
Effect of labiolingual inclination of a maxillary 
central incisor and surrounding alveolar bone loss 
on periodontal stress: A finite element analysis

Objective: The aim of this study was to investigate whether labial tooth 
inclination and alveolar bone loss affect the moment per unit of force (Mt/
F) in controlled tipping and consequent stresses on the periodontal ligament 
(PDL). Methods: Three-dimensional models (n = 20) of maxillary central 
incisors were created with different labial inclinations (5o, 10o, 15o, and 20o) 
and different amounts of alveolar bone loss (0, 2, 4, and 6 mm). The Mt/F 
necessary for controlled tipping (Mt/Fcont) and the principal stresses on the PDL 
were calculated for each model separately in a finite element analysis. Results: 
As labial inclination increased, Mt/Fcont and the length of the moment arm 
decreased. In contrast, increased alveolar bone loss caused increases in Mt/Fcont 
and the length of the moment arm. When Mt/F was near Mt/Fcont, increases in 
Mt/F caused compressive stresses to move from a predominantly labial apical 
region to a palatal apical position, and tensile stresses in the labial area moved 
from a cervical position to a mid-root position. Although controlled tipping 
was applied to the incisors, increases in alveolar bone loss and labial tooth 
inclination caused increases in maximum compressive and tensile stresses at 
the root apices. Conclusions: Increases in alveolar bone loss and labial tooth 
inclination caused increases in stresses that might cause root resorption at the 
root apex, despite the application of controlled tipping to the incisors.
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INTRODUCTION

  With increasing numbers of adult patients seeking 
orthodontic care, it is becoming more common to treat 
patients with periodontal disease. Common charac-
teristics of dentition with periodontal disease include 
labial flaring of the maxillary anterior teeth, diastema, 
irregular interdental spacing, rotation, extrusion, tipping, 
and drifting.1 A recent study showed that labial flaring 
due to pathologic migration of the maxillary anterior 
teeth was a common complication of moderate-to-
severe periodontitis and often motivated patients to seek 
periodontal and orthodontic therapy.2

  Several studies have investigated teeth in the upright 
position to evaluate stress distributions and movement 
patterns in teeth with different amounts of alveolar 
bone loss.3-6 However, the maxillary incisors are typically 
labially inclined by about 60o toward the occlusal plane 
rather than positioned upright.7 Moreover, the incisors 
are often more labially inclined when pathologic tooth 
migration is present in patients with alveolar bone 
loss2,8; therefore, the force vector is rarely perpendicular 
to the long axis of the incisor.
  Often, to correct a flared incisor in a patient with hori-
zontal bone loss, the minimum moment per unit force 
(controlled tipping) is delivered with the expectation that 
the lowest stress is applied to the root apex.9 However, 
when orthodontic force is applied to a tooth with 
alveolar bone loss, the strain-stress distribution changes 
in the periodontal ligament (PDL).10 This is important, 
because the magnitude and direction of an orthodontic 
load determines whether the tissue reacts with bone 
formation, bone resorption, or iatrogenic external apical 
root resorption.11,12 Recent studies that used three-
dimensional (3D) imaging technology suggested that 

a large force or high stress on the PDL led to external 
apical root resorption.13-15

  The aim of this study was to investigate how tooth 
inclination and bone loss affected the amount of 
moment per unit of force (Mt/F) needed for controlled 
tipping and consequent stresses on the PDL. Our null 
hypothesis was that the stress on the PDL imposed by 
controlled tipping applied to the incisor would not 
change with different tooth inclinations or with different 
amounts of alveolar bone loss.

