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ABSTRACT 

 

Anti-tumor effect induced by both DNA vaccine and 

oncolytic adenovirus expressing multi-target genes related to immunity 

in malignant melanoma 

 

 

Soyoung Kim 
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The Graduate School, Yonsei University  

 

(Directed by Professor Joo-Hang Kim) 

 

 

Immunogene therapy is an immune system-mediated strategy for 

cancer treatment that involves the delivery of immune-modulating genes 

to the tumor site to induce an adaptive anti-tumor immune response in 

the host.  

This study was designed to develop a novel anti-cancer immunogene 

therapy effective against malignant melanoma in the C57BL/6 mouse 

model. A recombinant plasmid containing MART1, a human 

melanoma-specific tumor antigen, was used to induce an immune 

reaction against the mouse melan-A epitope in order to overcome the 

peripheral tolerance of the mouse to murine melan-A. In addition, mouse 
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granulocyte macrophage-colony stimulating factor (mGM-CSF) and 

short hairpin RNA against mouse transforming growth factor-β2 

(shmTGF-β2) genes were delivered together with MART1, because 

GM-CSF is known to be the most potent inducer of antitumor immunity, 

and TGF-β is known to be involved in tumor survival and host immune 

suppression. These genes were delivered to cancer cells by using an 

oncolytic adenovirus. A recombinant DNA expressing human MART1 

(MART1 plasmid) and a recombinant adenovirus expressing human 

MART1 were investigated for their potential effects on priming and 

boosting immune responses. 

First, the expression of MART1 was increased in MART1 

plasmid-transfected B16BL6 mouse melanoma cells in a dose-dependent 

manner in vitro. Notably, the cytotoxic activity of splenocytes isolated 

from MART1 plasmid-injected non-tumor-bearing mice was enhanced 

compared to those isolated from control plasmid-injected mice. 

Thus, recombinant oncolytic adenovirus expressing mGM-CSF and 

shmTGF-β2 were also investigated for their potential to stimulate the 

non-specific immune response and decrease the expression of signaling 

molecules involved in tumor cell survival and growth, respectively. To 
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this end, the effect of recombinant oncolytic adenovirus expressing both 

mGM-CSF and shmTGF-β2 (GT virus) was compared to that of the 

recombinant adenovirus expressing mGM-CSF only (G virus), following 

intratumoral injection of the virus into melanoma-bearing C57BL/6 mice. 

This investigation shows that administration of the G virus leads to 

delayed tumor growth compared to the empty viral control, while tumor 

growth in mice that received the GT virus was significantly decreased (P 

< 0.001) compared to both the control- and G virus-treated mice.  

Finally, an oncolytic adenovirus expressing MART1, mGM-CSF, and 

shmTGF-β2 (MGT virus) was constructed and administered to boost the 

immune response and cancer cell death. Administration of this virus 

induced a stronger and longer-lived immune response than that observed 

in the controls. Interestingly, none of the mice that received MART1 

plasmid pre-treatment in addition to MGT viral injection showed any 

signs of tumor growth and 100% were viable 43 days after tumor cell 

injection.  

This study investigates the anti-tumor effects of repeated MART1 

plasmid vaccination and immune stimulation/tumor cell lysis with an 

oncolytic adenovirus expressing MART1/mGM-CSF/shmTGF-β2. The 
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results presented herein highlight the function of these genes during 

tumorigenesis as well as the possible therapeutic options of this treatment 

strategy. Additional work is necessary to further evaluate the clinical 

application of this combination therapy to treat malignant melanoma. 
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oncolytic adenovirus, MART1, GM-CSF, TGF-β2 
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I. INTRODUCTION 

 

Tumors, which arise from abnormal cell proliferation in a tissue, can be 

benign, pre-cancerous, or malignant. There are several methods for the 

treatment of tumors, such as surgery, chemotherapy and radiation therapy, but 

these therapies have limitations to treat malignant cancer; particularly for end 

stage cancer, metastatic cancer, and carry a high risk of relapse. In current 

medical practice, most cancer patients are treated with a combination of surgery, 

radiation, and/or chemotherapy. Although primary tumors in an early stage of 

malignancy can, in most cases, be efficiently treated with a combination of 

these standard therapies, efforts to prevent the metastatic spread of disseminated 

tumor cells are not often effective when treating patients in the late or end stage 
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of disease progression.  

The incidence of malignant melanoma is rapidly increasing worldwide 
1
 and 

is the fifth highest occurring cancer in the United States and United Kingdom 
2
. 

Although early primary melanomas can be cured surgically, once metastases 

develop, this type of cancer can rapidly become fatal. Furthermore, while 

therapeutic agents such as ipilimumab (a therapeutic agent that targets CTLA4) 

and vemurafenib (a therapeutic agent used against melanoma carrying a 

mutation in the BRAF gene), have been developed to fight malignant melanoma, 

these compounds have short treatment windows and low success rates 
3-6

. 

Therefore, new treatments are required in order to provide more options and, 

ideally, a better outcome for patients with late stage malignant melanoma. 

Recently, to overcome these limitations, new treatment modalities have 

been proposed, including gene therapy/immunotherapy. Cancer immunotherapy 

is intended to harness the reactivity of the host’s immune system to combat 

cancer. The main strategies of cancer immunotherapy aim to exploit the 

therapeutic potential of tumor-specific antibodies and cellular immune effector 

mechanisms. To date, adenovirus and retrovirus vectors have been the most 

predominantly used vectors for immunogene therapy; these are utilized in 23.3% 

and 19.7% of all immunotherapy treatments, respectively 
7
. Many features of 

the adenovirus make it well suited for gene delivery systems. For example, 

recombinant adenovirus can be grown to high titers and has a relatively high 
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capacity for transgene insertion, usually without the incorporation of viral DNA 

into the host cell genome 
8,9

. Moreover, the use of an oncolytic adenovirus in 

immunogene therapy will not damage normal cells, but is engineered to induce 

tumor-specific cell lysis 
8-10

. Initial attachment of the adenovirus virion particle 

to the cell surface occurs through binding of the fiber knob to the 

coxsackievirus B and adenovirus receptor (CAR) 
9
. Therefore, effective 

therapeutic gene delivery can be induced by using the adenoviral vector 

construct without any further engineering. Further, this vector can be used to 

transport various types of genes into the cell, without discrimination.  

 Notably, while immunogene therapy has shown promise in treating various 

types of cancer, only 0.1% of these therapies utilized in preclinical studies 

proceed into phase IV clinical trials 
7
. The success of immunogene therapies 

during a clinical trial is dependent on a number of factors, including whether the 

immune system was primed/boosted. For example, patients who have an 

immunological memory for the vaccine antigen would be expected to have a 

quick and strong immune response to the antigen 
11

. In contrast, patients with no 

immunological memory against the vaccine antigens will likely take more time 

to develop an effective antigen-specific immune response. Thus, several rounds 

of repeated vaccinations might be required to prime antigen-specific naive T 

cells to produce functional effector cells 
11

. It is also possible that immune 

priming/boosting using a tumor antigen could help to increase the immune 
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response of the patient during immunogene therapy. 

The injection site of the antigen, either intramuscularly or intradermally, has 

also been shown to be important in efficiently inducing a strong, long-lived 

immune response 
12

. While the intradermal route of administration appears to be 

the most efficient, there is some evidence suggesting that either route leads to 

antibody production and the activation of both major histocompatibility 

complex (MHC) class I-restricted antigen-specific cytotoxic T lymphocytes 

(CTL) and MHC class II-restricted CD4+ T cells secreting Th1-type cytokines 

13-15
. Intramuscular delivery of plasmid DNA vaccines has also been shown to 

lead to the expression of the encoded protein by a variety of cell types 
16,17

. 

Evidence suggests that professional antigen-presenting cells (APCs) may play a 

dominant role in the induction of immunity and that some APCs are directly 

transfected with plasmid DNA, causing them to rapidly migrate to the draining 

lymph nodes and initiate an immune response 
18,19

. Dendritic cells also play a 

role in cross-presenting antigen produced by transfected non-immune cells 

(such as muscle cells) 
20,21

. Both of these pathways are known to contribute to 

the activation of major histocompatibility complex (MHC)-matched CD8+ T 

cells, which then function to kill target cells and produce IFN-γ, an important 

activator of macrophage and inducer of class II MHC molecule expression 
22

. 

As a result, these pathways can stimulate innate and adaptive immunity. 

Furthermore, in terms of immunity induction, plasmid DNA immunization 
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has several potential advantages compared with traditional protein vaccination 

regardless of the injection site and has been shown to activate strong CTL and 

Th1 responses as well as resist antibody-mediated clearance, prolonging antigen 

expression 
13-15,23-25

. Currently, the primary types of anti-cancer genes that have 

been delivered to tumor sites via plasmid DNA/vector injection are antigen 

(20.5% of all immunotherapy treatments) and cytokine (18.4%) genes 
7
. While 

plasmid DNA vaccination with a single gene may evoke an immune response, 

single gene treatments targeting cancer have not shown high cure rates, likely 

because tumor cells have various immune evasion techniques 
26

. Thus, to induce 

a more effective anti-tumor effect, combination treatment with multiple 

therapeutic genes is likely necessary. In this study, I have focused on the use of 

GM-CSF (a cytokine), shRNA against TGF-β (an immunomodulatory protein), 

and MART1 (a human melanoma antigen) to determine their effectiveness 

when used in combination immunogene therapy to treat malignant melanoma. 

MART1 (melan-A), a human melanocyte lineage-specific protein, is 

expressed by 75–100% of melanomas, but is not detected in other cell or tumor 

types 
27

. Further, Butterfield et al. previously showed that vaccination with 

dendritic cells transduced with human MART1 protected against the murine 

counterpart of this melanocyte-lineage antigen 
28

. The basis of this cross-species 

protective response may related to the nearly 70% shared amino acid sequence 

28
. Therefore, administering MART1 plasmid as well as recombinant adenovirus 
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vector expressing MART1 would be expected to stimulate a stronger mouse 

melanoma antigen-specific immune response (essentially acting to prime/boost 

the system). 

Granulocyte macrophage-colony stimulating factor (GM-CSF), which is 

known to play an important role in the activation of immune cells, is expressed 

by a variety of cell types, including macrophage, T cells, mast cells, natural 

killer (NK) cells, endothelial cells, and fibroblasts 
29,30

. Because GM-CSF is a 

major factor involved in the immune response (non-specific) and is known to 

effectively induce a targeted immune response to melanoma cells 
31

, it is a good 

therapeutic candidate for immunogene treatment of this specific form of cancer. 

