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Glutamate plays an important role in CNS as an excitatory neurotransmitter, and 

exerts its action through the ionotropic glutamate receptors (iGluRs) and 

metabotropic glutamate receptors (mGluRs). mGluR5, a subtype in the group I 

mGluRs, is widely expressed in hippocampus and pre-frontal cortex, and modulates 

synaptic transmission. It was shown that mGluR5 serine 901 (S901) is a novel 

phosphorylation site of PKC. The surface expression of mGluR5 was reduced by 

S901 phosphorylation by inhibiting the binding of CaM to the receptor. The 
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underlying mechanism of CaM-dependent mGluR5 trafficking, however, was 

poorly understood. Recent works have shown that seven in absentia homolog-1A 

(Siah-1A) mediates the ubiquitination and degradation of the group I mGluRs, and 

that Siah-1A competes with calmodulin (CaM) for binding to the group I mGluRs. 

In this study, a novel trafficking mechanism of mGluR5, which is regulated by 

competitive interaction between CaM and Siah-1A, an E3 protein ubiquitin ligase, 

is presented. It was found that the protein stability of mGluR5 S901D is lower than 

that of WT, and that the stability of S901D is affected by the Siah-1A binding. It 

was also found that S901 phosphorylation induces CaM displacement and Siah-1A 

binding to mGluR5, and that the competitive interaction between CaM and Siah-1A 

affects the CaM-dependent regulation of mGluR5 trafficking. Important residues 

were identified on the mGluR5 C-terminus for Siah-1A binding, and it was shown 

that Siah-1A binding is a critical factor for the regulation of mGluR5 trafficking. 

Siah-1A binding decreased the membrane stability of mGluR5 in the hippocampal 

neurons, and Siah-1A binding to the receptor affects the mGluR5 endosomal 

trafficking. Taken together, these data indicate that CaM regulates mGluR5 

trafficking through the PKC-dependent regulation of the receptor-binding proteins. 

Furthermore, it expects that these results could enhance to understand the GPCR 

functions and the pathophysiology of mGluR5-related diseases in the CNS.  

 

 

 

----------------------------------------------------------------------------------------------------- 

Key Words: mGluR5, CaM, Siah-1A, receptor phosphorylation, receptor trafficking 



3 

 

Mechanism of receptor trafficking regulation  

by mGluR5 phosphorylation 

 

 

Suk Jin Ko 

 

Department of Medical Science 

The Graduate School, Yonsei University 
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I. INTRODUCTION 

 

1. Glutamate receptor  

Glutamate (Glutamic acid) is an essential excitatory neurotransmitter in 

mammalian central nervous system and presents in more than 50 % of 

nervous tissue. Glutamate is also used as a precursor of GABA (γ-

aminobutyric acid) which is the important inhibitory neurotransmitter and 

plays an important role in neuronal excitability regulation
1
. Glutamate is 



4 

 

stored in vesicles of chemical synapse, and nerve impulses trigger glutamate 

release
2
. Glutamate receptors can be divided into two groups, ionotropic 

glutamate receptors (iGluRs) and metabotropic glutamate receptors 

(mGluRs). 

 

1) Ionotropic glutamate receptor 

Ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that 

mediate the major excitatory neurotransmission. The iGluRs are divided into 

three groups according to their agonist selectivity: N-methyl-D-aspartate 

(NMDA) receptor, -amino-3-hydroxy-5-methylisoxazol-4-isoxazolepropionic 

acid (AMPA) receptor, and kainate (KA) receptor. These receptors depolarize 

the neuronal membranes by passing ions, but they have distinct functions at the 

synapse and in the neuronal activity. The AMPA receptors are abundantly 

expressed in excitatory synapse and mediate fast excitatory synaptic 

neurotransmission in the CNS. The activation mechanism of the NMDA 

receptor depends on the coincidence of presynaptic activity (glutamate release) 

and postsynaptic activity (depolarization of the membrane by the excitatory 

input from the other receptors). These receptors are activated by glutamate, and 

their major secondary messenger mechanism is the Ca
2+

 influx in the neurons
3-4

. 

 

2) Metabotropic glutamate receptor 

Metabotropic glutamate receptors (mGluRs) are G-protein coupled receptors 

that modulate neurotransmitter release and ion channel function. The activation 
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of the glutamate receptors regulates the synaptic transmission and synaptic 

plasticity, which are responsible for learning and memory
5-7

. Thus, the 

glutamate receptors might be important therapeutic targets for neurological and 

psychiatric disorders such as pain, drug addiction, schizophrenia, Alzheimer’s 

disease and Parkinson’s disease. 

 

The mGluRs are seven transmembrane domain receptors that are linked via 

G-proteins to intracellular signaling cascades. Unlike the iGluRs, which are 

directly coupled with the ion channel, mGluRs are coupled with G-proteins, 

which regulate second-messenger signaling. The mGluRs have eight different 

subtypes (mGluR1-8), which are subdivided into three groups. This 

categorization is based on the agonist/antagonist selectivity, pharmacological 

properties and associated second-messenger signaling. The group I mGluRs 

(mGluR1 and mGluR5) activate the phospholipase C (PLC) via Gq/11-protein. 

Stimulating the receptors causes the associated enzyme PLC to hydrolyze the 

phosphoinositide phospholipids in the plasma membrane. Thus, the group I 

mGluRs lead to the formation of inositol-1, 4, 5-trisphosphate (IP3) and 

diacylglycerol (DAG)
 3

. The group II mGluRs include mGluR2 and mGluR3, 

and the group III mGluRs include mGluR4, mGluR6, mGluR7 and mGluR8. 

The activation of both the group II and III mGluRs reduces the cAMP level by 

activating the inhibitory G-protein, Gi, which inhibits adenylyl cyclase. 

 

The mGluRs have three distinct domains: an extracellular N-terminal domain, 
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a seven-transmembrane domain, and an intracellular C-terminal domain. The 

extracellular N-terminal domain contributes to glutamate binding. The N-

terminal and intracellular C-terminal domains are connected by the seven-

transmembrane domains located in the hydrophobic regions. The second 

intracellular loop and the amino portion of the C-terminal are possible 

interaction regions of G-protein binding. The first and third intracellular loops 

seem to be important regions for G-protein activation
8
. In the C-terminus tail, 

several phosphorylation sites exist; these regions are the target sites for several 

kinases that regulate receptor activity. All the mGluR subtypes show sequence 

similarity, and 19 cysteine residues are conserved in all the mGluRs
9
. 

 

Table I. Characteristics of metabotropic glutamate receptors 

 

 

3) Metabotropic glutamate receptor 5  

mGluR5 is mainly localized in the post-synaptic neurons and has been 

implicated in excitatory synaptic transmission and activity-dependent short- 

and long-term synaptic plasticity
10

. Also, mGluR5 has important roles in the 

Family Receptors Mechanism Agonist Antagonist Expression 

Group I 
mGluR1 

Gq, Na
+
↑K

+
↓ DHPG, CHPG MPEP, MTEP Postsynaptic 

mGluR5 

Group II 
mGluR2 

Gi/Go 
LY379268, 

LY314582 
EGLU, APICA Presynaptic 

mGluR3 

Group 

III 

mGluR4 

Gi/Go L-AP4 MSOP Presynaptic 
mGluR6 

mGluR7 

mGluR8 
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neuronal plasticity processes, which are involved in synapse development and 

removal
11-13

. In addition, like other glutamate receptors, mGluR5 has been 

involved in learning and memory as well as in many neurological and 

psychiatric disorders
14

. These reports indicate that mGluR5 could be a putative 

drug target for many neurological diseases. 