MATERIALS AND METHODS

Construction of finite element models
  Stress on the PDL and tooth movements were inves-
tigated with a finite element analysis program (ANSYS 
ver. 12.1; Swanson Analysis System, Canonsburg, PA, 
USA). We created 3D models (n = 20) of maxillary 
central incisors with different labial inclinations and 
different amounts of alveolar bone loss (Figure 1). 
Tooth morphology was based on 3D scans of dental 
models produced from a sample survey of adults 
with normal occlusion in Japan (Model-i21D-400G; 
Nissin Dental Products, Kyoto, Japan). An orthodontic 
bracket was modeled based on the Micro-arch® (Tomy 
Co., Tokyo, Japan) structure. The PDL was 0.25 mm 
thick, and formed an even layer over the entire root 
surface.16,17 The alveolar bone was modeled 1 mm above 
the cementoenamel junction (CEJ), and followed the 
curvature of the CEJ in cases with normal bone levels. 
The axis of the normal incisor was inclined 60o from the 
occlusal plane.7

  The long axes of the abnormal incisor models were 
inclined facially at 0o, 5o, 10o, 15o, and 20o relative to 
the axis of the normal incisor model (Figure 2). Alveolar 

Figure 1. The basic model of an incisor. A, Tooth length, 24.2 mm; tooth root, 13.2 mm; bracket position midpoint, 4.5 
mm. The alveolar bone (dark blue) is situated 1 mm above the cementoenamel junction (CEJ). B, Normal inclination of an 
incisor 60° from the occlusal plane. C, A tetrahedral mesh covers the tooth surface and bracket. 
M, Mesial; D, distal; B, buccal; P, palatal.
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bone loss (0, 2, 4, and 6 mm) was assumed to be 
equivalent in the buccolingual and mesiodistal direc-
tions. As a result, in a model with 2 mm of bone loss, 
alveolar bone extended to 3 mm above the CEJ, and 
so on. Each of the 20 models consisted of an incisor, a 
PDL, and alveolar bone. All structures were subdivided 
into elements and nodes with a 3D brick tetrahedral 
mesh.

Mechanical properties of the materials
  All materials were assumed to be homogeneous, iso-
tropic, and linear-elastic. The properties of each material 
are listed in Table 1.18,19 

Loading conditions and boundary conditions
  Each of the 20 models was subjected to 3 loads 

applied to the crown as follows.
  1. A retraction force (F) of 100 gf that caused the 
crown to move lingually.
  2. A counter-tipping moment of force (Mt) that caused 
the crown to move in the labial direction. The Mt was 
created by applying coupled forces. The length of the 
moment arm was 1.5 mm. The Mt/F ratio varied from 0 
to 10 (Figure 3A).
  3. A counter-rotation moment (Mr) resulted in a 
distolingual rotation designed to counteract the 
confounding moment generated by the asymmetric 
morphology of the incisor (Figure 3B).20 The Mr was 
created by applying a coupled force, and calculated 
such that the mesial and distal ends of the incisal edge 
moved equal distances in the same direction. The length 
of the moment arm was 3.6 mm. Because the retraction 
force and length of the moment arm were the same 
regardless of the experimental conditions, Mr was set to 
be constant to prevent undesirable tooth rotation under 
all conditions. For the boundary condition, all nodes at 
the base of the model (bone) were fixed in all directions 
to constrain free-body motion.

Calculation for controlled tipping (Mt/Fcont)
  Controlled tipping (Mt/Fcont) was defined as the force 
that caused minimum movement of the root apex. The 

Table 1. Mechanical properties of each material

Young’s 
modulus (MPa)

Poisson  
ratio

   Periodontal ligament 0.05 0.49

   Alveolar bone 2,000 0.30

   Teeth 20,000 0.30

   Stainless steel 200,000 0.30

Bone loss 0 mm

60

Z

Y

2 mm 4 mm 6 mm

Z

Y 55 50 45 40
Occlusal
plane20155 10Normal = 0

A

B

Figure 2. Models of incisors with different inclinations and different amounts of alveolar bone loss. A total of 20 models 
were created (5 different inclinations and 4 levels of bone loss). A, Experimental incisor models with labial inclinations of 
5o, 10o, 15o, and 20o. B, Models demonstrating 0, 2, 4, and 6 mm of alveolar bone loss.
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total displacement of the apical root node was the 
sum of the displacements in 3 dimensions, as shown 
in Figure 3C. According to the definition given by 
Burstone,9 the center of rotation should be at the apex 
when controlled tipping is simulated. A simple, two-
dimensional conceptualization of that definition is that 
the Δy (anterior-posterior displacement) at the apex 
would be 0 with controlled tipping. In this study, even 
though rotation was controlled with a counter-rotational 
moment (Mr), the direction of the force caused an 
intrusion effect on the teeth due to the 60o inclination. 
As a result, the apex moved both two-dimensionally 
(anterior-posterior) and three-dimensionally. We defined 
the 3D movement (Δ) as follows:
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Table 2. Mt/F ratios for controlled tipping (Mt/Fcont) of 
the incisor for each bone loss amount and each labial 
inclination