Transforming growth factor (TGF)-β is secreted in an autocrine and 

paracrine fashion by a variety of cell types in the tumor microenvironment, 

including the tumor cells, immune cells, and fibroblasts 
32

. There are three 

isoforms of TGF-β: TGF-β1 (expressed in epithelial, endothelial, hematopoietic, 

and connective tissue cells); TGF-β2 (expressed in epithelial and neuronal cells); 

and TGF-β3 (expressed primarily in mesenchymal cells) 
33-35

. TGF-β signals are 

known to have important roles in cell proliferation, differentiation, angiogenesis, 

and wound healing 
36,37

. In addition, TGF-β signaling helps cancer cells repress 

the immune response of certain cell types, including NK cells, dendritic cells, 

macrophage, and T cells, while also inducing the activation of regulatory T cells 

38
. Thus, reducing the expression of TGF-β in malignant melanoma would be 
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expected to inhibit the survival of tumor cells and induce activation of the 

immune system. 

In oncology, an inadequate immune response towards a tumor permits tumor 

growth 
39

. Therefore, a successful DNA vaccine for the treatment of tumors 

should essentially break the cancer cell’s established immune tolerance to the 

tumor antigen, inducing a strong, prolonged tumor-specific immune response. 

In Chapter III: RESULTS, I have outlined my findings concerning the use of 

mGM-CSF, shRNA against mTGF-β, and MART1 to treat malignant melanoma. 

With this investigation I have demonstrated that the combination of the MART1 

plasmid with an oncolytic adenovirus construct expressing MART1, mGM-CSF, 

and shmTGF-β2 have a pronounced anti-tumor effect on melanoma cells. (Fig 

1) 
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Figure 1. Schematic representation of the combination therapy developed in this 

study. To develop an improved cure for malignant melanoma, MART1 plasmid 

together with oncolytic adenovirus expressing MART1, mGM-CSF, and 

shmTGF-β2 were treated. 
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II. MATERIALS AND METHODS 

 

1. Construction of stable cell line expressing CAR and E1B55KDa 

After transfection with the pIRES-CAR/E1B55 plasmid expressing both 

CAR and E1B55 (one of the adenovirus proteins) proteins, B16BL6 cells were 

cultured in minimum essential medium (MEM, HyClone, Logan, UT, USA) 

with 10% fetal bovine serum (FBS), MEM vitamin solution (HyClone), and 0.5 

mg/mL of G418 (Calbiochem, La Jolla, CA, USA) as selection medium. The 

medium was changed every 2–3 days after transfection. Positive clones 

expressing both CAR and E1B55KDa protein were then selected and named 

B16BL6-CAR/E1B55. B16BL6-CAR/E1B55 cells were cultured in MEM with 

10% FBS, MEM vitamin solution, and 0.5 mg/mL of G418 and maintained in a 

37°C humidified atmosphere containing 5% CO2. 

 

2. Cell culture  

The B16BL6 (mouse melanoma) cell line was cultured in MEM with 10% 

FBS and MEM vitamin solution. NIH-3T3 (mouse embryo fibroblast), B16F10 

(mouse melanoma), LLC (Lewis lung carcinoma), A375 (human melanoma), 

and 293 (human embryonic kidney) cell lines were cultured in Dulbecco's 

modified Eagle's medium (DMEM, HyClone) with 10% FBS. SK-MEL-2 

(human melanoma), SK-MEL-3 (human melanoma), and SK-MEL-28 (human 
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melanoma) were cultured in Roswell Park Memorial Institute (RPMI)-1640 

(HyClone) with 10% FBS. Cells were maintained in a 37°C humidified 

atmosphere containing 5% CO2. 

 

3. Construction of GFP expressing replication-defective adenoviral vector 

The EGFP originated from pEGFP-N1 (Clontech Laboratories, Mountain 

View, CA, USA) and was cloned into the pCA14 vector by digestion using the 

restriction enzymes XhoI and XbaI. After linearization by XmnI digestion, it 

was co-transformed into Escherichia coli BJ5183 with the Bsp119I-digested 

adenoviral vector (dl324-BstBI: adenovirus vector with an E1 and E3 region 

deletion) for homologous recombination.  

To verify the homologous recombination, the plasmid DNA purified from 

the overnight E. coli culture was digested with HindIII and the digestion 

pattern was analyzed. The homologous recombinant adenoviral plasmid DNA 

was digested with PacI and transfected into 293 cells to generate 

replication-deficient adenovirus. 

 

4. Construction of oncolytic adenoviral vectors 

A. E3 region – shuttle vector cloning and homologous recombination 

For the expression of siRNA targeting mTGF-β1 or mTGF-β2, the short 

hairpin RNA (shRNA) construct was cloned into pSP72ΔE3-U6 vector by 
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digestion with BamHI and HindIII. These vectors named 

pSP72ΔE3-U6-shmTGF-β1 and pSP72ΔE3-U6-shmTGF-β2 (E3 shuttle 

vector). The U6 promoter of pSP72ΔE3-U6-shmTGFβ2 plasmid was replaced 

with H1 promoter through digestion with SphI and BamHI. And then U6 

promoter-shmTGFβ1-SV40 construct from pSP72ΔE3-U6-shmTGFβ1 

(SphI-blunt-KpnI) was cloned into the pSP72ΔE3-H1-shmTGFβ2 plasmid 

(HindIII-blunt-KpnI). This recombinant E3 shuttle vector was called 

pSP72ΔE3-H1-shmTGFβ2-U6-shmTGFβ1. These recombinant shuttle vectors 

were linearized by XmnI digestion and co-transformed into E. coli BJ5183 

together with the SpeI-digested adenoviral vector (dl324-BstBI) for 

homologous recombination. The E1 shuttle vector was then linearized by PmeI 

digestion and co-transformed into E. coli BJ5183 with the BstBI-digested 

dl324-BstBI-ΔE3-U6-shmTGFβ1, dl324-BstBI-ΔE3-H1-shmTGFβ2 or 

dl324-BstBI-ΔE3-H1-shmTGFβ2-U6-shmTGFβ1 for homologous 

recombination. 

 

B. E1 region – shuttle vector cloning and homologous recombination 

For the construction of oncolytic adenoviral E1 shuttle vector, inverted 

terminal repeats (ITR)-packaging signal-mouse survivin promoter-E1A-BGH 

polyA construct from pBSK[3484]
40

 was cloned into HindⅢ/EcoRI digested 

pVAX1 and this vector was called pVAX1-3484-ΔE1B. And then the E1R gene 
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of adenovirus from pCA14 (StuI-blunt-EcoRI) was cloned into the 

pVAX1-3484-ΔE1B vector (ApaI-blunt-EcoRI). This recombinant vector was 

named pVAX1-3484--ΔE1B-E1R. The mouse survivin promoter was replaced 

with CMV promoter, through digestion with KpnI and XhoI. pcDNA3.1-Hygro
+
 

was used as a template for PCR amplification of the CMV promoter, with the 

sense primer, 5'-CGGGGTACCGATGTACGGGCCAGAT-3', and the anti-

sense primer, 5'-CCGCTCGAGAATTTCGATAAGCCAG-3'. Following 

digestion of the PCR product of the CMV promoter with KpnI/XhoI, it was 

inserted into KpnI/XhoI-digested pVAX1-3484-ΔE1B-E1R. This recombinant 

oncolytic E1 shuttle vector was called pVAX1-3484-CMV-ΔE1B.  

For the expression of MART1 (pVAX1-MART1, a gift from Dr. Butterfield, 

University of Pittsburgh, PA, USA) and mGM-CSF (Invivogen, San Diego, 

CA, USA), genes were cloned into the pIRES vector using NheI/MluI and 

XbaI/NotI restriction sites. The [CMVp-MART1-IRES], [CMVp-IRES 

-mGM-CSF], and [CMVp-MART1-IRES-mGM-CSF] constructs were then 

cloned into BglII/SalI digested pVAX1-3484-CMV-ΔE1B vector and this 

plasmid was named as pVAX1-3484-CMV-ΔE1B-MART1, pVAX1-3484 

-CMV-ΔE1B-mGM-CSF, and pVAX1-3484-CMV-ΔE1B-MART1-IRES- 

mGM-CSF. These vectors are oncolytic E1 shuttle vectors. The E1 shuttle 

vector was then linearized by PmeI digestion and co-transformed into E. coli 

BJ5183 with the BstBI-digested dl324-BstBI or dl324-BstBI-ΔE3-H1 
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-shmTGF-β2 for homologous recombination. 

 

5. Oncolytic recombinant adenoviruses 

C virus: 

Ad3484-CMVp-ΔE1B, control virus 

T1 virus: 

Ad3484-CMVp-ΔE1B-ΔE3-U6-shmTGF-β1, 

virus expressing a shRNA against mTGF-β1 

T2 virus: 

Ad3484-CMVp-ΔE1B-ΔE3-H1-shmTGF-β2,  

virus expressing a shRNA against mTGF-β2 

G virus:  

Ad3484-CMVp-ΔE1B-CMVp-mGM-CSF,  

virus expressing mGM-CSF 

GT virus:  

Ad3484-CMVp-ΔE1B-CMVp-mGM-CSF-ΔE3-H1-shmTGF-β2, 

virus expressing mGM-CSF and a shRNA against mTGF-β2 

M virus:  

Ad3484-CMVp-ΔE1B-CMVp-MART1,  

Virus expressing human MART1 

MGT virus:  



18 

 

 

 

Ad3484-CMVp-ΔE1B-CMVp-MART1-IRES-mGM-CSF-ΔE3-H1-shmTGF-β2

virus expressing human MART1, mGM-CSF, and a shRNA against mTGF-β2 

 

6. Flow cytometric analysis 

After B16BL6-CAR/E1B55 cells were infected with recombinant 

adenovirus for two days, infected cells were trypsinized and washed twice with 

ice-cold phosphate buffer saline (PBS). Cells were then incubated with an 

anti-MART1 antibody (Santa Cruz Biotechnology, Santa Cruz, CA, USA) for 1 

h at 4°C. After two washes with ice-cold PBS, cells were incubated with an 

APC-conjugated anti-mouse IgG (BD Biosciences, Lincoln Park, NJ, USA) 

antibody in the dark for 45 min at 4°C and then washed twice with ice-cold 

PBS. A mouse IgG fluorescence control (BD Biosciences) antibody was used 

as a negative control. Finally, cells were resuspended in PBS and analyzed 

using a FACS Calibur flow cytometer (BD Biosciences). 

 

7. Cytopathic effect assay 

To evaluate the cytopathic effect (CPE) of several tumor-selective 

replication-competent adenoviruses, cells were first plated at about 80% 

confluence into the well of a 48-well plate. They were infected with various 

multiplicities of infection (MOIs) of replication-competent adenovirus. After 24 

h of infection, cells were monitored daily by microscopy. When cells exhibited 
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lysis at the lowest MOI, the remaining cells on the plate were fixed with 4% 

paraformaldehyde and stained with 0.05% crystal violet. 

