3D). Next, we identified whether MSCs inhibit the interaction 

between α-synuclein and NMDA receptors using extraction of cell surface membrane. α-Synuclein 

treatment in SH-SY5Y cells led to a significant attenuation in the expression of surface NR1 and 

NR2A subunits relative to control. However, co-culture with MSCs or MK-801treatment (Figure

1A,E) significantly increased the expression of α-synuclein-induced NR1 and NR2A subunits (Figure

3E,G). Moreover, immunocytochemical analysis showed that α-Synuclein treatment increased 
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immunoreactivity of surface NR1 and NR2A subunits that were co-localized with α-synuclein, 

whereas MSCs or MK801 treatment led to a decrease in immnuoreactivity of co-merged α-synuclein 

and surface NR1 and NR2A subunits (Figure 3F,H).
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Figure 3. MSCs inhibit CME of extracellular α-synuclein fibrils via modulation of surface 

NMDA receptors. (A,B) Western blot for clathrin (A) and immunostaining of clathrin that is co-

localized with α-synuclein (B) after either α-synuclein treatment alone, co-culture with MSCs (MSC), 

or MK-801 treatment (n=3, each group). Scale bar, 10 μm. (C,D) Western blot for EEA1 (C) and 

immunostaining of EEA1that is co-localized with α-synuclein (D) after either α-synuclein treatment 

alone, co-culture with MSCs, or dynasore treatment (n=3, each group). Scale bar, 10 μm. (E,F) 

Western blot for NR1 (E) and immunostaining of NR1 that is co-localized with α-synuclein (F) after 

either α-synuclein treatment alone, co-culture with MSCs, or MK-801 treatment (n=3, each group). 

Scale bar, 10 μm. (G,H) Western blot for NR2A (G) and immunostaining of NR2A that is co-

localized with α-synuclein (H) after either α-synuclein treatment alone, co-culture with MSCs, or 

MK-801 treatment (n=3, each group). Arrowheads denote co-merged α-synuclein and these proteins.
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Scale bar, 10 μm. All data are presented as the means ± s.e (independent sample t test). *P < 0.05, **P 

< 0.01.

3. Identification and characterization of MSC-derived factors 

To determine proteins secreted from MSCs, we collected three independent samples of fresh medium, 

SH-SY5Y-conditioned media (CM), and MSC-CM for two-dimensional polyacrylamide gel 

electrophoresis (2D-PAGE) and matrix-assisted laser desorption/ionization-time of flight mass 

spectrometer/mass spectrometer (MALDI-TOF/MS) proteomics (Figure 4A,B). Of the proteins 

expressed exclusively in MSC-CM (Table 1), we selected Gal-1 as candidates for α-synuclein

modulation. We identified that Gal-1 was expressed within MSCs injected intravenously in α-

synuclein-inoculated animals by showing that human specific nuclear mitotic apparatus protein 

(NuMA)-positive cells were co-immunostained with Gal-1 (Figure 5A) and that the expression of 

these proteins was significantly increased in MSCs-treated animals (Figure 5B). Next, we evaluated 

whether Gal-1 can modulate cell-to-cell transmission of α-synuclein (Figure 1F). Gal-1 treatment in 

α-synuclein-treated neuronal cells led to decreased internalization of labeled α-synuclein (Figure 4C) 

with a concomitant decrease in expressions of clathrin and EEA1 as well as increased expression of 

NR1 and NR2A (Figure 4D), which was followed by increased neuronal viability (Figure 4E). When 

MSCs were treated with Gal-1 siRNA (Figure 6), Gal-1 siRNA counteracted the inhibitory effect of 

MSCs on CME of α-synuclein via NMDA receptors (Figure 4C,D). Moreover, SH-SY5Y cell viability 

was prominently attenuated in the presence of Gal-1 siRNA-treated MSC-CM (Figure 4E). However, 

the intensity of α-synuclein aggregates, cell-to-cell transmission, and neuronal viability in Gal-1

siRNA-treated MSC-CM were not comparable to the corresponding values in fresh medium or SH-

SY5Y-CM (Figure 4C–E), suggesting that other soluble factors may be involved in extracellular α-

synuclein modulation. 
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Table 1. Identification of differentially expressed proteins in MSC-CM.

No. Accession 

No.