 

2. Receptor phosphorylation  

Receptor phosphorylation is the most powerful post-translational 

modification that regulates protein expression and function. The 

phosphorylation of the receptor mediates cellular response from external 

stimuli in the nervous system. Since 20 years ago, it has been known that the 

G-protein-coupled receptors (GPCR) are regulated by phosphorylation
15

. 

GPCR phosphorylation occurs in a stimulus-dependent manner and is mediated 

by more than one protein kinase family. For example, studies on the β2-

adrenergic receptor determined that both protein kinase A (PKA) and β-

adrenergic receptor kinase (GRK2)
16-17

 are involved in receptor 

phosphorylation. These protein kinases were able to phosphorylate different 

sites of the receptor and to activate different kinds of signaling
18

. Like other 

GPCRs, mGluR was phosphorylated by several different protein kinases, 

including PKC. The phosphorylation of mGluR5 affected the receptor 

desensitization, trafficking, signaling, and other features
19-21

. The 

phosphorylation-dependent mGluR5 trafficking mechanism, however, is poorly 

understood. 
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3. Receptor trafficking  

Receptor trafficking is the intracellular movement from the receptor 

synthesis sites to the surface membrane and to the degradation sites. Using exo- 

and endocytosis mechanisms, receptors are inserted into and removed from the 

membrane and diffuse within the plasma membrane
22

. In neurons, receptor 

trafficking regulates numerous neuronal functions, such as neuronal movement 

and synaptic transmission. These functions are controlled by setting the 

capacity of a neuron to respond to an external cue. For example, the 

postsynaptic density can be regulated by a number of surface receptors, which 

respond to the neurotransmitter from a presynaptic neuron. As the amount of 

released neurotransmitters often outweighs the number of available 

postsynaptic receptors, the process of receptor trafficking can control the 

efficiency and amplitude of the postsynaptic response
23

. In neurons, the surface 

expressions of the receptors in both the presynaptic and postsynaptic regions 

are often in a state of dynamic equilibrium with intracellular pools of receptors, 

so that the rapid changes in the surface populations can be mediated. The 

trafficking of receptors in the subcellular organelle is the fundamental function 

of the neurons, and it gives rise to many of the mechanisms underlying synaptic 

plasticity. Like other receptors, the surface distribution of the mGluRs can also 

be rapidly changed. For example, the activation of mGluR1 undergoes rapid 

internalization through an arrestin- and dynamin-dependent processes
24

. In 

addition, mGluR5 has high mobility on the neuronal surface, and the agonist-

induced activation of mGluR5 increases its mobility
25

. Therefore, the 
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distribution of mGluRs is dynamically regulated in response to neuronal 

activity, and thereby regulates synaptic plasticity. 

 

4. Synaptic plasticity 

Synaptic plasticity is the strength of the connection between two neurons. 

Plastic change is regulated by changing the number of receptors on the plasma 

membrane on a synapse
26-27

. Synaptic plasticity has been found in both the 

excitatory and inhibitory synapses, and it is dependent on the postsynaptic 

calcium release
26

. Synaptic plasticity is divided into short- and long-term 

plasticity. 

 

1) Short-term plasticity 

Short-term plasticity acts within milliseconds to a few minutes and either 

strengthens or weakens the synaptic connection. 

 

2) Long-term plasticity 

Long-term potentiation (LTP) and long-term depression (LTD) are 

widespread phenomena expressed at every excitatory synapse in the 

mammalian brain. It acts within a minutes to hours and occurs at the 

excitatory synapses. LTP is an increase in synaptic response. It increases the 

potentiating pulse via electrical stimuli. The pulses are sustained at a level 

higher than the baseline response. In addition, LTP is related to the 

interactions between the postsynaptic neurons and the presynaptic inputs. 

http://en.wikipedia.org/wiki/Excitatory_synapse
http://en.wikipedia.org/wiki/Inhibitory_synapse
http://en.wikipedia.org/wiki/Postsynaptic
http://en.wikipedia.org/wiki/Calcium
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This interaction is important in synaptic association and is stimulated by the 

synaptic transmission pathway
28

. LTD is a reduction in the neuronal synapse 

efficacy lasting hours or longer following a stimulus. In addition, LTD is 

caused by an increase in the intracellular calcium level at the postsynaptic 

neuron, and by a minimum level of postsynaptic depolarization
29

. 

 

Activity-dependent synaptic plasticity has been implicated as the basic 

mechanism underlying learning and memory. The mGluRs are also important 

for synaptic plasticity
30

. Most notably, they can function as triggers for some 

forms of LTD, particularly the NMDAR-independent forms
31-32

, and can also 

contribute to and modulate the induction of LTP
31

. Therefore, the trafficking of 

mGluRs is likely to influence synaptic plasticity.  

 

5. Recent works and hypothesis 

A recent work showed that calmodulin (CaM) dynamically regulates mGluR5 

trafficking through the PKC phosphorylation of the serine 901 (S901) of the 

mGluR5 C-terminus. The PKC phosphorylation of mGluR5 S901 decreases the 

surface expression of the receptor by disrupting the CaM binding
33

. The CaM-

dependent mGluR5 trafficking mechanism, however, is poorly understood. 

CaM is a calcium-binding messenger protein expressed in all the eukaryotic 

cells, where it participates in the signaling pathways that regulate many 

processes, such as growth, proliferation, and movement
34-35

. Many researches 

have reported that CaM binds with numerous neuronal GPCRs, such as the 
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serotonin, dopamine, opioid, and adenosine receptors
36-39

. The CaM-binding 

proteins are involved in the functional complex with ion channels such as 

NMDA, and with voltage-gated calcium channels, and this functional complex 

mediates synaptic plasticity
40

. 

Seven in absentia homolog (Siah)-1A is an E3 ubiquitin protein ligase. It 

belongs to the E3 ubiquitin ligase family, which has a RING-finger protein 

motif
41

. Deleted in colorectal cancer (DCC), synaptophysin and Numb are the 

target proteins of Siah, which enhances the degradation of such proteins
42-44

. In 

the previous study, it was shown that Siah-1A competes with CaM for mGluR5 

binding in vitro
45

, and the group I mGluRs were ubiquitinated and degraded by 

Siah-1A
46

. As the interaction between mGluR5 and CaM was regulated by 

S901 phosphorylation
33

, and Siah-1A was associated with mGluR5 for 

degradation and ubiquitination, it was hypothesized that the competitive 

binding CaM and Siah-1A to mGluR5 might affect the CaM-dependent 

regulation of mGluR5 trafficking. 

 

6. Present study  

It was shown herein that the interaction between mGluR5 and CaM was 

decreased by the phosphorylation of mGluR5. When phosphorylated, the 

mGluR5 binding with Siah-1A is increased by the displacement of CaM, and 

the Siah-1A binding leads to decreased mGluR5 surface expression. In addition, 

an important Siah-1A-binding motif was found on the mGluR5 C-terminus, 

which was different from that of CaM. It was also shown through the Siah-1A 
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binding site mutations on the mGluR5 C-terminus that the direct binding 

between Siah-1A and mGluR5 is an important factor for mGluR5 trafficking. 

Then it was confirmed that the role of Siah-1A, which also regulated the 

mGluR5 surface expression in neurons. From these data, a dynamic model is 

suggested showing that the trafficking of mGluR5 is regulated by CaM, and 

that the receptor trafficking is mediated by PKC dependent regulation of the 

receptor-binding protein as seen as Siah-1A. 
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II. MATERIALS AND METHODS 

 

1. Cell culture and Transfection.  

 

HeLa cells were incubated with Dulbecco Modified Eagle Medium (DMEM) 

media containing 10% fetal bovine serum (FBS) and 1% antibiotics (100 U/ml 

penicillin, 100 mg/ml streptomycin) at 37°C, 5% CO2. Primary hippocampal 

neurons were cultured as previously described
47

 with some modifications. 