 

8. Murine spleen cell preparation 

The spleen was extracted from C57BL/6 mice one week after last injection 

of pVAX1-MART1 (a plasmid expressing MART1) or pVAX1 (control plasmid) 

DNA or 6 days after last injection of adenovirus. After extraction, the spleen 

and 1 mL of PBS were directly placed into the cell strainer in the petri dish, the 

spleen was mashed by using the black rubber of a syringe and splenocytes were 

released into the petri dish. The homogenized cell suspension was then washed 

twice with PBS. The splenocytes were resuspended in 4 mL of PBS per spleen 

and the appropriate amount of ammonium chloride lysing reagent (BD 

Biosciences) was added. The cells were incubated for 15 min in the dark at 

room temperature. Cells were washed twice with PBS and resuspended in the 

desired medium (RPMI-1640). 

 

9. Lactate dehydrogenase assay (LDH assay) 

The cytotoxic activity of splenocytes against tumor cells was assessed by 

LDH assay using the Non-radioactive cytotoxicity assay kit (Promega 

Corporation, Madison, WI, USA). Cancer cells were incubated for 12 h in 

48-well plate at 37°C under a humidified atmosphere of 5% CO2 in air and then 
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co-cultured with splenocytes isolated from C57BL/6 mice for 4 h. For the LDH 

positive control, 45 μL of lysis solution (10) was added to all wells to lyse the 

cells and the cells were incubated for 45 min. After 45 min of incubation, the 

plate was centrifuged at 250 × g for 4 min. Fifty microliters of supernatant from 

all wells were transferred to a fresh 96-well flat-bottom plate. Fifty microliters 

of reconstituted substrate mix were added to each well and the plate was then 

incubated for 30 min at room temperature in the dark. After 30 min, 50 μL of 

stop solution was added to each well and the absorbance was recorded at 490 

nm within 1 h using a microplate reader (Molecular Devices Corporation, 

Sunnyvale, CA, USA). The percentage of splenocyte cytotoxicity was 

calculated using the following formula: 

% Cytotoxicity = {(experimental value - effector control value - negative 

control value) / (positive control value - negative control value)}*100.  

 

10. Western blot analysis 

Two days after transfection with the MART1 plasmid or infection with a 

recombinant adenovirus, B16BL6-CAR/E1B55 cells were lysed with 1 Laemmli 

lysis buffer (62.5 mM Tris, pH 6.8, 2% sodium dodecyl sulfate, 10% glycerol, 

0.002% bromophenol blue) and the protein concentration was determined by using 

the BCA Protein Assay Kit (Thermo Scientific, Fremont, CA, USA). Protein 

samples were then separated by sodium dodecyl sulfate-polyacrylamide gel 
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electrophoresis and the gels were electrotransferred onto a polyvinylidene 

difluoride membrane (Millipore, Billerica, MA, USA). Immunodetection was 

performed with anti-Src (Cell Signaling Technology, Beverly, MA, USA), 

anti-phospho Src (pSrc) (Cell Signaling), anti-STAT3 (Cell Signaling), 

anti-phospho STAT3 (pSTAT3) (Cell Signaling), anti-p65 (Cell Signaling), 

anti-phospho p65 (pp65) (Cell Signaling), anti-β-catenin (Cell Signaling), 

anti-N-cadherin (Cell Signaling), anti-actin (Santa Cruz Biotechnology), 

anti-melanA (Santa Cruz Biotechnology), and anti-MART1 (Santa Cruz 

Biotechnology) antibodies by using a chemiluminescent and fluorescent image 

analysis system (Syngene, Cambridge, UK). 

 

11. Real-time polymerase chain reaction 

After 2 days of infection with the recombinant adenovirus, 

B16BL6-CAR/E1B55 cells were lysed with TRIzol reagent (Life Technologies, 

Carlsbad, CA, USA) and the total RNA was isolated by using chloroform. The 

RNA concentration was determined by using the Nanodrop 2000 (Thermo 

Scientific). RT-PCR was performed using the Power SYBR Green RNA-to-CT 

1-Step Kit (Life Technologies). The reaction mixture contained the reverse 

transcriptase enzyme mix, reverse transcription PCR mix, forward primer, reverse 

primer, RNA template, and nuclease-free water. Mouse TGF-β1 cDNA was 

amplified using the forward primer: 5-TTGCTTCAGCTCCACAGAGA-3 and 



22 

 

 

 

the reverse primer: 5-TGGTTGTAGAGGGCAAGGAC-3. Mouse TGF-β2 

cDNA was amplified using the forward primer: 5-GTGAATGGCTCTCCTTC 

GAC-3 and the reverse primer: 5-CCTCGAGCTCTTCGCTTTTA-3. Mouse 

TGF-β3 cDNA was amplified using the forward primer: 5-CTATCAGGTCCT 

GGCACTTT-3 and the reverse primer: 5-GGCAGATTCTTGCCACCTAT-3. 

Mouse β-actin was amplified using the forward primer: 5-GGCTGTATTCCC 

CTCCATCG-3 and the reverse primer: 5-CCAGTTGGTAACAATGCCATG 

T-3. 

 

12. Enzyme-linked immunosorbent assay (ELISA) 

B16BL6-CAR/E1B55 cells were plated onto six-well plates at 2 × 10
5
 

cells/well and then infected with adenoviruses (C virus, G virus, T virus, GT 

virus, or MGT virus) at an MOI of 50. Forty-eight hours after infection, the 

supernatants were harvested. mGM-CSF and mTGF-β2 level of expression was 

determined by using ELISAs according to the manufacturer’s instructions 

(mGM-CSF ELISA kit and mTGF-β2 ELISA kit: R&D systems, Minneapolis, 

MN). 

 

13. Animal study  

Tumors were implanted subcutaneously in the abdomen of C57BL/6 mice by 
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injecting B16BL6-CAR/E1B55 murine melanoma cells (7  10
5
) in 100 μL of 

Hank’s balanced salt solution (HBSS; Gibco BRL, Carlsbad, CA, USA).  

In the first experiment, when tumors reached a range of 70–100 mm
3
, 

animals were randomized into 4 groups of 5 animals (PBS, 

Ad3484-CMVp-ΔE1B, Ad3484-CMVp-ΔE1B-CMVp-mGM-CSF, and Ad3484 

-CMVp-ΔE1B-CMVp-mGM-CSF-ΔE3-H1-shmTGF-β2). Adenoviruses or PBS 

were administered intratumorally (virus; 1  10
9
 PFU (PFU; plaque-forming 

unit) per tumor in 50μL of PBS) on day 1, 3, and 5. 

In the second experiment, 4 days after tumor implantation, C57BL/6 mice 

were injected intramuscularly in the rear quadriceps with 50 μg of 

pVAX1-MART1 (M) encoding human MART1 in a total volume of 50 μL 

saline using a 29-gauge needle. When tumors reached a range of 70–100 mm
3
, 

animals were randomized into 4 groups of 5 animals (M+PBS, 

M+Ad3484-CMVp-ΔE1B, M+Ad3484-CMVp-ΔE1B-CMVp-MART1, and M+ 

Ad3484-CMVp-ΔE1B-CMVp-MART1-IRES-mGM-CSF-ΔE3-H1-shmTGF-β2) 

and treatment was initiated. The first day of treatment was designated as day 1. 

Adenoviruses or PBS were administered intratumorally (1  10
9
 PFU per tumor 

in 50 μL of PBS) on days 1, 3, and 5.  

In the third experiment, C57BL/6 mice were injected intramuscularly in the 

rear quadriceps with 50 μg of pVAX1-MART1 in a total volume of 50 μL 

saline using a 29-gauge needle. The plasmid was injected 3 and 7 days prior to 



24 

 

 

 

tumor injection and 1 day after tumor injection. On day -7, tumors were 

implanted subcutaneously as described above. When tumors reached a range of 

70–100 mm
3
, animals were randomized into 4 groups of 5 animals (M+PBS, 

M+Ad3484-CMVp-ΔE1B, M+Ad-3484-CMVp-ΔE1B-CMVp-MART1, and M 

+Ad-3484-CMVp-ΔE1B-CMVp-MART1-IRES-mGM-CSF-ΔE3-H1-shmTGF-

β2) and treatment was initiated. The first day of treatment was designated as 

day 1. Adenoviruses or PBS were administered intratumorally (1  10
9
 PFU per 

tumor in 50 μL of PBS) on days 1, 3, and 5. 

Regression of tumor growth was assessed by taking measurements of the 

length (L) and width (W) of the tumor. Tumor volume was calculated using the 

following formula: volume = 0.52 * L * W
2
. 

 

14. Immunohistochemistry (IHC) 

Immunohistochemistry studies were performed on paraffin-embedded tumor 

tissues using anti-CD4 (Novus Biologicals, Littleton, CO, USA), anti-NK1.1 

(Novus Biologicals), anti-CD8 (Santa Cruz Biotechnology), anti-CD11b+c 

(Thermo Scientific), and anti-adenovirus type 5 (Novus Biologicals) antibodies to 

determine the expression of these proteins in the tumor tissue. The tumor tissue 

slides were deparaffinized by incubation in xylene for 10 min and rehydrated 

serially in alcohol (100%, 90%, and 70%). Endogenous peroxidase was blocked by 

incubation with 3% H2O2 for 15 min at room temperature and antigen retrieval was 
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achieved by incubating the slides in citrate buffer for 10 min in a steamer. For 

permeabilization, the slides were incubated in PBS containing 0.5% Triton X-100 

for 30 min and then washed three times with PBS. To reduce nonspecific 

background staining due to endogenous peroxidases, the slides were incubated 

with a hydrogen peroxide block (Thermo Scientific) for 10 min. After washing, an 

ultra V block (Thermo Scientific) was applied to the slides for 5 min at room 

temperature to further block nonspecific background staining. The slides were 

incubated with an anti-CD4 antibody (1:200 dilution), an anti-CD8 antibody 

(1:500), anti-NK1.1 antibody (1:500), anti-CD11b+c antibody (1:500), and an 

anti-Ad5 antibody (1:800 dilution) for 12 h at 4°C and further with a horseradish 

peroxidase polymer (Thermo Scientific) for 15 min at room temperature. To detect 

protein expression, the tissue sections were stained with diaminobenzidine 

tetrahydrochloride and minimally counterstained with hematoxylin (for 

visualization of antigen-antibody complexes). Sections were mounted under a 

coverslip using an mounting solution (Shandon Synthetic Mountant (Thermo 

Scientific) + xylene = 1:1). 

 

15. Preparation of B16BL6 cell lysate 

After removing the culture medium, B16BL6 cells were washed with PBS twice. 

Cells were then detached with a rubber policeman in 1 mL of cold PBS and 

transferred into a 1.5 ml tube. After centrifugation at 3000 rpm for 15 min, the 
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supernatant was removed. The cell pellet was resuspended with 1 mL of cold 

radioimmunoprecipitation assay buffer (RIPA) buffer (Thermo Scientific) with 

protease inhibitor (Sigma-Aldrich, St. Louis, MO, USA), and incubated on ice for 

30 min with vortexing every 10 min. After centrifugation at 14000 × g for 15 min 

at 4°C, the supernatant, which contains the total protein, was transferred in a new 

tube and stored at  80°C. 