Protein name pI MW Coverage 

(%)

Score

1 gi|4254297

8

Chain B, X-Ray Crystal Structure Of 

Human Galectin-1

4.8 21.2 75 139

2 gi|1578314

04

Structural And Electrophysiological 

Analysis Of Annexin V Mutants

4.7 43.2 76 282

3 gi|1527750

3

ACTB protein 5.1 55.2 70 309

4 gi|5822007 Chain A, Gelatinase A 85.6 5 23 107

5 gi|178045 gamma-actin, partial 38.2 5.4 58 165

6 gi|2136109

1

ubiquitin carboxyl-terminal hydrolase 

isozyme L1

34.6 5.4 47 136

7 gi|4033042

60

septin-5 isoform 1 37.7 6 27 74

8 gi|30102 type I collagen 40.6 6.2 37 168

9 gi|4507877 vinculin isoform VCL 128.4 6.6 23 172

10 gi|7669550 vinculin isoform meta-VCL 128.8 6.7 20 135

11 gi|1869729

98

The Human Non-Classical Major 

Histocompatibility Complex Molecule 

18.9 7.2 79 194

12 gi|184086 histone H2B.1, partial 22.7 9.5 64 122

pI: Isoelectric Point, MW: Molecular Weight
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Figure 4. Gal-1 plays an important role in transmission control of extracellular α-synuclein.

(A,B) 2D-PAGE and MALDI-TOF/MS proteomics approaches from MSC-CM. On the 2D-PAGE gel 

of total protein extracted from each medium at 72 h, spot intensities and patterns were largely similar 

between independent samples from the SH-SY5Y-CM group and MSC-CM group. (A) Fresh medium 

contained 6 discernable polypeptides, SH-SY5Y-CM contained 87 and 96 discernable polypeptides, 

and MSC-CM contained 189 and 157 discernable polypeptides by silver staining. (B) The analysis 

identified 47 spots in MSC-CM that differed significantly by at least twofold in expression level 

compared with fresh medium or SH-SY5Y-CM. The area shown in the yellow box in the left panel is 

enlarged in the right panels. Gal-1 protein was one of them expressed by yellow circle in enlarged 

image. A Venn diagram showed that MSC-CM contained 32 spots, including Gal-1, which were not 

shared by fresh medium and SH-SY5Y-CM. (C) Immunostaining for clathrin, EEA1, and surface NR1 

and NR2A in neuronal cells that are co-localized with α-synuclein (αS) in the presence of fresh 

medium, MSC-CM, Gal-1 treatment, or Gal-1 siRNA treated MSC-CM. Scale bar, 10 μm. (D) 

Western blot for clathrin, EEA1, and surface NR1 and NR2A in neuronal cells after treatment with 

either Gal-1 or Gla-1 siRNA treated MSC-CM compared with fresh medium or MSC-CM (n=3, each 

group). (E) A viability assay in neuronal cells after αS fibrils were treated with either Gal-1 or Gal-1 

siRNA treated MSC-CM compared with fresh medium or MSC-CM (n=5, each group). All data are 

presented as the menas ± s.e. *P < 0.05, **P < 0.01.
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Figure 5. Gal-1 expresses within MSCs injected intravenously in α-synuclein-inoculated animals. 

NuMA-positive cells were co-immunostained with in the cortex of MSCs-treated animals (A), and the 

expression of Gal-1 was significantly increased in MSCs-treated animals (B). Arrowheads denote co-

localization of NuMA with Gal-1. Scale bar represents 20 μm.

Figure 6. RT-PCR analysis of Gal-1 in MSCs. Transfection of MSCs with a Gal-1siRNA construct 

effectively downregulated endogenous expression of Gal-1 mRNA.

4. Short-term effects of MSCs on cell-to-cell transmission of extracellular α-synuclein in α-

synuclein-inoculated animals

Following stereotaxic inoculation of Alexa Fluor 488-labeled α-synuclein fibrils into the cortex of 

mice (Figure 7A,B), we examined internalized α-synuclein that was detected as fluorescent punctate 

within the cytoplasm at 7 days after α-synuclein inoculation. The immunoreactivity of α-synuclein 

was more densely observed in the cortical areas neighboring the inoculation site and extensively 
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detected from the ipsilateral cortex to the contralateral hemisphere (Figure 8A). However, MSC 

treatment markedly decreased the density of internalized α-synuclein in both ipsilateral and 