Primary neuron culture method performed in accordance with the Yonsei 

University College of Medicine Animal Care (Project license number: #00062) 

and Use Committee or NIH Guide for the Care and Use of Laboratory Animals. 

Explain shortly, primary neurons were cultured from embryonic day 18 

Sprague-Dawley (SD) rat. The first hippocampus was dissected, and isolated by 

trypsin and trituration. The neurons were grown in Neurobasal media 

(Invitrogen, Carlsbad, CA, USA) containing 2% B-27 supplement and 2 mM L-

glutamine. According to the manufacturer’s protocol, Polyplus reagent 

(Polyplus transfection, New York, NY, USA) was used for DNA transfection. 
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2. Constructs and siRNA. 

 

 pCBA mammalian expression vector was made with chicken -actin promoter. 

mGluR5 DNA was subcloned into pCBA vector. Then, manufactured mutant 

constructs mGluR5-S901A, S901D by site-directed mutagenesis methods. Then 

Siah-1A binding disrupting mutant constructs mGluR5-T913D, I916A and 

S901A/I916A also manufactured. pRK5 mGluR5 construct has a Myc tag 

which was inserted between amino acids 22 and 23. Cam2 (Clontech, Mountain 

View, CA, USA) was inserted into pcDNA3.1 and pPTuner-IRES. pCI-neo-

Siah-1A and pPTuner-IRES-Siah-1A were subcloned. For pull-down assay, the 

first one-third DNA fragment of mGluR5 C-terminus was inserted into pGEX-

4T-1 and pBHA vector. Then, Siah-1A cDNA was subcloned into the pRSET 

bacterial expression vector (Invitrogen, Carlsbad, CA, USA). For immuno-

fluorescence, Siah-1A DNA was subcloned into pEGFP-C vector (Clontech, 

Mountain View, CA, USA). The human Siah-1A siRNA pool (L-012598-00-

0050, Pierce, Waltham, CA, USA) and human hepatocyte growth factor-

regulated tyrosine kinase substrate (Hrs) shRNA (Sigma-Aldrich, St. Louis, 

MO, USA) were purchased for knock down experiments. 
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3. Western blot and Immuno-precipitation.  

 

DNA transfected samples were homogenized for 10 min with lysis buffer (1% 

Triton X-100 in PBS) on ice with protease inhibitors (Complete EDTA-free 

inhibitor cocktail, Roche Applied Science, Penzberg, Germany). Protein 

concentration was determined using a BCA Protein Assay Kit (Pierce, Waltham, 

CA, USA). Equal amounts of protein were loaded on a SDS-polyacrylamide 

gel for separation and then transferred on a 0.45 m size pore PVDF membrane. 

Membranes were blocked with 5% nonfat dry milk and then incubated 

overnight at 4°C using one of these antibodies: mGluR5 (Epitomics, 

Burlingame, CA, USA), mGluR7 (Millipore, Billerica, MA, USA), FLAG M2 

(Sigma-Aldrich, St. Louis, MO, USA), Siah-1A (Abcam, Cambridge, UK), 

CaM (Millipore, Billerica, MA, USA), neomycin phosphotransferase II (NPT-

II, Millipore, Billerica, MA, USA), -tubulin (Hybridoma Bank, Iowa city, IA, 

USA), and -actin (Santa Cruz, Dallas, TX, USA). For immuno-precipitation 

assay, lysates containing equal protein amounts were incubated overnight with 

primary antibodies at 4°C with gently agitating. Then, samples were incubated 

with protein A-Sepharose beads (GE health, Little Chalfont, UK) for 2 h at 4°C 

with gently agitating. After then, the supernatants were removed, and beads 

were washed four times with lysis buffer, treated with 2 X sample buffer 

containing 4% -mercaptoethanol, and then incubated for 30 min at 37°C for 

elution. Samples were then subjected to SDS-PAGE and Western blotting. 
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4. Real-time Quantitative PCR.  

 

According to the manufacturer’s protocol, total RNA of mGluR5 was isolated 

using miRNeasy kit (Qiagen, Hilden, Germany). A minimum of 250 ng of total 

RNA was reverse-transcribed into first-strand cDNA using a mix of random 

primer and poly-dT. Reverse transcription was performed with Superscript III 

reverse transcriptase (Invitrogen, Carlsbad, CA, USA) for 1 h at 42°C, 

inactivated for 15 min at 70°C and cooled to 4°C. Two μl of cDNA were used 

in a PCR reaction containing 250 nM primer pairs, and added 10 μl SYBR 

green mixtures (Applied Biosystems, Carlsbad, CA, USA) in a total reaction 

volume of 20 μl. The PCR reaction protocols were as follows: 10 min at 95°C, 

then 40 cycles of 95°C for 20 s, 60°C for 40 s, and 70°C for 30 s. The values 

were normalized to that of the housekeeping gene -actin. 

 

 

5. Pull-down Assay and PKC in vitro Phosphorylation. 

 

 Using glutathione Sepharose 4B beads (GE Health, Little Chalfont, UK), 

mGluR5 GST fusion protein was purified. Purified mGluR5 fusion protein was 

incubated with in vitro phosphorylation buffer (20 mM HEPES, 1.67 mM 

CaCl2, 1 mM DTT, 10 mM MgCl2) and 1pmol of [-32
P
] ATP (3000 Ci/mmol) 

containing active PKC (25 ng, Promega, Fitchburg, WI, USA) at 30°C for 30 
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min. mGluR5 fusion proteins were phosphorylated by PKC, and incubated with 

CaM (Sigma Aldrich, St. Louis, MO, USA) or Siah-1A His-tag-fusion protein 

at 4°C for 2 h. Incubated samples were washed several times, and the bound 

protein was eluted by 2 X sample buffer containing 4% -mercaptoethanol at 

37°C for 10 min. Eluted samples were subjected to Western blotting and CaM 

and Siah-1A were detected with their antibodies, and phosphorylated mGluR5 

was detected with S901 phospho-specific antibodies
25

.  

 

 

6. Biotinylation Assay.  

 

HeLa cells were administered mGluR5 WT with Siah-1A or scrambled DNA 

and incubated 24 h for expression. Cells were washed three times with ice-cold 

base solution (1 mM MgCl2 and 0.1 mM CaCl2 in PBS) three times and 

incubated with 0.5 mg/ml EZ-Link Sulfo-NHS-SS-biotin (Pierce, Waltham, CA, 

USA) in base solution for 5 min at 4°C with gentle shaking. Excess non-

reactive biotinylation reagent was quenched by washing four times with 50 mM 

glycine in base solution. Samples were lysis buffer (1% Triton X-100 in PBS), 

and the insoluble pellet was removed by centrifugation at 13,000 rpm for 10 

min at 4°C. The supernatant was then incubated with NeutrAvidin agarose 

resin (Pierce, Waltham, CA, USA) for 2 h at 4°C. The resin was washed four 
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times with lysis buffer (1% Triton X-100 in PBS), and the bound proteins were 

eluted by mixing and incubating with 2 X sample buffer at 37°C for 30 min. 

The eluted sample was analyzed by Western blotting. For the endocytosis assay, 

HeLa cells were transfected with mGluR5 WT or mGluR5 S901A mutant and 

samples were incubated with 1 mg/ml EZ-Link Sulfo-NHS-SS-Biotin in PBS 

for 20 min at 4°C. The cells were treated with glutamate (100 M) for 5 min at 

37°C and then the remaining biotinylated proteins on the cell surface were 

cleaved using 50 mM reduced glutathione (Roche Applied Science, Penzberg, 

Germany). After cell lysis, NeutrAvidin agarose resin was added to the lysates 

for 2 h at 4°C with gentle agitation. After washing the resin three times with 

lysis buffer, bound proteins were eluted with 2 X sample buffer containing 4% 

-mercaptoethanol, and then subjected to Western blotting. 