 

16. IFN-γ enzyme-linked immune spot (ELISPOT) assay 

To assess the population of antigen-specific cytokine-producing cells, IFN-γ 

ELISPOT assay was performed. Six days after the last adenovirus injection, the 

spleens were collected aseptically from mice bearing a B16BL6 tumor and 

unicellular splenocytes were prepared as described above. Prepared spleen cells 

were stimulated with B16BL6 cell lysate for 24 h in the culture medium. IFN-γ 

ELISPOT assay was then carried out according to the manufacturer’s 

specifications (IFN-γ ELISPOT kit: R&D Systems). The colored spots, 

representing IFN-γ-producing cells, were counted with a KS-ELISpot 

(Zeiss-Kontron, Jena, Germany) and confirmed by the computer-based 

Immunospot system (AID Elispot Reader System, Version 3.4; Autoimmun 

Diagnostika GmbH, Strassberg, Germany). 

 

17. Statistical analysis 
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Data were expressed as mean ± standard error (SE). Statistical comparison was 

made using SigmaPlot 8.0 (Systat Software Inc, San Jose, CA, USA). P values 

less than 0.05 were considered statistically significant (*, P < 0.05; **, P < 

0.01;***, P < 0.001). 
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III. RESULTS 

 

1. Establishment of a cell line for adenovirus infection and replication 

Most murine cancer cell lines have a lower adenovirus infection efficiency 

compared to human cancer cells, as mouse cells do not express CAR. In 

addition, the replication rate of adenovirus is very low and this limits the 

effectiveness of the oncolytic adenovirus in killing mouse cancer cells. To 

overcome these limitations, the B16BL6-CAR/E1B55 mouse melanoma cell 

line was developed, which expresses both the CAR and adenoviral E1B55 

genes. Notably, this transgenic cell line showed enhanced infectivity by 

adenovirus (Fig 2A). The replication-dependent cytotoxic effect of adenovirus 

in the B16BL6-CAR/E1B55 cells was also quantitatively assessed using an in 

vitro CPE assay. This analysis indicates that replication of the oncolytic 

adenovirus was induced in the B16BL6-CAR/E1B55 cells in a multiplicity of 

infection (MOI) value-dependent manner (Fig 2B, C). 
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(A) 

 

(B)                                                (C) 

         

 

Figure 2. Infectivity of adenovirus in B16BL6-CAR/E1B55 cell line. (A) A375 

(human melanoma cell line), B16BL6 (mouse melanoma cell line), and 

B16BL6-CAR/E1B55 were infected with adenovirus-GFP at a multiplicity of 

infection (MOI) of 50. After 48 h, GFP expression was detected by fluorescence 

microscopy (fluorescence microscope; Olympus). (B) The 
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B16BL6-CAR/E1B55 cell line was infected with the adenovirus at various 

MOIs. (C) To compare the oncolytic activity induced by Ad3484-CMVp-ΔE1B, 

cancer and NIH-3T3 cells were infected with virus at an MOI of 1 to 20. When 

293 cells infected with the viruse at an MOI of 1 exhibited complete cell lysis, 

all the remaining cells on the plate were fixed with 4% paraformaldehyde and 

stained with 0.5% crystal violet. 
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2. Induction of an mouse melanoma antigen-specific immune response 

using human MART1 in mouse melanoma cells 

Butterfield et al. (1998) previously showed that dendritic cells that were 

genetically modified to express the human MART1 antigen generated a potent 

melan-A-specific immune response in BL6 melanoma model 
28

. These results 

imply that stimulation of MART1 could potentially induce a melan-A-specific 

immune response in our mouse melanoma model. 

Human melanoma cell lines (including SK-MEL-2, SK-MEL-3, and 

SK-MEL-28) express MART1, and the murine melan-A, which shares 68.8% 

sequence similarity with the human form, is expressed in the mouse melanoma 

cell lines B16BL6 and B16F10, but not in NIH-3T3 cells (Fig 3A). 

Accordingly, I chose to use MART1 as a target for immune priming/boosting 

immunotherapy for the treatment of malignant melanoma. Further, a 

recombinant pVAX1-MART1 plasmid was used to express the protein, and 

empty pVAX1 was used as a control plasmid. Following transfection into 

murine melanoma cells, the expression of MART1 was observed to increase in 

the MART1 plasmid-transfected cells in a dose-dependent manner (Fig 3B).  

To induce immune activation, 50 μg of MART1 plasmid in a total volume 

of 50 μl saline was injected intramuscularly into the rear quadriceps of C57BL/6 

mice. This injection site was chosen because muscle cells injected with plasmid 

DNA have been shown to produce large amounts of the encoded protein 
16,17

. 
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Notably, injections of MART1 plasmid were administered three times, 

separated by a one-week interval between injections. One week after the final 

injection, mice were killed and their spleens were removed. To determine the 

effect of MART1 immune priming, splenocytes were isolated, co-cultured with 

B16BL6 melanoma cells, and the spontaneous release of LDH was measured. 

Figure 3C shows the cytotoxic activity of the splenocytes isolated from the 

MART1 plasmid-injected mice, which was effectively enhanced compared to 

that of the splenocytes isolated from the control plasmid-injected mice. This 

enhanced cytotoxic activity of the splenocytes also appeared to be dependent on 

the ratio of effector cells (splenocytes) and the target cells (B16BL6 cells). 

Further, activation of the immune system induced by MART1 plasmid 

treatment was not observed in the LLC cell line, a mouse lung cancer cell line 

that does not express melan-A. These data indicate that the injection of human 

MART1 plasmid can prime mouse melan-A-specific immunity by inducing the 

development of an immune cell population that is cross-reactive to both human 

MART1 and mouse melan-A. Based on these findings, I conclude that an 

effective and specific anti-tumor immune response could be induced in the 

B16BL6 mouse melanoma model by administering MART1 plasmid. 
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(A)  

    
(B) 

 
(C) 

 

Figure 3. Mouse melanoma antigen-specific immune priming effect of human 

MART1 plasmid. (A) MART1 and MelanA expression were detected in various 

human and mouse cells by western blot. Actin was used as a loading control. (B) 

MART1 expression level was assessed in B16BL6 cells after transfection with 

pVAX1 or pVAX-MART1. (C) Splenocytes isolated from mice injected with 

control plasmid or MART1 plasmid were co-cultured with B16BL6 or LLC 

cells for 4 h. The cytotoxicity of splenocytes was then determined by LDH 

assay. 
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3. Downregulation of TGF-β in melanoma cells 

Almost all human tumors overexpress TGF-β, which contributes to the 

induction of tumor cell invasion and metastasis 
41

. Another major role of 

TGF-β produced by tumors is to block the immune response 
42

. This local 

TGF-β-induced immunosuppressive environment has been shown to be the 

major obstacle to immunogene therapy using cytokines 
43

. Accordingly, in this 

study shRNA against TGF-β was used as a therapeutic agent. 

It has been known that TGF-β1 and TGF-β2 are highly expressed in 

melanoma, whereas TGF-β3 is rarely expressed. To decrease the expression of 

TGF-β1 and TGF-β2 protein, recombinant adenoviruses were constructed 

containing the shRNAs TGF-β1-sh10 and TGF-β2-sh3 (Fig 4A) individually or 

together (Fig 4B). Two different promoters (U6 promoter and H1 promoter) 

were used to prevent the formation of secondary DNA structure. 

The downregulation of the mTGF-β transcripts following 

B16BL6-CAR/E1B55 cell infection with adenovirus expressing shRNA against 

mTGF-β1, mTGF-β2, or both was confirmed by real time PCR. As shown in 

Figure 5A, the infecting the cells with the shmTGF-β1 virus decreased the 

expression of mTGF-β1 mRNA level but not mTGF-β2. Similarly, treatment 

with shmTGF-β2 virus decreased the mTGF-β2 mRNA level by more than 50% 

compared to the controls. Furthermore, the endogenous cellular level of TGF-β 

mRNA was significantly decreased when the cells were infected with 
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adenovirus expressing shRNAs targeting both TGF-β1 and TGF-β2. 

And then the expression levels of various endogenous signaling molecules 

were decreased by treatment with the shmTGF-β adenovirus. Figure 5B shows 

that the down-regulation of TGF-β isotypes induced changes in the expression 

of signaling molecules involved in cell growth, survival, or metastasis. 

 The expression of signaling molecules were decreased in 

shmTGF-β2-expressing adenovirus infected cells. But when both the TGF-β1 

and TGF-β2 transcripts were silenced by infection with virus comprising both 

of the shmTGF-β1 and shmTGF-β2 DNA sequences, the effects on the 

expression of signaling molecules were lessened compared with those observed 

following transduction with the virus containing the shmTGF-β2 DNA 

sequence only. These results suggest that the downregulation of TGF-β2 is the 

primary TGF-β signaling molecule necessary to inhibit the growth and survival 

of mouse melanoma tumors. We, therefore, chose to focus on using the 

shmTGF-β2 construct for further investigations. 
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(B) 
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Figure 4. Schematic representation of shmTGF-β expressing adenovirus vectors. 

After selection of TGF-β1-sh10 and TGF-β2-sh3 to induce the down-regulation 

of mTGF-β1 and mTGF-β2 mRNA level (A), oncolytic adenoviruses were 

developed (B). Ad3484-CMVp-ΔE1B is a replication-competent adenovirus 

used as a control virus and contains the E1A gene controlled by the CMV 

promoter, but lacks the E1B gene. Ad3484-CMVp-ΔE1B-ΔE3-U6-shmTGF-β1 

(T1) and Ad3484-CMVp-ΔE1B-ΔE3-H1-shmTGF-β2 (T2) are composed of the 

shmTGF-β1 or shmTGF-β2 genes in the E3 region of Ad3484-CMVp-ΔE1B, 

respectively. Ad3484-CMVp-ΔE1B-ΔE3-H1-shmTGF-β2-U6-shmTGF-β1 (T1 

+ T2) is composed of the shmTGF-β1 and shmTGF-β2 genes in the E3 region 

of Ad3484-CMVp-ΔE1B. 
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(A)                              

 
(B) 

 
 

Figure 5. TGF-β transcriptional level and change in cell-signaling molecules by 

shmTGF-β1 and shmTGF-β2 expressing adenoviruses. (A) Relative expression 

level of mTGF-β1 and mTGF-β2 mRNA. C, T1, T2, or T1+T2 virus was 

infected into B16BL6-CAR/E1B55 cells at an MOI of 100. The knockdown 

efficiency of these viruses was measured by quantitative real-time polymerase 

chain reaction amplifying mTGF-β1 and mTGF-β2. (B) B16BL6-CAR/E1B55 

cells were infected with C, T1, T2, or T1+T2 virus of 100 MOI. After two days, 

the endogenous expression levels of signaling molecules were detected by 

western blot assay. Actin was used as a loading control. 
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4. Construction and transfection of recombinant adenovirus expressing 

both mGM-CSF and shmTGF-β2 

GM-CSF is a potent inducer of anti-tumor immunity that has been used as a 

part of various strategies to induce anti-tumor effects via tumor-reactive 

cytotoxic CD8+ T-lymphocytes, NK cells, and dendritic cells 
44-46

. However, 

the systemic use of recombinant GM-CSF is compromised by side effects and 

the induction of potentially harmful myeloid-derived suppressor cells. 