contralateral hemispheres (Figure 8A). Moreover, we examined the immunoreactivity of 

phosphorylated α-synuclein to evaluate whether exogenous α-synuclein induces pathogenic α-

synuclein. The phosphorylated α-synuclein was exclusively immunostained in ipsilateral and 

contralateral hemispheres of α-synuclein-inoculated animals, and this immunoreactivity was observed 

in neurons regardless of exogenous α-synuclein (Figure 8B). However phosphorylated α-synuclein 

immunoreactivity was not observed in MSC-treated animals (Figure 8B). The ELISA analysis showed 

that MSC treatment significantly attenuated the expression of cytosolic α-synuclein in both ipsilateral 

and contralateral hemispheres of α-synuclein inoculation compared with that of α-synuclein-treated 

mice (Figure 8C). In addition, MSC treatment in α-synuclein-inoculated brain significantly attenuated 

phosphorylated α-synuclein expression (Figure 8D). Next, we examined whether MSC administration 

modulates CME of extracellular α-synuclein fibrils through modulation of surface NMDA receptors. 

An inoculation of α-synuclein fibrils led to increased expression of clathrin in both ipsilateral and 

contralateral hemispheres of inoculation, whereas MSC treatment significantly attenuated expression 

of this protein (Figure 8E). Immunohistochemical analysis showed that MSC treatment led to a 

decrease in the immunoreactivity of labeled α-synuclein and clathrin in both ipsilateral and 

contralateral hemispheres (Figure 9). As a result of CME inhibition, MSC administration in α-

synuclein-inoculated mice significantly decreased expression of EEA1 (Figure 8E) and the 

immunoreactivity of labeled α-synuclein and EEA1 in both ipsilateral and contralateral hemispheres 

(Figure 9). Additionally, MSC administration led to a significant increase in the expression of α-

synuclein-induced surface NR1 and NR2A subunits (Figure 8E) and a decrease in immunoreactivity 

of surface NR1 and NR2A subunits that were co-localized with α-synuclein (Figure 9) in both 

ipsilateral and contralateral hemispheres of α-synuclein-inoculated mice. Consequently, α-synuclein 

inoculation led to markedly increased expression of cleaved caspase-3 and the immunoreactivity of 

terminal deoxynucleotidyltransferase-mediated dUTP nick end labelling (TUNEL) in the ipsilateral 

hemisphere relative to controls; however, MSC or Gal-1 treatment notably decreased the expression 

of cleaved caspase-3 and the number of TUNEL-positive neurons (Figure 8F,G). 
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Figure 7. Schematic illustration of stereotaxic injections. Alexa Fluor 488-labeled α-synuclein 

fibrils (red circle) were inoculated stereotaxically into the right cortex (A) and the dorsal striatum (C). 

Following stereotaxic inoculation of α-synuclein, labeled α-synuclein fibrils were noted in the cortex 

(B) and striatum (D). Scale bar represents 10 μm.
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Figure 8. Short-term effects of MSCs on extracellular α-synuclein transmission. (A) 

Immunostaining for internalized Alexa 488 labeled α-synuclein (αS), showing that the density and 

extent of propagated αS in ipsilateral and contralateral hemispheres were less prominent in mice 

receiving MSCs (MSC) compared with αS alone. Scale bar, 10 μm. Arrowheads denote labeled αS in 

the cortical areas. (B) The immunoreactivity of phosphorylated α-synuclein (p-αS) was exclusively

noted in αS-inoculated animals, whereas this immunoreactivity was not observed in MSC-treated 

animals. Scale bar, 10 μm. Arrowheads denote co-localization of Alexa 488 labeled αS with p-αS. (C) 

Quantification of cytosolic αS in ipsilateral and contralateral hemispheres of mice receiving MSCs 

compared with αS alone (n = 5, per group). (D) Western blot for p-αS in ipsilateral and contralateral 

hemispheres of mice receiving MSCs compared with αS alone (n = 5, per group). (E) Western blot for 
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clathrin, EEA1, NR1 subunit, and NR2A subunit in ipsilateral and contralateral hemispheres of mice 

receiving MSCs compared with αS alone (n = 5, per group). (F,G) Western blot for pro- and cleaved 

caspase-3 (F) and immunostaining of TUNEL (G) in mice after treatment with MSCs compared with 

αS alone. Scale bar, 10 μm. All data are presented as the menas ± s.e. *P < 0.05, **P < 0.01. I: 

ipsilateral, C: contralateral.
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Figure 9. Treatment with either MSCs or Gal-1 modulates clathrin mediated endocytosis of 

extracellular α-synuclein fibrils through modulation of surface NMDA receptors.