 

 

7. Yeast two-hybrid Assay. 

 

 To identify interaction between Siah-1A and mGluR5, yeast two hybrid 

assays was performed using the L40 yeast strain. mGluR5 DNA was inserted 

into pBHA vector which containing LexA-DNA and pGAD vector which 

containing GAL4 activation domain subcloned with Siah-1A were co-

administered to L40 yeast. The yeasts were grown at 30°C in complete 

synthetic medium lacking leucine and tryptophan. This stock was used to 
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generate a 10-fold dilution series. Using a replica platter, the yeasts in each 

well were plated as a spot on a synthetic complete medium agar plate lacking 

tryptophan, leucine and histidine. The plates were then placed in a 30°C 

incubator for 2–3 d. 

 

 

8. Immuno-staining for Surface Expression.  

 

HeLa cells were cultured on poly-D lysine (Sigma-Aldrich, St. Louis, MO, 

USA) coated glass coverslip and expressing N-Myc-tagged mGluR5 and GFP 

fused Siah-1A. Cells were washed with ice-cold PBS and surface mGluR5 was 

labeled by mouse Myc (9E10) antibody (Sigma-Aldrich, St. Louis, MO, USA) 

for 15 min on 4°C with gentle shaking. After washing with ice-cold PBS, the 

cells were fixed by 4% paraformaldehyde/sucrose in PBS for 15 min at room 

temperature and washed with ice-cold PBS three times. And then the cells were 

permeabilized by permeabilization solution (0.1% Triton X-100 in PBS) for 10 

min at room temperature. The permeabilized samples were blocked with 1% 

BSA in permeabilization solution and then incubated with rabbit mGluR5 

antibody for overnight at 4°C. Following multiple washes with ice-cold PBS, 

the cells were incubated with Alexa 568 anti-rabbit, and Alexa 647 anti-mouse 

secondary antibodies (Invitrogen, Carlsbad, CA, USA) at 1: 500 for 1 h at room 

temperature. The samples were washed several times with ice-cold PBS and 
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then mount with the ProLong Antifade Kit (Invitrogen, Carlsbad, CA, USA). 

The cells were visualized using a Zeiss LSM710 confocal microscope (Carl 

Zeiss, Jena, Germany). EGFP empty vector and EGFP fused Siah-1A were 

administered to primary cultured hippocampal neurons and surface expression 

of mGluR5 levels were monitored by mGluR5 N-terminus antibody (Alomone, 

Jerusalem, Israel). Alexa 568 anti-rabbit antibody was used for detection of 

mGluR5. The mGluR5 positive signal was captured and fluorescence intensity 

of mGluR5 was measured by MetaMorph software (Molecular Devices, 

Sunnyvale, CA, USA). 

 

 

9. Proximity ligation assay.  

 

In situ interactions were detected by the Duolink proximity ligation assay kit 

(Olink bioscience, St. Louis, MO, USA). Primary cultured hippocampal 

neurons were grown on glass coverslips and samples were fixed by 4% 

paraformaldehyde/sucrose and permeabilized by permeabilization solution (0.1% 

Triton X-100 in PBS). The coverslips were blocked with the Duolink blocking 

solution for 30 min at 37°C incubator. After blocking, the samples were 

incubated with mGluR5 and Siah-1A antibodies in humidity chamber for 

overnight at 4°C. Slides were washed three times in PBS for 10 min. Duolink 

PLA probes which detecting rabbit or goat antibodies were diluted in the 
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blocking agent in a concentration of 1: 5 and applied to the slides followed by 

incubation for 2 h in a humidity chamber at 37°C. After washing three times 

with PBS, the coverslips were subjected hybridization, ligation and 

amplification for 1 h. The cells were incubated with detection solution for 1 h 

in humidity chamber at 37°C. Afterwards the slides were mounted with DAPI 

containing Prolong artificial gold kit (Invitrogen, Carlsbad, CA, USA). After 

experiments, cells were monitored by LSM710 confocal microscope (Carl 

Zeiss, Jena, Germany). The samples were captured by Z-stack method at 0.22 

m intervals were converted to maximal projection. The experiments data was 

analyzed by MetaMorph software (Molecular Devices, Sunnyvale, CA, USA).  

 

 

10. Statistical analysis.  

 

All data are reported as means   SEM. Statistical comparisons were made 

using two-tailed unpaired t test or one-way ANOVA followed by Bonferroni-

Dunn test for preplanned multiple comparisons as appropriate. Data were 

analyzed using Prism software (GraphPad, La Jolla, CA, USA). 
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III. RESULTS 

 

1. mGluR5 protein stability affected by mGluR5 S901 phospho-mimetic 

mutation. 

According to a previous study, the PKC phosphorylation of mGluR5 inhibits 

CaM binding to mGluR5
32

, and that Siah-1A competes with CaM for binding to 

the group I mGluRs in vitro
44

 (Fig. 1A). To check the effect of S901 

phosphorylation on the stability of mGluR5, S901 phospho-mimetic form 

(S901D) and non-phospho from (S901A) were manufactured from mGluR5 

expression construct. HeLa cells expressing mGluR5 (WT, S901D, S901A) 

were subjected to Western blotting. The protein expression level of S901D was 

significantly lower than that of mGluR5 WT and S901A. Neomycin 

phosphotransferase II (NPT-II) was also measured. As the NPT-II expression 

sequence was encoded in all the mGluR5 DNA constructs, NPT-II expression 

was used to confirm equal amount of the transfected DNA (Fig. 1B). To 

determine whether the decrease in the S901D expression level was due to the 

reduction of the mGluR5 mRNA expression, the mGluR5 (WT, S901A, S901D) 

mRNA level was measured via real-time PCR (Fig. 1C). The mRNA levels of 

mGluR5 were not different among wild-type and mutants. This indicates that 

the S901D mutant reduced the mGluR5 protein stability, without changes in the 

protein synthesis of mGluR5. A chase experiment was performed to verify the 

protein stability of mGluR5 (WT, S901A, S901D) using the protein 
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biosynthesis inhibitor cycloheximide. The expression of the mGluR5 protein 

levels was monitored for 6 h, and samples of each time point were measured 

via Western blotting. The half-life of the mGluR5 S901D protein level 

significantly decreased compared with that of WT (Fig. 1D, E). This suggests 

that the phosphomimetic mutation of mGluR5 S901 accelerated the protein 

degradation.  
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Figure 1. S901 phospho-mimetic mutation affects protein stability of mGluR5. 

     A) Siah-1A and CaM have similar binding motif on mGluR5 C-terminus. B) 

mGluR5 S901 site was mutated to phospho-mimetic form (S901D, aspartic 

acid), and non-phospho form (S901A, alanine). Protein expression level of 

mGluR5 was measured by Western blotting. The level of mGluR5 S901D was 

decreased; it assumes that S901 phosphorylation of mGluR5 increased Siah-1A 

binding by displacing of CaM. NPT-II expression was detected by the NPT-II 

antibody; it was used for checking an equal amount of DNA transfection. The 

results represented by histogram are the averages of five independent 

experiments. Data represent the means   SEM. One- way ANOVA (F (2, 12) = 

13.41, p = 0.0009), followed by Bonferroni-Dunn test for preplanned multiple 

comparisons. **p < 0.01 compared with mGluR5 WT (S). C) Expression 

levels of mGluR5 mRNA were measured by quantitative realtime PCR. D) 

Chase experiment of mGluR5. HeLa cells expressing mGluR5 (WT, S901D, or 

S901A) were incubated with cycloheximide (200 g/ml) for 2 h and then 

collected the samples at the indicated times. Proteins levels were analyzed by 

Western blotting. E) Quantitative analysis of figure D). The results represented 

by histogram are the averages of five independent experiments. Data represent 

the means   SEM. One-way ANOVA (F (2, 12) = 121.5, p < 0.0001), followed 

by Bonferroni-Dunn test for preplanned multiple comparisons. **p < 0.01 

compared with mGluR5 WT (S). 
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2. Siah-1A is an important factor for accelerated degradation of mGluR5 

S901D. 