Additionally, the efficacy of systemic recombinant GM-CSF treatment may 

remain limited as only a low local concentration of GM-CSF is found in tumors 

47
. Therefore, local GM-CSF production by cancer cells could ensure a 

sufficient local concentration while minimizing systemic exposure. Thus, 

adenovirus transport and infection is an appealing molecule/technique for local 

delivery of GM-CSF to tumors, and the effects of this gene could possibly be 

further compounded by utilizing oncolytic adenoviruses.  

Utilizing the results from my previous investigation concerning the role of 

mTGF-β2, I chose to examine the effects of combination treatment with 

mGM-CSF and shmTGF-β2. To develop the mGM-CSF-expressing 

recombinant oncolytic adenovirus, the mGM-CSF gene was inserted into the E1 

region of the virus and the resulting construct was named 

Ad3484-CMVp-ΔE1B-CMVp-mGM-CSF (G virus). The oncolytic adenovirus 

expressing both mGM-CSF and shmTGF-β2 as well was named 
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Ad3484-CMVp-ΔE1B-CMVp-mGM-CSF-ΔE3-H1-shmTGF-β2 (GT virus) 

(Fig 6A). To examine the protein expression level of mGM-CSF and the mRNA 

expression of mTGF-β2, B16BL6-CAR/E1B55 cells were infected with virus at 

an MOI of 50. Two days after infection, I observed a significant increase in 

mGM-CSF protein (Fig 6B) and a significant reduction of mTGF-β2 mRNA 

(Fig 6C). The oncolytic ability of these replication-competent adenoviruses was 

also analyzed using an in vitro CPE assay of various cell lines (293, 

B16BL6-CAR/E1B55, NIH-3T3) after cells were infected with control (C), G, 

or GT virus at different MOIs. As shown in Figure 6D, all 

replication-competent adenoviruses induced an increase in CPE as the MOI 

increased in the B16BL6-CAR/E1B55 melanoma cancer cell line, but not in 

NIH-3T3. 
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(A) 

 

(B)                             (C) 

  

 (D) 
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Figure 6. mGM-CSF and shmTGF-β2 expressing recombinant adenoviruses. (A) 

Schematic representation of adenovirus vectors expressing mGM-CSF and 

shmTGF-β2. Ad3484-CMVp-ΔE1B-CMVp-mGM-CSF (G) is composed of the 

mGM-CSF gene in the E1 region and Ad3484-CMVp-ΔE1B-CMVp 

-mGM-CSF-ΔE3-H1-shmTGF-β2 (GT) is composed of the shmTGF-β2 gene in 

the E3 region of Ad3484-CMVp-ΔE1B-CMVp-mGM-CSF. Two days after 

infection, mGM-CSF expression level was measured in the culture supernatants 

by ELISA (B) and mTGF-β mRNA was estimated by real-time-PCR (C). The 

oncolytic activity of these viruses was analyzed by in vitro cytopathic effect 

(CPE) assay. Cells were infected with each virus at an MOI of 0.1 to 50. To 

examine the level of mGM-CSF and mTGF-β2 mRNA expression, 

B16BL6-CAR/E1B55 cells were infected with virus at a MOI of 50 (D). 

 

 

 

 

 

 

 

 

 



43 

 

 

 

5. Ex vivo and in vivo testing of combination treatment with shmTGF-β2 

and mGM-CSF 

To demonstrate that an enhanced anti-cancer immune response was induced 

by recombinant adenovirus expressing both mGM-CSF and shmTGF-β2, ex 

vivo and in vivo tests were performed. B16BL6-CAR/E1B55 cells infected with 

virus at an MOI of 50 were incubated for 4 hours with splenocytes isolated from 

C57BL/6 mice and the cytotoxic activity was then measured with an LDH assay. 

Notably, the GT virus-infected cells appeared to enhance the anti-tumor activity 

of the splenocytes compared to the cells infected with mGM-CSF virus or 

shmTGF-β2 virus alone (Fig 7A). 

To determine whether the same effects were induced in an animal model of 

melanoma, C57BL/6 mice were subcutaneously injected with 

B16BL6-CAR/E1B55 murine melanoma cells in the abdomen. When tumors 

reached 70–100 mm
3
 in size, mice were intratumorally injected with PBS, the 

empty vector (C virus), G virus, or GT virus on days 1, 3, and 5. As shown in 

Figure 7B, control tumors that received PBS showed robust growth. In marked 

contrast, C, G, GT virus-treated tumors reached average volumes of 1719.1 ± 

180.1 mm
3
, 1342.5 ± 254.1 mm

3
, and 810.3 ± 112.5 mm

3
, respectively, by 9 

days. By day 20, the C, G, or GT virus-treated tumors reached average volumes 

of 10746.9 ± 663.9 mm
3
, 5360.6 ± 2115.0 mm

3
, and 4443.8 ± 925.7 mm

3
, 

respectively. These results indicate that the G virus can delay tumor growth 
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compared to the control virus and that combined treatment with mGM-CSF 

together with shmTGF-β2 resulted in a delayed growth rate of tumors compared 

with those of the mice treated with mGM-CSF alone. This enhanced anti-tumor 

effect for the combination treatment can be attributed to the simultaneous 

stimulation of a non-specific mGM-CSF-induced immune reaction and a 

decrease in mTGF-β2 expression. In addition, the tumor growth inhibition 

resulting from the decreased expression of mTGF-β2 mRNA had a positive 

effect on the anti-tumor response in the animal model. 
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Figure 7. The anti-tumor effect of adenoviruses expressing mGM-CSF with 

shmTGF-β2. The anti-tumor effect of G, T, or GT virus was confirmed by ex 

vivo (A) and in vivo (B) experiments. (A) B16BL6-CAR/E1B55 cells infected 

with each virus at an MOI of 50 were incubated for 4 h with splenocytes 

isolated from C57BL/6 mice. The splenocyte cytotoxic activity was measured 

by an LDH assay. (B) C57BL/6 tumor-bearing mice were treated with 
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intratumoral injections of 1 × 10
9
 PFU/50 μL of adenoviruses on days 1, 3, and 

5. Tumor volume was monitored and recorded every 2 days until the end of the 

study. Values represent the mean ± SE (5 animals per group). 

 

 

 

6. Construction of a recombinant adenovirus expressing MART1, 

mGM-CSF, and shmTGF-β2 

To induce a stronger and long-term immune response, a recombinant 

pVAX1-MART1 plasmid and a recombinant oncolytic adenovirus expressing 

MART1, mGM-CSF, and shmTGF-β2 were constructed. Ad3484-CMVp- 

ΔE1B-MART1 (M virus) was constructed, with the objective of 

priming/boosting an antigen-specific immune response in the mouse melanoma 

cells. Ad3484-CMVp-ΔE1B-MART1-IRES-mGM-CSF-ΔE3-H1-shmTGF-β2 

(MGT virus) was constructed with the aim of further enhancing the mouse 

melanoma antigen-specific immune response, general immune response, and 

suppression of cancer cell growth. MART1 and mGM-CSF, harbored in an 

internal ribosome entry site (IRES) expression cassette, were inserted into the 

E1 region of the adenovirus genome, while shmTGF-β2 was inserted into the 

E3 region (Fig 8A). The oncolytic activity of these recombinant adenoviruses 

was verified by in vitro CPE assay (Fig 8B). 
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(A) 

 

(B) 

 

Figure 8. Schematic representation of recombinant adenovirus vectors 

expressing MART1/mGM-CSF/shmTGF-β2 and cytotoxic activity of viruses. 

(A) Ad3484-CMVp-ΔE1B-CMVp-MART1 (M) is composed of the MART1 

gene in the E1 region of Ad3484-CMVp-ΔE1B. Ad3484-CMVp-ΔE1B 
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-MART1-IRES-mGM-CSF-ΔE3-H1-shmTGF-β2 (MGT) is composed of the 

MART1 and mGM-CSF genes in the E1 region and shmTGF-β2 gene in the E3 

region of Ad3484-CMVp-ΔE1B. (B) The oncolytic activity of these viruses was 

analyzed by in vitro cytopathic effect (CPE) assay. Cells were infected with 

each virus at an MOI of 0.1 to 100 and then cells were stained with 0.5% crystal 

violet. 
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7. Enhanced expression of MART, mGM-CSF, and downregulation of 

mTGF-β2 in MGT virus-infected mouse melanoma cells 

Before progressing to animal tests to further investigate the anti-tumor 

effects of MGT virus, the level of recombinant oncolytic adenovirus-mediated 

MART1, mGM-CSF, and shmTGF-β2 expression was verified. 

B16BL6-CAR/E1B55 cells were infected with C, M, or MGT virus with at an 

MOI of 50. Two days after infection, MART1 was detected by western blotting 

and showed a significant increase in the endogenous cellular expression of the 

virally transduced MART1 (Fig 9A). Furthermore, because MART1 is located 

on the surface of the melanoma cells, its expression was also detected by flow 

cytometric analysis. This analysis showed that the surface expression of 

MART1 was increased on both the M and MGT virus-infected cells (Fig 9B).  

To quantify the expression level of mGM-CSF induced by infection with the 

recombinant adenovirus, B16BL6-CAR/E1B55 cells were infected with C, G, 

or MGT virus at an MOI of 50 and then an mGM-CSF ELISA was performed to 

estimate the mGM-CSF protein concentration in the cell supernatants. The G 

and MGT virus-infected cells showed a significant increase in the secretion of 

the virally transduced mGM-CSF protein (Fig 9C) compared to the C 

virus-infected cells. 

The downregulation of mTGF-β2 transcripts in B16BL6-CAR/E1B55 cells 

was confirmed by real-time-PCR. As shown in Figure 9D, mTGF-β2 mRNA 
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levels were decreased by more than 50% in the T or MGT virus infected 

B16BL6-CAR/E1B55 cells compared to control virus infected cells, while the 

mRNA levels of mTGF-β1 and mTGF-β3 were not changed significantly in the 

treated cells. Notably, the secreted level of mTGF-β2 protein was also 

significantly decreased in T and MGT virus-infected cells compared to the C 

virus-infected cells (Fig 9E). 
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(E) 

  

Figure 9. The expression levels of MART1, mGM-CSF, and shmTGF-β2 in 

virus infected cells. (A) B16BL6-CAR/E1B55 cells were infected with the C, M, 

or MGT virus at an MOI of 50. Two day after, MART1 endogenous expression 

level was detected by western blot. Actin was used as a loading control. (B) 

MART1 cell-surface expression level was detected by flow cytometric analysis. 