Bone loss
(mm)

Labial inclination of the incisor

0° +5° +10° +15° +20°

0 8.5 8.0 7.0 6.0 5.0

2 9.0 8.5 7.5 6.5 5.5

4 9.5 9.0 8.0 7.0 6.0

6 11.0 10.0 9.0 8.0 6.5
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Figure 3. Forces associated with the 3 different loads applied to the tooth models. A, The first load (1) was a retraction 
force (100 gf) applied parallel to the occlusal plane at the midpoint of the bracket. The second load was a coupled force 
(2, 3) that created a counter-tipping moment (Mt). B, The third load was a coupled force (4, 5) that created a rotation 
moment (Mr). C, Calculation of the three-dimensional displacement (Δ) of the apex.
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was defined in reference to a previous study.5

  For each inclination and simulated bone loss amount, 
we plotted the relationship between the Mt/F ratio and 
principal stresses on the PDL (Figure 5). As bone loss 

increased, a given Mt/F imparted greater maximum 
tensile and compressive stresses on the PDL. Moreover, 
in teeth with greater alveolar bone loss, the stress 
changed more abruptly with changes in the Mt/F ratio. 
When the labial inclination of the incisor was increased 
without changing the amount of alveolar bone loss, the 
Mt/F ratio decreased for the lowest principal stress.
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Maximum tensile stress M /F = 4.0t Maximum compressive stress

Maximum tensile stress M /F = 5.0t Maximum compressive stress

Maximum tensile stress M /F = 6.0t Maximum compressive stress

Maximum tensile stress M /F = 7.0t Maximum compressive stress
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Maximum tensile stress M /F = 8.0t Maximum compressive stress

Maximum tensile stress M /F = 9.0t Maximum compressive stress

Maximum tensile stress M /F = 10.0t Maximum compressive stress

Figure 6. Incisor root stress 
distribution patterns under 
conditions with Mt/F near 
Mt/Fcont (red area, maximum 
tensi le stress;  blue area, 
maximum compressive stress). 
A, A tooth model with no 
alveolar bone loss and an 
incisal inclination of 15o; 
controlled tipping occurs at 
Mt/F = 6. B, A tooth model 
with 6 mm of alveolar bone 
loss and an incisal inclination 
of 15o; controlled tipping 
occurs at Mt/F = 8.
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  The patterns of stress distributed over the root were 
examined under conditions with an Mt/F value near 
that of Mt/Fcont (Figure 6). With increases in the Mt/F 
ratio near Mt/Fcont, compressive stresses dominant in the 
labial apical region moved to the palatal apical area (Mt/
F above Mt/Fcont). In contrast, tensile stresses dominant 
in the labial area (Mt/F below Mt/Fcont) moved from the 
cervical to the mid-root regions (Mt/F above Mt/Fcont). 
These patterns were similar under all experimental 
conditions.

DISCUSSION

  Previous studies analyzed upright incisors and forces 
applied perpendicular to the occlusal plane.3,4,21,22 
Moreover, many studies that investigated alveolar bone 
loss and stress distributions did not consider the facial 
inclination of teeth.3-5,23 The present study evaluated 
how tooth inclination and bone loss affected the M/
F ratio in controlled tipping and the resulting PDL 
stresses. We chose the maxillary central incisor because it 
typically undergoes the most detailed tooth movement, 
and carries a higher risk of external apical root 
resorption than all other teeth, except for the maxillary 
lateral incisor.24