To determine if the degradation of mGluR5 was regulated by Siah-1A, HeLa 

cells were co-transfected with mGluR5 WT and Siah-1A, and the protein levels 

were measured via Western blotting. The protein level of mGluR5 decreased 

when Siah-1A overexpressed (Fig. 2A). The protein level of mGluR7 was also 

tested for the specific regulation of Siah-1A for the group I mGluRs, and the 

result showed that mGluR7 was not changed by Siah-1A overexpression (Fig. 

2B). This result was consistent with that of a previous study.
45

 To clarify the 

Siah-1A effect, Siah-1A siRNA was administered into the HeLa cells which 

were transfected with mGluR5 (WT, S901A, S901D). In the control sample 

SiCONT, the mGluR5 S901D expression level decreased compared with WT, 

but when Siah-1A was knocked down by siRNA, the mGluR5 S901D 

expression level was recovered to the WT level (Fig. 2C). These data indicate 

that the protein stability of mGluR5 was regulated by Siah-1A. In a previous 

study, CaM binding to mGluR5 was decreased by S901 phosphorylation
32

, and 

it was speculated that increasing the binding between Siah-1A and mGluR5 

S901D would decrease the mGluR5 protein levels. The interaction between 

Siah-1A and mGluR5 was tested via immuno-precipitation assay to determine 

if the reduction of the S901D protein levels is caused by the differential binding 

of CaM and Siah-1A to mGluR5. Siah-1A and mGluR5 (WT, S901D, S901A) 

were co-transfected into HeLa cells, and receptors were immuno-precipitated 

with an mGluR5 antibody. The interaction between Siah-1A and mGluR5 
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S901D increased, but the CaM binding with mGluR5 S901D decreased (Fig. 

2D). This suggests that the S901D mutant preferred Siah-1A binding over CaM; 

thus, the protein stability of the S901D mutant could be lower than that of WT. 

Next, in-vitro pull-down assay was performed to determine if the interaction 

between Siah-1A and mGluR5 is directly affected by S901 phosphorylation in 

the absence of CaM. The CaM and mGluR5 binding was decreased by the PKC 

phosphorylation of mGluR5 S901, but the Siah-1A binding to mGluR5 did not 

change (Fig. 2E). This indicates that the mGluR5 and Siah-1A binding was 

directly affected by CaM but not by the S901 phosphorylation. 
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Figure 2. Regulation of mGluR5 protein stability by Siah-1A.  

A) HeLa cells were transfected with mGluR5 WT or control vector or Flag-

Siah-1A constructs. mGluR5 and Siah-1A protein levels were measured by 

Western blotting. Unpaired t test (**p < 0.01) versus mGluR5 WT (S). B) 

HeLa cells expressing mGluR7 and control vector or the Flag-Siah-1A 

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=3532883_nihms421755f2.jpg
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constructs were subjected to Western blotting. C) HeLa cells expressing 

mGluR5 (WT, S901D, or S901A) were transfected with siCONT (nontargeted 

control siRNA) or Siah-1A siRNA and the protein levels were measured by 

Western blotting. D) HeLa cells were transfected with mGluR5 (WT, S901D, 

or S901A). Receptors were immuno-precipitated with mGluR5 antibody, and 

then immuno-precipitates were subjected to Western-blotting using Siah-1A or 

CaM antibody. The results represented by histogram are the averages of at least 

four independent experiments. Data represents the means   SEM. One-way 

ANOVA (C: F (2, 12) = 22.50, p < 0.0001; D: F (2, 9) = 536.6, p < 0.0001), 

followed by Bonferroni-Dunn test for preplanned multiple comparisons. **p < 

0.01 compared with mGluR5 WT (S). E) GST-fusion protein of mGluR5 was 

phosphorylated by PKC, and a GST pull-down assay was performed. mGluR5 

fusion proteins were incubated with either CaM or Siah-1A. In each sample, 

protein level was measured by Western blotting. Samples were detected by 

S901 phospho-specific antibody, CaM or Siah-1A antibody. 

 

 

3. Competitive interaction between Siah-1A and CaM for binding to 

mGluR5. 

HeLa cells were transfected with mGluR5 WT and Siah-1A or CaM. To 

determine if there is a competitive interaction between Siah-1A and CaM for 

binding to mGluR5, immuno-precipitation assay was performed with an 

mGluR5 antibody. It was found that the CaM overexpression increased the 
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CaM binding to mGluR5, but at that time, the Siah-1A binding decreased. Also, 

the Siah-1A overexpression increased the Siah-1A binding to mGluR5, but the 

CaM binding decreased. This indicates that CaM and Siah-1A had a 

competitive interaction for binding to mGluR5, such as an antagonistic effect 

on each other, in the test that was conducted (Fig. 3A). 

 

To determine if increasing the CaM binding level on mGluR5 can regulate 

protein stability, and if it is responsible for the Siah-1A binding to mGluR5, the 

destabilization domain (DD) fused to CaM or Siah-1A was also used. The DD 

induces the rapid degradation of the entire fused protein.
48

 Shield1, which binds 

with DD and protects the DD-fused protein from degradation, was also used 

(Fig. 3B). CaM and Siah-1A were fused with DD and were introduced into 

HeLa cells with mGluR5 constructs. HeLa cells expressing mGluR5 WT and 

DD-fused Siah-1A were treated with Shield1. As the Siah-1A protein 

degradation was protected by Shield1, the protein level of mGluR5 was 

decreased. This data is consistent with the Siah-1A overexpression data shown 

in Fig. 2A. Also, DD-CaM and mGluR5 were co-introduced into the HeLa cells, 

and cells were treated with Shield1. The CaM degradation was protected by 

Shield1, and the mGluR5 protein level increased (Fig. 3C). This indicates that 

CaM and Siah-1A have a competitive interaction between them for binding to 

mGluR5, and this interaction regulates the mGluR5 stability. 
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Figure 3. CaM and Siah-1A competition for mGluR5 binding.  

A) HeLa cells expressing mGluR5 and CaM or Siah-1A were subjected to 

immuno-precipitation experiments with mGluR5 antibody, and then the 

immuno-precipitates were electrophoresed and blotted using CaM or Siah-1A 

antibodies. B) CaM and Siah-1A were fused with DD. Protein stability of CaM 

and Siah-1A was increased by Shield1 treatment. C) After Shield1 treatment to 

medium for 3 h (CaM) or 5 h (Siah-1A), mGluR5, CaM, and Siah-1A levels 

were measured by Western blotting. 