(C) To examine mGM-CSF level, B16BL6-CAR/E1B55 cells were infected 

with the C, G, or MGT virus at an MOI of 50. Two days after infection, 

mGM-CSF expression level was measured in the culture supernatants by 

ELISA. To examine mTGF-β mRNA and protein levels, B16BL6-CAR/E1B55 

cells were infected with the C, T, or MGT virus at an MOI of 50. Two days 

after infection, mTGF-β mRNA levels were estimated by real-time-PCR (D) 

and mTGF-β2 protein level was measured in the culture supernatants by ELISA 

(E). 

 



53 

 

 

 

8. In vivo effects of combination treatment with recombinant MART1 

plasmid with recombinant oncolytic adenovirus expressing MART1, 

mGM-CSF, and shmTGF-β2 

After observing the gene expressions of recombinant adenovirus in cell 

culture, the next step was to evaluate the anti-tumor effects of MART1 plasmid 

priming together with the oncolytic adenovirus expressing MART1, mGM-CSF 

and shmTGF-β2 (MGT virus). To determine whether the MART1 plasmid 

together with the MGT virus could protect mice from tumor growth, C57BL/6 

mice were subcutaneously injected with B16BL6-CAR/E1B55 mouse 

melanoma cells in the abdomen. Four days after the injection of tumor cells, 

mice were injected once intramuscularly with 50 μg of the pVAX1-MART1 

plasmid. When tumors reached the size range of 70–90 mm
3
, mice were 

intratumorally injected with PBS, C virus, M virus or MGT and the effects were 

monitored (Fig 10A). As shown in Figure 10B, the growth rate of tumors in 

mice immunized with the MART1 plasmid and the C virus was slightly delayed 

compared with mice treated with the MART1 plasmid and PBS. In contrast, the 

tumors of mice receiving both the MART1 plasmid and the MGT virus had 

significantly delayed growth compared to mice treated with the C virus or M 

virus alone, but tumor regression was not induced (Fig 10B). Images of 

representative virus-treated tumors can be found in Figure 11. Although mice 

treated with the MGT virus had delayed tumor growth and some even had 
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minor tumor regression, the size of the tumors still increased over time after day 

23. In particular, the combination treatment of MART1 plasmid together with 

the M virus alone did not induce an effective anti-tumor response. It is possible 

that these minimal results were caused by only administering a single injection 

of MART1 plasmid as a booster, an amount that may not be sufficient to induce 

a strong mouse melanoma antigen-specific immune reaction. 

To analyze the infection rate of the adenovirus vector and the infiltration of 

immune cells to tumor tissues following the injection of MART1 plasmid and 

adenovirus, histologic analysis of the tumor site was performed. Notably, many 

of the tumor tissues in the mice treated with MART1 plasmid and either C virus, 

M virus, or MGT virus were found to express adenovirus-specific protein, 

whereas those in the PBS-treated group did not (Fig 12). Furthermore, in the 

MART1 plasmid + MGT virus-treated group, many of the tumor tissues were 

observed to have increased lymphocytic infiltration compared with the tumor 

tissues of the groups treated with MART1 plasmid and C or M virus. To 

identify the types of immune cells that had infiltrated into the tumor tissues, 

tumor sections were examined by immunohistochemical analysis using 

anti-CD4 or anti-CD8 monoclonal antibodies. Higher frequencies of CD4+ and 

CD8+ T cells were observed in the tumors treated with MART1 plasmid and 

MGT virus compared to those treated with MART1 plasmid and C or M virus 

(Fig 12). However, denser immune cell infiltration was observed only at the 
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borders of the tumor tissues, which likely explains why these treatments did not 

completely protect the mice from tumor development. I believe that the single 

injection of MART1 plasmid was not sufficient to induce a robust immune 

priming effect in the mice, causing the effects of the combination to be muted in 

these experiments. 
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(A) 

 
(B) 

 
 

Figure 10. Anti-tumor effect of the combination treatment of MART1 plasmid 

with adenovirus expressing MART1, mGM-CSF, and shmTGF-β2. (A) 

Experimental design diagram. C57BL/6 mice were injected with 7 × 10
5
 

cells/100 μL of B16BL6-CAR/E1B55 on day -5 and treated with intramuscular 

injections of 50 μg/50 μL of MART1 plasmid into the rear quadriceps on day -2. 

C57BL/6 tumor-bearing mice were treated with intratumoral injections of 1 × 

10
9
 PFU/50 μL of adenovirus on day 1, 3, and 5. (B) Tumor volume was 

monitored and recorded every 2 days until the end of the study. Values 

represent the mean ± SE (5 animals per group). 
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Figure 11. Tumor xenografts. Pictures of C57BL/6 tumor-bearing mice treated 

with virus were obtained at day 14, 18, and 28. 
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Figure 12. Immunohistochemical analysis of recombinant adenovirus infected 

tumor sections. C57BL/6 mice were injected with 7 × 10
5
 cells/100 μL of 

B16BL6-CAR/E1B55 on day -5 and treated with intramuscular injections of 50 

μg/50 μL of MART1 plasmid into the rear quadriceps on day -2. C57BL/6 

tumor-bearing mice were treated with intratumoral injections of 1 × 10
9
 PFU/50 

μL of adenovirus on day 1, 3, and 5. Tumors were collected at day 11 for 

histological analysis. Paraffin-embedded sections of tumor tissue were stained 

with anti-adenovirus type 5 (top row, original magnification: ×200), anti-CD8 

(second and third row, original magnification: ×200 and ×400), and anti-CD4 

(fourth and fifth row, original magnification: ×200 and ×400) antibodies. 
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9. Immune priming/boosting effect of repeated administration of MART1 

plasmid and treatment with recombinant adenovirus expressing MART1 

To test the hypothesis that a single injection of MART1 plasmid did not 

sufficiently prime/boost the immune system enough to protect mice against 

melanoma, the effect of repeated injections of MART1 plasmid was 

investigated. The repeated administration of MART1 plasmid did in fact 

enhance the anti-tumor effects of the adenoviral treatment in the isolated 

splenocytes compared to a single injection of MART1 plasmid (Fig 13A). 

Furthermore, using an interferon (IFN)-γ ELISPOT assay, I determined that 

repeated injections of MART1 plasmid could generate a stronger mouse 

melanoma antigen-specific immune response via increased IFN-γ production 

(Fig 13B, C). Following these results, the in vivo anti-tumor effect of treatment 

with MART1 plasmid and the MGT virus was investigated again, with the 

experimental conditions changed to include repeated injections of the MART1 

plasmid into mice. 
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(C) 

 

 

Figure 13. Effect of repeated administration of the MART1 plasmid. The 
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anti-tumor effect of repeated injection of MART1 plasmid was determined by 

ex vivo experiment. C57BL/6 mice were injected with 7 × 10
5
 cells/100 μL of 

B16BL6-CAR/E1B55 on day -7 and treated with intramuscular injections of 50 

μg/50 μL of MART1 plasmid into the rear quadriceps on day -14, -10, and -6 

(three times injection group) or treated with intramuscular injections of 50 

μg/50 μL of MART1 plasmid on day -6 (one time injection group). C57BL/6 

tumor-bearing mice were treated with intratumoral injections of 1 × 10
9
 PFU/50 

μL of M virus on days 1, 3, and 5. Six days after the last virus injection, 

splenocytes were isolated from mice. (A) B16BL6 cells were incubated with 

splenocytes for 4 h and the splenocyte cytotoxic activity was then measured by 

LDH assay. (B) Splenocytes were stimulated with B16BL6 cell lysate for 24 h 

and IFN-γ ELISPOT assays were then carried out. The number of spots was 

counted at a concentration of 1 × 10
4
 splenocytes. Each value represents the 

mean spot number ± SE of triplicates from a representative experiment. The 

experiment was repeated twice. (C) Representative examples of spot-forming 

cell response. 
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10. Enhanced anti-tumor effects and survival rate following repeated 

MART1 plasmid injections combined with MGT virus treatment 

C57BL/6 mice were injected intramuscularly with 50 μg of the 

pVAX1-MART1 plasmid two times before tumor cell injection and one time 

after the injection of tumor cells into the rear quadriceps, with each injection 

separated from the others by a 4-day interval. When tumors reached the size 

range of 70–90 mm
3
, mice were intratumorally injected with PBS, C virus, M 

virus, or MGT virus in order to compare the anti-tumor effects of MART1 

plasmid and M virus with those of MART1 plasmid and MGT virus (Fig 14A). 

The tumor volumes by day 15 following viral treatment were 4190.9 ± 882.5 

mm
3
 (PBS), 627.7 ± 196.3 mm

3
 (C virus), 137.7 ± 66.9 mm

3
 (M virus), 384.9 ± 

150.4 mm
3
 (GT virus), and 0.7137 ± 0.7137 mm

3
 (MGT virus). Notably, the 

decrease in tumor growth in the C virus-treated mice was likely caused by the 

tumor-cell-specific lysis induced by the oncolytic adenovirus. However, the 

tumor volumes of mice treated with adenovirus alone (C virus) increased over 

time (Fig 14B).  

In the group treated with MART1 plasmid and M virus, the tumors of two 

mice disappeared by day 17. In contrast, the tumor volumes of the three other 

mice in this group increased over time after day 15 (Fig 14B, 15A), indicating 

that overall tumor growth was decreased compared to the PBS- and C 

virus-treated groups. This phenomenon is likely related to an increase in the 
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mouse melanoma antigen-specific immune reaction. In cell culture, the 

cytotoxicity of this treatment in splenocytes (isolated from mice treated with 

MART1 plasmid and M virus) co-cultured with B16BL6 cells was increased 

compared to those isolated from mice injected with MART1 plasmid with C 

virus. However, there was no effect of treatment with MART1 plasmid together 

with M virus in the LLC cell line, indicating that this human MART1 induced 

immune activation is in fact specific to mouse melanoma antigen (Fig 16A). In 

addition, a remarkably high frequency of cells producing IFN-γ was observed in 

mice treated with MART1 plasmid and M virus compared to mice receiving 

PBS, C, or GT virus (Fig 16B, C). 