Immunostaining of clathrin (A), EEA1 (B), NR1 (C), and NR2A (D) that is co-localized with α-

synuclein in ipsilateral and contralateral hemispheres of mice receiving MSCs (MSC), MSC-CM, or 

Gal-1 compared with α-synuclein alone. An inoculation of α-synuclein fibrils led to an increase in 

immunoreactivity of clathrin, EEA1, NR1, and NR2A that is co-localized with α-synuclein, whereas 

treatment with either MSCs or Gal-1 attenuated immunoreactivity of co-merged α-synuclein and these 

proteins (white arrowheads). Scale bar, 10 μm.

5. Cell-to-cell transmission of extracellular α-synuclein is decreased by Gal-1 in α-synuclein-

inoculated animals

We evaluated whether Gal-1 can modulate α-synuclein transmission in in α-synuclein-inoculated 

animals. Inhibition of α-synuclein propagation was similarly observed following MSC-CM or Gal-1 

treatment (Figure 10A). Additionally, MSC-CM or Gal-1 treatment markedly decreased the 

immunoreactivity of phosphorylated α-synuclein in ipsilateral and contralateral hemispheres of α-
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synuclein-inoculated animals (Figure 10B). The ELISA analysis confirmed that the expression of 

cytosolic and phosphorylated α-synuclein was significantly decreased in the ipsilateral and 

contralateral hemispheres following MSC-CM or Gal-1 (Figure 10C,D). MSC-CM or Gal-1 treatment 

significantly attenuated clathrin expression (Figure 10E) and immunoreactivity (Figure 9) in both 

ipsilateral and contralateral hemispheres of inoculation, which was accompanied by decreased 

expression of EEA1 (Figure 10E) and the immunoreactivity of labeled α-synuclein and EEA1 (Figure 

9). MSC-CM or Gal-1 treatment inhibited CME of extracellular α-synuclein fibrils through 

modulation of surface NMDA receptors; however, Gal-1 treatment did not show a significant 

interaction with surface NR2A subunit (Figure 10E). Consequently, MSC or Gal-1 treatment notably 

decreased the expression of cleaved caspase-3 and the number of TUNEL-positive neurons in α-

synuclein-inoculated animals (Figure 10F-H). 
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Figure 10. Treatment with either MSC-CM or Gal-1 modulates clathrin mediated endocytosis of 

extracellular α-synuclein fibrils and reduces the cell-to-cell transmission. (A) Immunostaining for 

internalized Alexa 488 labeled α-synuclein (αS), showing that the density and extent of propagated αS

in ipsilateral and contralateral hemispheres were less prominent in mice receiving MSC-CM or Gal-1. 

Scale bar, 10 μm. Arrowheads denote Alexa 488 labeled αS in the cortical areas neighboring the 

inoculation site. (B) Immunostaining of Alexa 488 labeled αS and phosphorylated α-synuclein (p-αS)

in ipsilateral and contralateral hemispheres were less prominent in treatment with either MSC-CM or 

Gal-1 compared with fresh medium. Scale bar, 10 μm. Arrowheads denote co-localization of Alexa 

488 labeled αS with p-αS. (C) Quantification of cytosolic αS in ipsilateral and contralateral 

hemispheres of mice receiving MSC-CM or Gal-1 (n = 5, per group). (D) Western blot for p-αS in

ipsilateral and contralateral hemispheres of mice receiving MSC-CM or Gal-1 (n = 5, per group). (E) 

Western blot for clathrin, EEA1, NR1 subunit, and NR2A subunit in ipsilateral and contralateral 

hemispheres of mice receiving MSC-CM or Gal-1 (n = 5, per group). (F,G) Western blot for pro- and 

cleaved caspase-3 (F), immunostaining of TUNEL (G), and TUNEL labelling index (H) in mice after 

treatment with MSC-CM or Gal-1. Scale bar, 10 μm. All data are presented as the menas ± s.e. *P < 