  Often, correction of a flared incisor with alveolar 
bone loss involves a combination of retraction and 
intrusion. A mere retraction of flared teeth would lead 
to deepening of the bite.25 In the present study, force 
was applied parallel to the occlusal plane without an 
intrusive vector. Adding an intrusive force would incline 
the direction of the net force; this result would be 
comparable to applying a horizontal force to a tooth 
with a greater inclination. Therefore, we did not apply 
an intrusive force in this study (Figure 3).
  Geramy5 reported that alveolar bone loss caused 
the center of resistance to move toward the apex; 
however, its relative distance to the alveolar crest 
decreased at the same time. Figure 4 also shows that 
alveolar bone loss caused increases in the length of the 
moment arm. Siatkowski26 reported that an increase 
of 38% was needed to obtain bodily movement when 
5 mm of alveolar bone loss had occurred. Therefore, 
the applied force and moment magnitudes must be 
reduced proportionally to maintain physiologically 
tolerable movement, because reduced support of the 
PDL and alveolar bone causes changes in the center of 
resistance.5,27,28

  The incisor was modeled at inclinations over an average 
range (0o to 20o), both with and without different levels 
of alveolar bone loss (0 to 6 mm). When controlled 
tipping was applied to the incisor, the maximum 
compressive stress migrated along the y-axis to the 
root apex, and the maximum tensile stress migrated 

from the cervical area to the middle of the root. This 
distribution of stress was consistent with the findings of 
Kanjanaouthai et al.20 They found that incisors with a 
high degree of inclination experienced more compressive 
stress concentrated at the apices than incisors that were 
more upright. Labial inclination resulted in an increased 
intrusive force component directed parallel to the long 
axis; that force enhanced compressive stress at the apex 
and tension in the PDL in the longitudinal direction 
(Figure 6).
  As a result, facial inclination of the incisor caused 
a concentration of compressive stress at the apex; 
thus, controlled tipping of an incisor with a corrective 
force may lead to increased root resorption.24 This 
interpretation is consistent with findings reported in 
the literature, which suggested that increases in the 
angle between the central incisor and palatal plane 
were strongly correlated with increases in external apical 
root resorption.29 Furthermore, it was shown that the 
risk of external apical root resorption was enhanced by 
the movements of teeth with mature roots, extensive 
movement of the root, and intrusive mechanics.30

  Previous studies showed that teeth with alveolar bone 
resorption experienced increased maximum tensile and 
compressive stresses relative to those found in teeth with 
normal bone heights.6 In the present study, increasing 
the bone loss in teeth without changing the incisal 
inclination caused increased root apex displacements 
and greater maximum compressive and tensile stresses. 
However, for each level of alveolar bone loss, these 
stresses could be reduced with controlled tipping versus 
uncontrolled tipping or root movements. This suggested 
that in patients with alveolar bone loss, an inadequate 
force system might cause radical root apex displacement 
and stress. External root resorption occurs when forces 
at the apex exceed the resistance and reparative ability 
of periapical tissues29; thus, applied force and moment 
magnitudes must be reduced proportionately to main-
tain physiologically tolerable movements without 
causing further damage to supporting structures.5

  The present study had some limitations. First, we 
used principal stresses to evaluate stress distributions 
in the PDL. For the PDL, the 3 principal stresses are 
very approximate because of the low values of Young’s 
modulus, and because Poisson’s ratio approached 
0.5, which represents that of water. Thus, at a certain 
node in the PDL, the 3 principal stresses were either 
compressive or tensile, with values approximating those 
found in nature. Second, the PDL was not constructed 
with a thickness that varied from the cervix to apex. 
In addition, alveolar bone loss was assumed to occur 
only in the horizontal direction, and the amounts 
were equivalent in the buccolingual and mesiodistal 
directions.
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CONCLUSION

  When controlled tipping was applied to incisors, 
alveolar bone loss and labial tooth inclination caused 
increases in the maximum compressive and tensile 
stresses at the root apices. This finding suggested that 
an inadequate force system applied to facially inclined 
incisors might cause greater stress at the root apices 
and induce external apical root resorption in teeth with 
alveolar bone loss compared with teeth without bone 
loss.
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