Interestingly, in the group treated with MART1 plasmid and MGT virus, 

tumor growth did not occur in four of the five mice, and the injected tumor cells 

of those four mice had been completely eliminated by day 15, while the tumor 

of the fifth mouse was gone by day 22 (Fig 14B, 15A). These data indicate that 

a synergistic relationship exists between the mGM-CSF, shmTGF-β2, and 

MART1-induced mouse melanoma antigen-specific immune response. The 

cytotoxic activity of splenocytes isolated from mice treated with MART1 

plasmid together with MGT virus was strong and the frequency of cells 

producing IFN-γ was highest in the mice treated with MART1 plasmid together 

with MGT virus (Fig 16). Immunohistochemical analysis also showed that a 

higher frequency of NK cells, NK T cells, dendritic cells, and macrophages (all 
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of which were identified as NK1.1 or CD11b+c positive) infiltrated the tumors 

treated with MART1 plasmid and MGT virus compared to those treated with 

MART1 plasmid and C or M virus (Fig 17). 

In addition, the survival rate of mice treated with MART1 plasmid and 

MGT virus was greatly improved, even more so than the MART1 plasmid and 

M virus-treated group (which was also increased), compared to mice treated 

with MART1 plasmid and the C virus or GT virus alone. Further, 100% of the 

animals that received repeated MART1 plasmid treatments and injection of 

MGT virus were still viable 43 days after the initial virus treatment without any 

recurring tumor growth (Fig 15B). Taken together, these results indicate that the 

combination of repeated MART1 plasmid treatment together with MGT virus 

injection is a very effective anti-tumor therapy for malignant melanoma. 
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Figure 14. Anti-tumor effects induced by treatment with the recombinant 

MART1 plasmid and the recombinant oncolytic adenovirus expressing MART1, 

mGM-CSF, and shmTGF-β2. (A) Experimental design diagram. C57BL/6 mice 

were injected with 7 × 10
5
 cells/100 μL of B16BL6-CAR/E1B55 on day -7 and 

treated with intramuscularly injections of 50 μg/50 μL of MART1 plasmid into 

the rear quadriceps on day -14, -10, and -6. C57BL/6 tumor-bearing mice were 

treated with intratumoral injections of 1 × 10
9
 PFU/50 μL of PBS, C, M, GT, or 

MGT virus on day 1, 3, and 5. (B) Tumor volume was monitored and recorded 

every 2 days until the end of the study. Values represent the mean ± SE. 
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Figure 15. Tumor growth and consequent survival rate of tumor-bearing mice. 

(A) Pictures of tumors were obtained on day 15, 21, and 35. (B) Survival rate of 

mice given PBS, C, M, GT, or MGT virus until day 43. One hundred percent of 

the animals that received MART1 plasmid and the MGT virus and 40 % of the 

animals that received MART1 plasmid and the M virus were still alive on day 

43 without tumor occurrence and metastasis. 
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(C)  

 

 

Figure 16. Enhanced mouse melanoma antigen-specific anti-tumor activity of 

immune cells. C57BL/6 mice were injected with 7 × 10
5
 cells/100 μL of 
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B16BL6-CAR/E1B55 on day -7 and treated with intramuscular injections of 50 

μg/50 μL of MART1 plasmid into the rear quadriceps on day -14, -10, and -6. 

C57BL/6 tumor-bearing mice were treated with intratumoral injections of 1 × 

10
9
 PFU/50 μL of PBS, C, M, GT, or MGT virus on day 1, 3, and 5. Six days 

after the last virus injection, the splenocytes were isolated and collected. (A) 

B16BL6 and LLC cells were incubated with splenocyte for 4 h and the 

splenocyte cytotoxic activity was then measured by using a LDH assay 

(Effector : Target = 10 : 1). (B) Splenocytes were stimulated with B16BL6 cell 

lysate for 24 h and IFN-γ ELISPOT assays were then carried out. The number 

of spots was counted at a concentration of 1 × 10
4
. Each value represents the 

mean spot number ± SE of triplicates of a representative experiment. The 

experiment was repeated twice. (C) Representative examples of spot-forming 

cell response. 
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Figure 17. Detection of infiltrated immune cells by immunohistochemistry. 

C57BL/6 mice were injected intramuscularly with 50 μg of pVAX1-MART1. 

Injections were performed twice before tumor injection and once after tumor 

injection into the rear quadriceps, separated by a four-day interval. When 

tumors reached a range of 70–90 mm
3
, mice were intratumorally injected with 

PBS, C, M, or MGT virus. Tumors were collected at day 11 for histological 

analysis. Paraffin-sections of tumor tissue were stained with anti-NK1.1 (top 

and second row, original magnification: ×200 and ×400) and anti-CD11b+c 

(third and fourth row, original magnification: ×200 and ×400) antibodies. 

NK1.1 is a key marker of NK and NKT cells. CD11b is a key marker of 

macrophages and CD11c is a key marker of dendritic cells. 
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IV. DISCUSSION 

 

Cancer therapies, such has radiation and chemotherapy, often rely on toxic, 

non-specific treatments or compounds that can compromise patient health. 

Further, for patients with late stage cancer, such as malignant melanoma, the 

feasible treatment options are even more limited and often result in poor 

prognosis and/or relapse. In this study, I have analyzed the effectiveness of 

MART1 plasmid pre-treatment and injection of oncolytic adenovirus expressing 

MART1, GM-CSF, and shTGF-β2 to induce an anti-melanoma immune 

response. In doing so, I have not only highlighted the necessary protocol for 

immunogene treatment of this tumor type (e.g., use of adenovirus, 

priming/boosting the immune system with MART1 plasmid, injection site, etc.), 

but I have also identified a potent combination treatment (MART1, GM-CSF, 

and shTGF-β2 expressed in an oncolytic adenovirus) to combat tumor growth in 

a mouse model. 

In this investigation, I have circumvented the poor adenoviral transduction 

efficiency in murine tumors, which is one of the major limiting factors for in 

vivo experiments, by using an engineered murine melanoma cell line. Poor 

transduction of the adenoviral vectors is likely due to the limited expression of 

the adenovirus type 5 receptors, the coxsackievirus and adenovirus receptor 

(CAR), and αvβ3 and αvβ5 integrins on the surface of mouse tumor cells. Lack 
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of these receptors is likely to blame for why oncolytic adenovirus has been 

found to only induce a low level of cell lysis in mouse tumor cells. To 

overcome this limitation, the B16BL6-CAR/E1B55 mouse melanoma cell line 

expressing CAR and E1B55 was developed, and shown to effectively replicate 

oncolytic adenovirus (Fig 2) 
48

. This cell line, in addition to in vivo animal 

models, is an essential asset to the field of research investigating 

adenovirus-mediated treatment of melanoma. Notably, this low adenovirus 

infection efficiency in mouse tumor cells is not an issue in human tumor cells, 

which do express the necessary cell surface receptors. 

Ad-3484-CMVp-ΔE1B is a replication-competent adenovirus that contains 

the early region 1A (E1A) gene, which is controlled by the CMV promoter, but 

lacks the E1B gene (Fig 4B). The tumor-specific lytic activity (oncolysis 

activity) of this adenovirus is modulated by the presence of the E1A gene and 

absence of the E1B55 gene. Further, the proteins encoded by the E1A gene of 

human adenovirus type 5 activate viral transcription and re-program cellular 

gene expression in the infected cells, thereby providing an optimal environment 

for viral replication 
49

. E1A binding to retinoblastoma protein (Rb) is also 

critical for the upregulation of adenovirus E2 gene expression and 

transcriptional activation of cell cycle S-phase entry genes 
50,51

. Therefore, the 

E1A gene contained in this specific adenovirus can induce active viral 

replication in infected cells, resulting in efficient gene transfer. 
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Notably, in a normal, non-malignant cell, p53 functions as an anti-viral 

defense by inducing growth arrest or apoptosis 
52

. However, most viruses come 

equipped with several early gene products that prevent p53 from performing 

this function. For example, the E1B 55-kDa and E4 Orf6 proteins as well as 

several other cellular proteins can form an E3 ubiquitin ligase that targets p53 

for proteasomal degradation 
53-55

. The E1B 19-kDa protein is also known to 

block apoptosis downstream of p53 
56,57

, while the E4 Orf3 protein can prevent 

the transcription of p53-dependent genes 
58

. The engineered adenovirus 

construct used in this study expresses E1A, allowing viral replication to occur, 

but does not express E1B55 gene. Thus, this virus will only induce active viral 

replication in cells with inactive or mutated p53 as this is the only environment 

that will allow this specific adenovirus to function. Interestingly, approximately 

90% of all human melanomas contain inactivated wild-type p53, but the 

underlying mechanisms of its inactivation are not fully understood 
59

.  

Several studies have reported the mechanistic details of p53 inactivation in 

various melanoma cell lines, several of which have a mutation in the BRAF
V600E

 

gene as well 
60

. In addition, p53 inactivation has also been achieved with a 

deletion in the p16
ink4a

 locus and mutation of the p14
ARF 

gene 
59,61,62

. While the 

mechanism of p53 inactivation in melanoma tumor cells has not been full 

elucidated, the lack of functional p53 in these malignant tumor cells should, 

theoretically, allow the Ad-3484-CMVp-ΔE1B virus to induce active oncolysis. 
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However, despite the oncolytic activity of the recombinant adenovirus, only 

slight tumor regression was observed in mice receiving the control oncolytic 

adenovirus (Fig 7B, 10B, 14B). It is likely that this muted effect is a result of 

innate anti-viral immunity in the host. An innate anti-viral response is initiated 

by the infected cell while simultaneously releasing chemokines to attract 

neutrophils, mononuclear, and NK cells 
63

. The innate immune response to 

adenovirus can also result in reduced spreading of the virus 
64

. Thus, in order to 

utilize adenovirus as a cancer therapy option in these cells, it is essential to 

overcome this immune tolerance to the virus.  

B16BL6 mouse melanoma cells, the cell type used in this study, are known 

to express a high level of melan-A, but when injected into mice to induce tumor 

formation, the host’s immune tolerance to the self-antigen (melan-A) only 

permits a weak immune response to the B16BL6 tumors 
65

. To overcome this 

and induce an anti-B16BL6 tumor immune response, human MART1 plasmid 

was administered to mice as a DNA vaccine. The results of this priming 

vaccination indicate that human MART1 plasmid is sufficient to generate an 

immune response that can protect the host against mouse melanoma (Fig 3). 

The basis of this cross-species protective response may rely on the nearly 70% 

shared amino acid sequence or the 30% non-homologous amino acid sequence 

28,66
. The human MART1 sequence may also contain shared peptides that 

efficiently bind to the C57BL/6 MHC class I molecules (H-2b) in the muscle 
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cells, allowing it to stimulate an effective response against the murine melan-A 

expressed by the B16BL6 cells. Furthermore, to induce a stronger and 

longer-lived mouse melanoma antigen-specific immune response, the human 

MART1 plasmid and the recombinant adenovirus vector expressing MART1 

were administered to tumor-bearing mice. A comparatively strong anti-tumor 

effect of the MART1 plasmid together with the MART1 adenovirus against 

B16BL6 mouse melanoma was observed in cell culture (Fig 13). However, the 

immune priming/boosting effect of the single MART1 plasmid injection 

together with MART1 recombinant virus treatment in the animal model was 

relatively weak (Fig 10). 