 

 

4. Regulation of mGluR5 trafficking by Siah-1A and CaM interaction. 

Surface biotinylation assay was performed to determine if the trafficking of 

mGluR5 is regulated by the competition between Siah-1A and CaM. HeLa cells 

expressing mGluR5 WT and Siah-1A were used, and surface biotinylation 

assay was performed. In the Siah-1A over-expressing sample, the surface level 

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=3532883_nihms421755f3.jpg
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of mGluR5 significantly decreased, but there was no effect on the mGluR7 

surface expression level (Fig. 4A). The mGluR5 (WT, S901D, S901A) mutants’ 

surface expression was tested, and like the result of the total lysate in the 

Western blot, the surface expression level of S901D was lower than the 

mGluR5 WT and S901A levels (Fig. 4B, upper part). Next, to determine if the 

decrease in the surface level of mGluR5 is related with the decrease in the total 

expression, mGluR5-transfected cells were treated with chloroquine, a 

lysosomal degradation inhibitor. The mGluR5 S901D surface level decreased, 

but the total level was not changed by the chloroquine treatment. This indicates 

that Siah-1A regulated mGluR5 trafficking first before it promotes degradation 

of mGluR5 (Fig. 4B, lower part). Next, the Siah-1A E3-ligase activity that 

could be required for the effect of Siah-1A on the mGluR5 levels was tested 

using the Siah-1A ring domain mutant Siah-1A H59Y, which has no E3-ligase 

activity. In HeLa cells expressing mGluR5 and Siah-1A H59Y mutant, it was 

confirmed that the Siah-1A H59Y mutant did not affect the mGluR5 protein 

levels
49

 (Fig. 4C). 

 

Next, a test was conducted to identify the effects of Siah-1A, and to determine 

if the mGluR5 trafficking is regulated by the interaction of Siah-1A with Hrs. 

Hrs is a key component of the ESCRT-0 complex, which interacts with 

ubiquitinated proteins, and sorts out and transmits the cargo proteins to the 

multivesicular system. The ESCRT machinery is an essential step for the 

lysosomal degradation of the cargo proteins
50

. HeLa cells expressing mGluR5 
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and Hrs were used, and lysates were immuno-precipitated with an mGluR5 

antibody and were detected with an Hrs antibody (Fig. 4D). Compared with 

WT, the S901D mutant binding to Hrs increased (Fig. 4E). This indicates that 

S901 phosphorylation is required for Hrs binding to mGluR5. Next, the 

mGluR5 protein stability was tested when Hrs was knocked down. HeLa cells 

expressing mGluR5 WT and Hrs shRNA were used, and the protein levels were 

measured by Western blotting (Fig. 4F). It was found that total protein levels of 

mGluR5 S901D were recovered to the level of the mGluR5 WT when Hrs 

shRNA was transfected. This shows that Hrs is an important factor for 

regulating the protein stability of the mGluR S901D mutant. Together, these 

data indicate that Siah-1A seems to regulate mGluR5 trafficking through the 

lysosomal degradation pathway. Receptor endocytosis assay was performed in 

both cells expressing mGluR5 WT and mGluR5 S901A to know whether S901 

phosphorylation is necessary to initiate receptor endocytosis. Cells were treated 

with glutamate for a short time (5 min), and the receptor endocytosis was 

observed. Glutamate promoted endocytosis of both mGluR5 and mGluR5 

S901A (Fig. 4G). This result showed that S901 phosphorylation and the change 

in the interaction between CaM and Siah-1A are not absolute factors for 

mGluR5 endocytosis. 
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Figure 4. Regulation of mGluR5 trafficking by Siah-1A.  

A) Using surface biotinylation assay, mGluR5 surface expression levels were 

measured. HeLa cells were transfected with mGluR5 with or without Siah-1A. 

mGluR7 level was also analyzed in the same experiment condition. B) HeLa 
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cells were transfected with mGluR5 (WT, S901D, S901A) and surface 

biotinylation assay was performed after chloroquine (25 M) treatment for 6 h. 

Surface biotinylated mGluR5 levels were shown by quantitative analysis (right). 

The results represented by histogram are the averages of four independent 

experiments. Data represent the means   SEM. One-way ANOVA 

[surface/chloroquine (-): F (2, 9) = 198.1, p < 0.0001; total/chloroquine (-): F (2, 9) 

= 52.68, p < 0.0001; surface/chloroquine (+): F (2, 9) = 49.26, p < 0.0001; 

total/chloroquine (+): F (2, 9) = 0.9102, p < 0.4365], followed by Bonferroni-

Dunn test for preplanned multiple comparisons. ** p < 0.01 compared with 

mGluR5 WT (S). C) HeLa cells were transfected with mGluR5 and control 

vector or Siah-1A-H59Y mutant. Protein levels of mGluR5 were measured by 

Western blotting. D) HeLa cells were transfected with mGluR5 and Hrs. Cell 

lysates were immuno-precipitated with mGluR5 antibody. Arrow head 

indicates the band representing Hrs. E) HeLa cells were transfected with Hrs 

and mGluR5 WT or mGluR5 S901D. Samples were immuno-precipitated with 

mGluR5 antibody and measured by Western blotting with Hrs antibody. F) 

HeLa cells were cotransfected with mGluR5 (WT, S901D) with control (non-

targeted shRNA) or Hrs shRNA. mGluR5 levels were measured by Western 

blotting. The results represented by histogram are the averages of four 

independent experiments. One-way ANOVA (F (3, 12) = 36.85, p < 0.0001), 

followed by Bonferroni-Dunn test for preplanned multiple comparisons. *p < 

0.05 compared with mGluR5 WT (S) with nontargeted shRNA and **p < 0.01 

compared with mGluR5 S901D with nontargeted shRNA. G) mGluR5 (WT, 
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S901A) was introduced into HeLa cells. Cells were biotinylated after treatment 

with glutamate (100 M) for 5min. To detect internalized biotinylated mGluR5, 

remaining biotinylated mGluR5 on the surface membrane was cleaved by 

reduced glutathione. 

 

 

5. Critical binding residues of Siah-1A and trafficking of mGluR5. 

In the experiments performed in this study, the S901D mutant reduced the 

CaM binding but did not directly affect the Siah-1A binding to mGluR5. The 

Siah-1A critical binding residue on the mGluR5 C-terminus was then 

investigated, with focus on the classical Siah-1A binding motif (PXAXVXP, X 

= any amino acid) (Fig. 5A), which has been reported
51

. Several residues were 

chosen, putative Siah-1A binding site disrupting mutants were fabricated, and 

two yeast hybrid assays were performed. In the tests, the mutation of isoleucine 

916 to alanine (I916A) or glutamic acid (I916E) and the mutation of threonine 

913 to aspartic acid (T913D) were completely disrupted by the Siah-1A binding 

to mGluR5, but the mutation of proline 918 to alanine (P918A) had no effect 

on the Siah-1A binding to mGluR5 (Fig. 5B). Using immuno-precipitation 

assay, results similar to those of the two yeast hybrid assays were obtained. 

HeLa cells expressing mGluR5 (WT, T913D, I916A) and mGluR5 proteins 

were immuno-precipitated with an mGluR5 antibody and were measured via 

Western blotting with a Siah-1A antibody (Fig. 5C). From these data, it was 

found that the Siah-1A binding site was different from the CaM binding site on 
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the mGluR5 C-terminus, and that the hydrophobic interaction is important for 

Siah-1A binding. To determine the specific role of Siah-1A, surface 

biotinylation assay was performed. HeLa cells expressing mGluR5 (WT, 

T913D, I916A) and biotinylated protein were purified with neutravidin beads, 

and the mGluR5 surface expression levels were measured via Western blotting. 

The surface expression of mGluR5 T913D, I916A mutants that disrupted the 

Siah-1A binding to mGluR5, significantly increased (Fig. 5D). Similar results 

were obtained from immuno-staining (Fig. 5E). GFP-tagged Siah-1A was used 

to find transfected cells and N-Myc tagged mGluR5 was used to detect surface 

expression of mGluR5. Almost no surface expression of mGluR5 WT was 

observed when Siah-1A was overexpressed (Fig. 5E, top part). In contrast, two 

mutants (T913D, I916A) of mGluR5 were well detected on the plasma 

membrane when Siah-1A was overexpressed in the cells (Fig. 5E, middle and 

bottom parts). These data show consistent results with the surface biotinylation. 