0.05, **P < 0.01. I: ipsilateral, C: contralateral. 
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6. Long-term effects of MSCs on transmission of extracellular α-synuclein in α-synuclein-

inoculated animals 

Following stereotaxic inoculation of Alexa Fluor 488-labeled α-synuclein fibrils into the dorsal 

striatum of mice (Figure 7C,D), we assessed dopaminergic neuronal loss in the substantia nigra (SN) 

of the midbrain and behavioral deficits at 30 days after α-synuclein inoculation. α-Synuclein 

inoculation in the striatum markedly increased the immunoreactivity of phosphorylated form of α-

synuclein in the midbrain (Figure 11A) as well as dopaminergic neurons (Figure 11B), which was 

accompanied by a significant decrease in the number of tyrosine hydroxylase (TH)-positive neurons 

in the SN (Figure 11C). On behavioral analysis, α-synuclein inoculation led to progressive patterns of 

the latency to fall on the Rotarod test and increased latency to descend at 30 days after α-synuclein 

inoculation on fall test compared to the control group (Figure 11D). However, MSC treatment in α-

synuclein-inoculated animals significantly attenuated the immunoreactivity of phosphorylated form of 

α-synuclein in the midbrain (Figure 11A) as well as dopaminergic neurons (Figure 11B). Moreover, 

MSC treatment decreased significantly dopaminergic neuronal loss in the SN (Figure 11C) and led to 

restoration of impaired motor coordination and balance on the Rotarod test and pole test (Figure 11D). 

In addition, phosphorylated α-synuclein was observed in the striatal areas neighboring the inoculation 

site and extensively detected in the bilateral parietal and entorhinal cortices at 30 days after α-

synuclein inoculation (Figure 11E). However, MSC treatment significantly attenuated the 

immunoreactivity of phosphorylated α-synuclein in these areas (Figure 11E).
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Figure 11. Long-term effects of MSCs on extracellular α-synuclein transmission. (A) The 

immunoreactivity of phosphorylated form of α-synuclein (p-αS) in the midbrain, showing that p-αS 

immunoreactivity was markedly attenuated MSC-treated animals compared to α-synuclein (αS)-

inoculated animals. Scale bar, 10 μm. Arrowheads denote co-localization of Alexa 488 labeled αS

with p-αS. (B) The immunoreactivity of p-αS in the TH-positive neurons of the SN was markedly 

attenuated MSC-treated animals compared to αS-inoculated animals. Scale bar, 10 μm. (C) The 

number of TH-positive neurons in the SN at 30 days after αS inoculation. Scale bar represents 10 μm. 

(D) Behavioral analysis, showing that αS inoculation led to progressive patterns of the latency to fall 

on the Rotarod test and increased latency to descend at 30 days after αS inoculation on fall test 

compared to the control group, whereas MSC treatment restored impaired motor coordination and 

balance on the Rotarod test and pole test (n=5, each group). (E) The distribution of p-αS

accumulations in the striatum, parietal cortex, and entorhinal cortex, showing that MSC treatment in 

αS-inoculated animals significantly attenuated the immunoreactivity of p-αS in these areas. Scale bar, 

10 μm. All data are presented as the menas ± s.e. *P < 0.05, **P < 0.01. I: ipsilateral, C: contralateral.
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IV. DISCUSSION

The present study demonstrated that MSCs have inhibited propagation of α-synuclein via modulation 

of cell-to-cell transmissions by inhibiting NMDA receptor-mediated endocytosis, which led to a 

prosurvival effect on neurons with functional improvement of motor deficits in α-synuclein-enriched 

models. In addition, we found that Gal-1, soluble factor derived from MSCs, plays an important role 

in transmission control of extracellular α-synuclein in these models. Our data suggest that the property 

of MSCs in modulating propagation of extracellular α-synuclein may be applicable to future clinical 

strategies for treatment of patients with α-synucleinopathies.

α-Synuclein has a tendency to aggregate and accumulate, thus forming small intracellular aggregates, 

which could lead to an increase in cellular toxicity and cell death in various types of α-

synucleinopathies.29,30 Importantly, recent studies have provided evidence for cell-to-cell propagation 

of α-synuclein,31,32 showing that α-synuclein and its aggregates are released from neuronal cells via 

exocytosis31,33,34 and that neurons and glial cells have the ability to internalize extracellular α-

synuclein aggregates through endocytosis.35-37 In terms of their prion-like behavior, extracellular α-

synuclein aggregates seem to play key roles in the pathogenesis and progression of α-

synucleinopathies; therefore, treatment strategies focused on modulation of extracellular α-synuclein 

transmission would be clinically relevant. In this regard, the results of immunotherapy in animal 

models of Lewy body diseases are very suggestive, because antibodies against α-synuclein can 

modulate aggregated α-synuclein at several steps of accumulation and propagation.38-42 Therefore, a 

therapeutic strategy to inhibit propagation of extracellular α-synuclein aggregates may be an 

important pharmacological target in disease-modifying treatment strategies for α-synucleinopathies.