The repeated administration of MART1 plasmid would have the potential to 

induce a prolonged, stronger antigen-specific immune response at the time of 

tumor development. In fact, re-exposure to MART1 by repeated injections was 

shown to induce an enhanced immune response and anti-tumor effect on 

splenocytes compared with a single injection (Fig 13). Moreover, it seems likely 

that the frequency and timing of the MART1 plasmid injections are important 

for the duration and strength of the resulting immune response, particularly 

because B16BL6 mouse cells grow very fast. This accelerated level of cellular 

growth essentially negates the anti-tumor effect of the DNA vaccine injected 

after tumor formation as the immune response would not be induced fast 

enough to catch up with the rapid tumor cell proliferation. Pre-injection of DNA 
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before tumor formation was, therefore, essential in order to have any substantial 

immune system-mediated effect on tumor growth. Notably, in order to 

demonstrate whether the MART1 plasmid administered post-tumor 

development is an effective therapeutic vaccine, an alternative animal 

model/tumor cell line would need to be utilized. Additional work is necessary to 

address this specific treatment option. 

Although pre-treating mice with the MART1 plasmid and following up with 

a post-tumor injection of MART1 expressing adenovirus appeared to induce an 

anti-tumor immune response, it is likely that these effects can be supplemented 

with other genes to further reduce tumor size. In this study, I have focused on 

the addition of GM-CSF, which stimulates a non-specific immune response, and 

silencing of TGF-β, which inhibits tumor cell survival, growth, and immune 

evasion.  

The adenovirus-mediated expression of mGM-CSF was used to further 

stimulate the immune system in response to the malignant melanoma. And I 

chose to focus on the combined use of GM-CSF with TGF-β silencing. TGF-β 

is known to inhibit Th1, macrophage, and neutrophil differentiation and 

development in the tumor microenvironment 
42

. In addition, TGF-β suppresses 

the function of cytotoxic T-lymphocytes, NK cells, and dendritic cells 
42

. 

Increased expression of each of the three TGF-β isoforms has also been 

observed in various cancers. For example, high levels of TGF-β1 have been 
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detected in the gastric mucosa of gastric cancer patients and their first-degree 

relatives 
67

. Further, the expression levels of TGF-β1, TGF-β2, and TGF-β3 are 

also markedly increased in hepatocellular carcinoma (HCC) 
68

. Overexpression 

of TGF-β2 and TGF-β3 in cholangiocarcinoma has also been shown to promote 

tumor cell proliferation 
69

, while the overexpression of TGF-β contributes 

significantly to the development of pancreatic cancer 
70

. Notably, these reports 

suggest that the active isoform of TGF-β may be dependent on the type of 

cancer.  

To this end, our laboratory has performed experiments highlighting the 

suppression of TGF-β1 expression in breast cancer cells as well as the 

anti-pancreatic cancer effects of TGF-β2 expression. In the present study, 

shRNA was used to suppress the expression of TGF-β1 and TGF-β2, as these 

are the two isoforms expressed in the majority of malignant melanomas 
71,72

. 

Although suppressing TGF-β expression would be expected to strongly inhibit 

tumor growth and survival, when the expression of TGF-β1 experimentally 

decreased, the reduction of signaling molecules involved in cell growth, 

survival, and metastasis were modest (Fig 5). However, silencing TGF-β2 

resulted in a much more pronounced level of reduced expression for these 

downstream signaling molecules. Consequently, decreasing both TGF-β1 and 

TGF-β2 did not appear to be necessary to cure malignant melanoma, and it is 

clear that TGF-β2 is the major player among the three TGF-β isoforms 
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expressed by B16BL6 cells.  

Furthermore, when TGF-β2 was silenced in combination with 

GM-CSF-mediated activation of the immune system an enhanced anti-tumor 

response was achieved. This effect was further exacerbated when used in 

combination with MART1 pre-treatment and MART1-expressing adenovirus 

injection. When the mice were treated with MART1 plasmid and injected with 

an oncolytic adenovirus expressing shTGF-β2, mGM-CSF, as well as MART1, 

this anti-tumor response included a higher frequency of various immune cells 

(CD4+, CD8+ T cells, NK cells, NK T cells, dendritic cells, and macrophages) 

in the tumors as well as an increase in tumor cell death compared to tumors 

treated with MART1 plasmid and empty adenovirus or adenovirus containing 

only one gene. These data suggest that a potent immune reaction can be induced 

using multiple immune modulating genes, repeated pre-tumor boosts to the 

immune system, and anti-tumorigenesis genes.  
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V. CONCLUSION 

 

Combination immunogene therapy, which uses the simultaneous expression 

of diverse immune modulating genes, appears to be more effective at treating 

cancer compared with single gene treatments. In this study, I have stimulated 

immune cells with MART1, a human melanoma antigen that can induce 

cross-reactivity with the mouse melan-A melanoma antigen, consequently 

inducing a melan-A-specific anti-tumor effect in my mouse tumor model. I have 

also shown that the combination of tumor antigen-specific induction with 

MART1 (pre- and post-tumor), general immune stimulation with GM-CSF, 

shTGF-β2-mediated anti-tumor effects, and oncolytic function of adenovirus 

was more potent than the anti-tumor effects of each treatment alone. 

Consequentially, I believe that this treatment combination could be used as a 

feasible therapeutic strategy for the malignant melanoma. 
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ABSTRACT (IN KOREAN) 

 

악성 흑색종에서 DNA백신과 

면역조절 유전자들을 발현하는 종양살상 아데노바이러스의 

병합치료에 의한 항 종양 효과 

 

<지도교수 김주항> 

 

연세대학교 대학원 의과학과 

 

김 소 영 

 

 

암에 대한 면역 치료법은 환자 몸의 면역 체계를 활성화 

시킴으로써 암 세포만을 특이적으로 제거하는 치료방법이다. 

하지만, 암 세포들은 여러 가지 전략을 사용하여 면역 체계를 

피해가며, 면역 체계가 활성화 되었더라도 활성화된 항종양 

면역 반응으로부터 도피 할 수 있는 능력 또한 갖고 있기 

때문에 항암 면역 치료에 많은 한계를 드러내고 있다. 따라서 

이러한 한계를 극복하는 치료제를 개발하는 것이 암 치료를 

위한 과제라고 할 수 있다. 또한 환자의 세포매개면역뿐만 

아니라 체액성면역을 동시에 유도하는 기능은 부작용 없이 

강력한 치료 효과를 유발하기 위해 면역치료제가 갖추어야 하는 
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기능이다.  

본 연구에서는 human MART1 유전자와 MART1을 발현하는 

아데노바이러스를 이용하여 강력한 흑색종 항원 특이적인 

면역반응을 유도 하고자 하였다. Human MART1과 mouse melan-A 

는 약 70%의 유전자 서열이 일치하기 때문에 이종간의 교차 

반응성에 의해 MART1을 항원으로 인식한 면역세포들이 

동물모델에서 melan-A를 인식하여 항 종양효과를 나타낼 수 

있다. 이 경우 MART1에 의해서 유발된 강력한 면역반응은 

자가 항원인 melan-A에 대한 면역 관용을 극복하고 다양한 

면역세포로 하여금 흑색종 세포를 공격하도록 유도할 수 있다.  

이와 동시에 전반적인 면역반응의 활성화를 위해 MART1을 

발현하는 아데노바이러스에 대식세포, 수지상세포등 다양한 

면역세포의 활성화를 유도하는 GM-CSF, 그리고 암세포의 

성장과 생존기능을 억제하고, 면역회피 작용을 억제하는 

TGF-β2에 대한 shRNA를 추가적으로 탑재하였다. 

먼저 각 유전자를 삽입한 아데노바이러스의 항 종양효과를 

확인한 결과 GM-CSF나 shTGF-β2를 각각 단독으로 탑재한 

경우보다 GM-CSF와 shTGF-β2를 동시에 탑재한 경우 

면역세포의 활성화를 유도하는 기능도 증가하고 종양세포의 
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성장을 억제하는 효과로 인해 결과적으로 항 종양 효과가 

증가하는 것을 동물실험을 통해 확인하였다. 이 결과를 통해 

한가지 치료용 유전자를 사용하는 것보다 여러 유전자를 함께 

사용하는 것이 더 효과적임을 알 수 있었다. 그리고 MART1, 

GM-CSF, shTGF-β2를 모두 발현하는 종양살상 아데노바이러스와 

MART1 백신 유전자의 근육 주사를 함께 처리하여 항원 특이적 

면역반응의 활성화, 전반적인 면역 반응의 활성화, 종양세포의 

성장 억제, 종양세포 특이적인 세포용해를 모두 유도하여 항 

종양 효과를 얻고자 하였다. MART1 백신 유전자를 종양이 

형성되기 전, 후에 각각 2회, 1회 근육주사로 주입한 후 MART1, 

GM-CSF, shTGF-β2를 모두 발현하는 종양살상 아데노바이러스를 

종양에 직접 주입하였다. 그 결과 모든 생쥐에서 종양이 점점 

줄어들다 바이러스 처리 후 22일 전후 시점에서 종양이 모두 

없어졌으며 실험용 생쥐의 100% 생존율을 확인할 수 있었다. 

이러한 효과는 다양한 in vitro, in vivo, ex vivo 실험을 통하여 

MART1 백신 유전자와 MART1, GM-CSF, shTGF-β2를 모두 

발현하는 종양살상 아데노바이러스를 동시에 처리 함으로서 

얻어지는 항 종양 면역반응의 증가임을 확인 하였다. 다만 

종양살상 아데노바이러스에 의한 종양 세포 특이적인 세포 
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용해기능은 바이러스에 대한 면역반응으로 인해 바이러스 주입 

후 초기에만 제한적으로 나타난 것으로 생각된다. 비록 

초기에만 제한적으로 그 효과가 나타났지만 연구결과 얻어진 항 

종양효과에 긍정적인 영향을 제공한 것으로 생각된다. 

결과적으로 본 연구를 통해 다양한 면역조절 유전자를 적절히 

조화시켜 사용하는 것은 항 종양 면역유전자 치료법 개발에 

좋은 방법임을 확인할 수 있었다. 또한 MART1 유전자 백신, 

그리고 MART1, GM-CSF, shTGF-β2를 동시에 발현하는 종양살상 

아데노바이러스를 함께 사용하는 병용요법 (combination 

therapy)은 악성 흑색종을 치료하고 환자의 생존율을 증가시키기 

위한 치료법으로 이용 될 수 있다는 가능성을 제시하였다. 

 

 

 

 

 

 

 

 

 

 

 

 

----------------------------------------------------------------------------------------------------------  

핵심되는 말 : 악성흑색종, 종양항원, 유전자 백신, 면역치료, 종

양살상 아데노바이러스, MART1, TGF-β, GM-CSF 
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