Surface biotinylation assay was performed to determine the effect of S901D 

and I916A double mutation on mGluR5 surface expression. In the case of 

double mutation, the mGluR5 surface expression did not decrease (Fig. 5F). 

This suggests that Siah-1A binding is an important factor regulating the 

mGluR5 surface expression, and that the effects of CaM on mGluR5 trafficking 

are related with Siah-1A. 
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Figure 5. mGluR5-Siah-1A interaction disrupting mutations and there effects  

on trafficking of mGluR5. 

A) Critical binding domains on mGluR5 C-terminus (889 –918; CaM binding 

domain 889 –917 and Siah-1A-binding domain 892 –918). The Siah-1A-

binding consensus sequence (PXAXVXP, X=any amino acid) is indicated at 

the top. Arrows indicate S901, T913, and I916 on mGluR5. B) mGluR5 T913D, 

I916A, I916E did not interact with Siah-1A in yeast two-hybrid assays. Yeasts 

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=3532883_nihms421755f5.jpg


38 

 

were co-transformed with LexA-mGluR5 (828 –944) (WT, S901A, S901D, 

T913A, T913D, V915A, I916A, I916E, or P918A) and Gal4-Siah-1A, and 

growth was evaluated. Results shown are 10 -fold serial dilutions of yeast cells. 

All data shown are representative of at least three independent experiments. C) 

HeLa cells expressing mGluR5 WT, T913D or I916A mutants were subjected 

to co-immuno-precipitation experiment with mGluR5 antibody. Immuno-

precipitated samples were then analyzed by Western blot. D) HeLa cells were 

transfected with mGluR5 WT, T913D, or I916A mutants. Surface expression 

levels were measured by a surface biotinylation assay. NPT-II was used to 

normalize the mGluR5 transfection efficiency. The results represented by 

histogram are the averages of five independent experiments. Data represents 

the means   SEM. One-way ANOVA (F (2, 12) = 174.5, p < 0.0001), followed 

by Bonferroni-Dunn test for preplanned multiple comparisons. **p < 0.01 

compared with mGluR5 WT (S). E) HeLa cells were transfected with GFP 

fused Siah-1A and Myc-mGluR5 WT, T913D, or I916A mutants and immuno-

staining assay was performed. Surface expression levels of mGluR5 were 

detected with Myc antibody (surface). F) Lysates from the cells transfected 

with mGluR5 WT, S901D, or S901D and I916A double mutants. mGluR5 

surface expression levels were measured by surface biotinylation assay. Data 

represent the means   SEM. The results represented by histogram are the 

averages of five independent experiments. One-way ANOVA (F (2, 12) = 53.60, 

p < 0.0001), followed by Bonferroni-Dunn test for preplanned multiple 

comparisons. **p < 0.01 compared with mGluR5 WT (S). 
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6. Agonist-induced change of mGluR5 surface expression by Siah-1A 

binding. 

To examine the surface expression of mGluR5, HeLa cells expressing 

mGluR5 WT and S901A constructs were used. Cells were treated with 

glutamate (100 M) for 10 min, and surface biotinylation assay was performed. 

The surface level was measured via Western blotting. In a previous study, the 

PKC phosphorylation of S901 was induced by the glutamate treatment of 

mGluR5
33

. The surface expression of mGluR5 was decreased by the glutamate 

treatment, but surface expression of the mGluR5 S901A mutant did not 

decrease (Fig. 6A). In addition, in the Siah-1A siRNA-treated sample, the 

agonist-induced surface expression of the mGluR5 levels did not decrease (Fig. 

6B). These data indicate that Siah-1A is an important regulating factor for the 

trafficking of mGluR5 following agonist-induced phosphorylation. 

 

 

 

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=3532883_nihms421755f6.jpg
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Figure 6. Siah-1A effects on mGluR5 surface expression. 

A) HeLa cells were transfected with mGluR5 WT or S901A and then treated 

with glutamate (100 M) for 10 min. The results represented by histogram are 

the averages of four independent experiments. Data in the histogram represents 

the means   SEM. One-way ANOVA (F (3, 12) = 41.64, p < 0.0001), followed 

by Bonferroni- Dunn test for preplanned multiple comparisons. **p < 0.01 

compared with mGluR5 WT (S) without glutamate. B) HeLa cells were 

transfected with mGluR5 WT and siCONT (non-targeted siRNA pool) or 

siSiah-1A (siRNA pool against Siah-1A) and then stimulated with glutamate 

(100 M) for 10 min. Cell lysates were subjected to a surface biotinylation 

assay. Data in the histogram represent the means   SEM. The results 

represented by histogram are the averages of five independent experiments. 

One-way ANOVA (F (3, 12) = 72.06, p < 0.0001), followed by Bonferroni-Dunn 

test for preplanned multiple comparisons. **p < 0.01 compared with mGluR5 

WT (S) without glutamate.  

 

7. Detection of mGluR5 and Siah-1A interaction in situ. 

To determine if the competitive interaction between CaM and Siah-1A for 

binding to mGluR5 also occurs in primary cultured hippocampal neurons, the 

interaction between Siah-1A and mGluR5 was demonstrated in situ using 

Duolink PLA. This system can be used for detecting protein-protein interaction, 

modification, or expression in situ. The neurons were labeled with Siah-1A and 
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mGluR5 antibodies and were incubated with species-specific secondary 

antibodies. The secondary antibody attaches DNA strands, which participate in 

a series of reactions (ligation, replication, and hybridization with fluorescently 

labeled detection oligonucleotides) that can occur only when the two proteins 

are closely interacting with each other (≤ 40 nm). The interaction between Siah-

1A and mGluR5 in the brain was tested. Brain lysates were immuno-

precipitated with an mGluR5 antibody and were detected with a Siah-1A 

antibody (Fig. 7A). Siah-1A and mGluR5 were labeled with a PLA probe, and 

the fluorescent spots were detected with a confocal microscope. Compared with 

the control, the red fluorescent spots increased in the DHPG treatment sample 

(Fig. 7B, C). These data indicate that Siah-1A and mGluR5 also interact in the 

neuronal cells and mGluR5 activation can promote mGluR5-Siah-1A 

interaction. 

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=3532883_nihms421755f7.jpg
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Figure 7. Interaction between mGluR5 and Siah-1A in neurons.  

A) Rat hippocampus was immuno-precipitated with mGluR5 antibody and 

measured by Western blot. B) Using hippocampal neurons at 14 DIV, in situ 

PLA was performed using mGluR5 and Siah-1A antibodies C) Quantification 

of experiments shown in B). Data were averaged from 150 to 200 dendritic 

fragments from six independent experiments and expressed as the means 

  SEM. Unpaired t test (**p < 0.01) versus no treatment control. 

 

 

8. Regulation of mGluR5 trafficking by Siah-1A in hippocampal neurons. 

To determine the role of Siah-1A on mGluR5 trafficking, a control vector 

(pEGFP-empty vector) and pEGFP-Siah-1A constructs were transfected into 

primary cultured hippocampal neurons, and the mGluR5 level was measured 

through an immuno-fluorescence experiment. Using an antibody that can detect 

the mGluR5 extracellular domain, the surface expression of mGluR5 was 

captured. In the Siah-1A transfected neuron, the surface expression of mGluR5 

decreased (Fig. 8A, B). This result shows that Siah-1A also affects mGluR5 

trafficking in primary hippocampal neurons. 
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Figure 8. mGluR5 surface levels were changed by Siah-1A in hippocampal  

neurons. 