Several studies have demonstrated that MSCs exert neuroprotective effects by secretion of neurotropic 

molecules that directly or indirectly can modulate neurodegenerative microenvironment.43,44

Additionally, MSCs are known to secrete several molecules into the neural niche microenvironment, 
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which could promote endogenous neural repair.45,46 Here, we found that MSCs have the ability to 

inhibit α-synuclein endocytosis and lead to inhibition of cell-to-cell transmission. In an α-synuclein-

enriched cellular model, MSCs inhibited internalization of extracellular α-synuclein and blocked cell-

to-cell transmission of α-synuclein in donor-acceptor cells model. As a result, MSCs significantly 

decreased the levels of internalized cytosolic α-synuclein and led to attenuation in α-synuclein-

induced cell death. Specifically, we demonstrated that MSCs can inhibit CME of extracellular α-

synuclein fibrils via modulation of interaction between α-synuclein and NMDA receptors. α-

Synuclein treatment led to increased expression of clathrin and EEA1 with a concomitant decrease in 

immunoreactivity of surface NR1 and NR2A subunits. Meanwhile, MSC treatment significantly 

attenuated α-synuclein-induced expression of clathrin and EEA1 as well as interaction between α-

synuclein and NMDA receptors. In an animal model of α-synuclein inoculation, MSC treatment 

markedly decreased the propagation of extracellular α-synuclein in regions of the brain at a distance 

from the inoculation site. When α-synuclein was inoculated in the cortex, MSC treatment markedly 

decreased the density of internalized α-synuclein and the pathogenic phosphorylated form of α-

synuclein in in both ipsilateral and contralateral hemispheres. Moreover, MSC administration in α-

synuclein-inoculated mice significantly decreased expression of clathrin, which was followed by 

decreased expression of EEA1and interaction between α-synuclein and NMDA receptors of NR1 and 

NR2A. Additionally, when α-synuclein was inoculated in the striatum, MSC treatment decreased 

phosphorylated form of α-synuclein expression in the midbrain at 30 days after inoculation. 

Consequently, modulation of extracellular α-synuclein propagation by MSCs led to exertion of a 

prosurvival effect on cortical neurons and nigral dopaminergic neurons with functional improvement 

of impaired motor coordination and balance against α-synuclein enriched environment.

Interestingly, we demonstrated in the present study that MSC-derived factor, Gal-1, could inhibit cell-

to-cell transmission of α-synuclein via modulation of interaction between α-synuclein and NMDA 
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receptors. Gal-1, a galactose-binding lectin, is a multifunctional molecule involved in the regulation 

of cell adhesion, cell proliferation, and programmed cell death.47 In nervous system, Gal-1 is involved 

in proliferation of neural stem cells, neritic outgrowth, and cellular adaptation of redox status 48,49 as 

well as regulation of glutamate toxicity via interaction with the NR1 subunit.48 In an α-synuclein-

enriched cellular model, Gal-1 treatment significantly decreased the levels of internalized cytosolic α-

synuclein with concomitantly decreased clathrin and EEA1 expressions and increased NR1 expression. 

This modulatory effect of Gal-1 on cell-to-cell propagation of aggregated α-synuclein was further 

supported by Gal-1 siRNA treatment in vitro, showing that siRNA counteracted the inhibitory effect 

of MSCs on CME of α-synuclein via NMDA receptors and its associated prosurvival effects on 

neuronal cells. In vivo data showed that Gal-1 was co-expressed within MSCs injected intravenously, 

and Gal-1 treatment blocked CME of extracellular α-synuclein fibrils by inhibiting interaction of α-

synuclein and surface NMDA receptors. In animals treated with enriched α-synuclein, this modulatory 

effect of Gal-1 on membrane trafficking of α-synuclein seemed to be comparable to those of MSCs, 

by showing that Gal-1 treatment markedly decreased the extent of inoculated α-synuclein aggregates, 

as well as expression of the pathological α-synuclein, compared to fresh medium. In this regard, the 

present study provides evidence that Gal-1 as MSC-derived soluble factor, can modulate the 

pathogenic microenvironments of extracellular α-synuclein via modulation of CME. 

Although the exact mechanism contributing cell-to-cell transmission of α-synuclein is unknown, 

several possible routes mediated by direct penetration, fluid-phase or receptor-mediated endocytosis, 

the form of exosome, or nanotube have been suggested depending on the forms of α-synuclein. Of 

those, receptor-medicated endocytosis, which requires specific interactions between ligands and cell-

surface receptors, seems to be a major mode of fibril internalization.37 Along with evidence of α-

synuclein participation in CME,9 several studies suggested that higher molecular weight α-synuclein, 

such as aggregated fibrillar or oligomeric forms may be internalized through an endocytic pathway 
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via receptor.9,24,25,50,51 Moreover, other studies have shown that the receptor-mediated endocytosis is 

also involved in amyloid-β transmission. Amyloid-β could decrease surface expression of NMDA 

receptors by promoting endocytosis of receptor proteins,52,53 which is quite in accordance with the 

present result. Additionally, the laminin receptor acts as a central role in mediating the internalization 

of amyloid-β.54 Taken together, the present data indicate that MSCs have a prosurvival effect on 

cortical and dopaminergic neurons against propagation of α-synuclein by modulating a major route of 

cell-to-cell transmission of toxic protein aggregates. 

According to our in vitro data, the modulatory effect of MSCs on extracellular α-synuclein and their 

prosurvival effects on neuronal cells were not completely blocked by Gal-1 siRNA-treated CM. 

Additionally, even though MSCs significantly interacted with both NR1 and NR2A subunit, Gal-1 

treatment did not show a significant interaction with surface NR2A subunit. These results suggest the 

existence of other MSC-derived soluble factors involved in aggregated α-synuclein transmission. 

Further studies are therefore required to identify MSC-derived small molecules responsible for 

extracellular α-synuclein modulation that would have clinical potential for the development of 

disease-modifying therapeutic strategies for α-synucleinopathies. 
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V. CONCLUSION

The present data indicated that MSCs exert neuroprotective properties through inhibition of cell-to-

cell transmission of extracellular α-synuclein. In addition, Gal-1 may be the principal soluble factor 

released by MSCs responsible for modulation of extracellular α-synuclein. With advantages in clinical 

applications,55,56 the use of MSCs or MSC-derived soluble factors as pharmacological modulators of 

α-synuclein propagation may be an effective therapeutic approach.
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ABSTRACT (IN KOREAN)

킨슨병 에 간엽 기 포가 클라트린 매개 엔도사 시스를

함 로 알 시 클레 포 간 달 억

<지도 수 필 >

연 학 학원 과학과

김 하 나

알 시 클레 포로 후, 포 간 달에 해 뇌 한 역에 다른

역 로 달 수 다고 보고 다. 포 알 시 클레 집체 프리 과

사한 거동 보 므로 알 시 클레 병 병과 에 한 역할 하

것 로 생각 다. 간엽 기 포(mesenchymal stem cell; 하, 'MSC'라 한다)

신경염 , 포 생 과 련 신 , 신경 생 가, 지 과 같

다양한 커니 통하여 신경보 과를 가지 사 트 로픽 를 비한다. 

알 시 클레 처리한 사 하여, MSC 가 N- 틸-D-아스 르 트 (N-

methyl-D-aspartate, 하 'NMDA'라 한다) 수 체 사 상 하여

알 시 클레 클라트린 매개 엔도사 시스를 억 함 로 알 시 클레 포

간 달 억 하여 운동기 향상과 함께 프로 과로 어짐 하 다.

알 시 클레 주 한 동물 에 , MSC MSC 지 알 시 클레

치 동측 에 측 로 알 시 클레 달 억 과 동시에

알 시 클레 집체 크기가 감 함 하 다. 또한, MSC 에 래 갈렉틴-

1 로 포함하여 포 알 시 클레 포 간 달 억 하
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한 역할 함 한다. 에, 본 연 MSC 가 포 알 시 클레

포간 달 억 함 로 신경 보 특 가짐 다.

핵심 말 : 간엽 기 포, 알 시 클레 , 달, 킨슨병