 A) All neurons were labeled by green fluorescence protein and surface 

expression of mGluR5 was detected with mGluR5 N-terminus antibodies (red 

spot). B) Acquired images were thresholded, and the integrated mGluR5 

immuno-staining intensities in neurons that were measured in 20 m dendritic 

segments close to the first branch point. The intensities of mGluR5 were 

quantified using MetaMorph software (Molecular Devices). Unpaired t test 

(**p < 0.01) versus EGFP control. Images were taken from > 50 neurons from 

four independent experiments. 

 

 

 

 

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=3532883_nihms421755f8.jpg


44 

 

IV. DISCUSSION 

 

This study suggests that the competitive interaction between Siah-1A and CaM has 

an important role in the regulation of mGluR5 trafficking by controlling the number 

of receptors on the plasma membrane. In many researches, protein binding with 

mGluR5, including Siah-1A and CaM, have been discovered. It was found in a 

previous study, through in-vitro pull-down assay, that Siah-1A and CaM bind with 

the mGluR5 C-terminus
45

. This interaction has not been confirmed, however, in the 

molecular levels and in neurons. In addition, receptor binding protein Siah-1A 

mediates ubiquitination and degradation of group I mGluRs. However, the 

underlying mechanism that Siah-1A mediates group I mGluRs trafficking, has not 

been confirmed. The previously obtained data showed that agonist-induced mGluR5 

activation leads to PKC phosphorylation of mGluR S901 site, which profoundly 

inhibited CaM binding to mGluR5 and the phosphorylation of mGluR5 regulates 

the receptor trafficking
33

. In addition, Siah-1A and CaM have similar binding motifs 

on mGluR5. Therefore, it can be speculated that the interaction between Siah-1A 

and mGluR5 would be affected by S901 phosphorylation. 

 

In the present study, it was found that phospho-mimetic mutation of mGluR5 S901 

protein level was lower than that of mGluR5 WT, and half-life of the mGluR5 

S901D protein level significantly decreased compared with that of mGluR5 WT. 

These indicate that phospho-mimetic mutation of mGluR5 S901 reduced protein 

stability of mGluR5 and accelerated the protein degradation. Then, it was found that 
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the Siah-1A binding decreased mGluR5 protein level. In addition, using immuno-

precipitation assay, it was found that binding of mGluR5 S901D with Siah-1A was 

increased but CaM binding with mGluR5 S901D was decreased. These data indicate 

that phospho-mimetic mutation of mGluR5 S901 preferred binding with Siah-1A 

over CaM. Thus mGluR5 S901D protein stability was significantly lower than that 

of mGluR5 WT. Next, using in vitro pull-down assay, it was demonstrated that 

PKC-dependent mGluR5 S901 phosphorylation decreased CaM binding to the 

receptor. Siah-1A binding, however, was not directly affected by receptor 

phosphorylation in the absence of CaM. This indicates that the interaction between 

mGluR5 and CaM is an important factor for the regulation of Siah-1A binding to 

the receptor. Using immuno-precipitation assay, it was shown that CaM 

overexpression increased interaction between CaM and mGluR5, but the binding of 

mGluR5 with Siah-1A decreased. Also, Siah-1A overexpression increased Siah-1A 

binding to mGluR5, but the binding with CaM decreased. This indicates that CaM 

and Siah-1A had competitive interaction for binding to mGluR5. To further validate 

this hypothesis, several experiments were performed. Using surface biotinylation 

assay, it was shown that Siah-1A decreased surface expression of mGluR5 protein, 

and the PKC phosphorylation of mGluR5 increased the binding with Siah-1A. In 

addition, it was found that Siah-1A interacted with Hrs, which recruited 

ubiquitinated protein cargo to the multivesicular body, and Hrs overexpression 

decreased mGluR5 protein expression. Then it was shown that upon knock-down of 

Hrs with shRNA, phospho-mimetic mutation of mGluR5 S901 protein level 

recovered to that of WT. These data indicate that phosphorylation of mGluR5 
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increased the binding with Siah-1A and that it is a critical factor for receptor 

trafficking to the lysosome for degradation. Also, the critical binding site of Siah-1A 

to mGluR5 was identified, and it was shown that phosphorylation of the receptor is 

an important event for Siah-1A binding to the receptor. Next, using proximity 

ligation assay, it was found that Siah-1A also bound with mGluR5 and affected the 

mGluR5 trafficking in primary hippocampal neurons. Taken together, the present 

study strongly indicate that CaM regulates mGluR5 trafficking through the PKC-

dependent regulation of the receptor-binding proteins. 

 

A recent study has shown that norbin increases the receptor membrane 

stabilization, and regulates signaling of mGluR5. Also norbin protein competes with 

CaM for binding to mGluR5 C-terminus, which was implicated in the development 

of schizophrenic phenotypes in mice. In this study, binding residues of norbin is 

highly similar to the CaM binding residue on the mGluR5 C-terminus
36

. Then, the 

interaction between mGluR5 and norbin is likely to be affected by S901 

phosphorylation, which modulates the CaM interaction to the receptor. These 

results showed that norbin is the other mGluR5 binding protein, which was 

regulated by CaM.  

 

CaM is a calcium sensor protein and ubiquitously expressed in most eukaryotic 

cells, which relays Ca
2+

 mediated intracellular signaling
34-35

. Especially, it is highly 

expressed in the brain and enriched in the postsynaptic density and synaptic vesicles 

of neurons, thereby it regulates ion channel function, GPCR signaling, and synaptic 
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plasticity
52-56

. Intriguingly, there have been accumulating evidences suggesting that 

CaM directly interacts with various GPCRs expressed in neurons such as 

dopamine
55

, opioid
57

, serotonin
38

, and metabotropic glutamate receptors (mGluRs)
 58

. 

In some cases, CaM is involved in the GPCR trafficking. For examples, CaM binds 

with mGluR7, which belongs to the group III mGluRs. Interestingly, the CaM 

displacement from the receptor enhances the mGluR7 protein stabilization on the 

plasma membrane
47

. In contrast to mGluR5, mGluR7 is not regulated by Siah-1A
46

, 

so it was suggested that other receptor-binding proteins might be competing with 

CaM to regulate the surface expression of mGluR7
47

. The protein interacting with 

C-kinase 1 (PICK1), which is adaptor protein that binds to and organizes the 

subcellular localization of membrane proteins, competes with CaM for binding to 

mGluR7, and the PICK1-receptor binding increases the mGluR7 surface expression. 

Interestingly, the PICK1 and CaM binding site are different, and these residues are 

located very far from each other. This indicates that the binding motif overlapping 

between CaM and the receptor-binding protein is not a necessary factor for CaM 

competition. In addition, there are some evidences that CaM regulates the function 

of G protein-coupled receptor kinases, which are implicated in endocytosis of 

GPCRs, indicating multiple roles of CaM in regulating GPCR trafficking
59-60

. From 

these findings, it could be suggested that the function of GPCR can be regulated by 

CaM binding, which can enhance or reduce the interaction among the GPCR-

binding proteins.  

 

 



48 

 

As mentioned already, CaM is abundantly expressed in brain. While mGluR5 and 

mGluR7 are expressed together in one neuron, the trafficking of these two receptors 

is regulated by CaM in an opposite way. In the case of mGluR5, CaM increased 

protein stability on the plasma membrane of mGluR5, however, CaM displacement 

increased protein stability of surface expression of mGluR7. Activation of Gq-

coupled metabotropic and tyrosine kinase receptors by stimuli can induce the 

activation of protein kinase Cs (PKCs) that is crucial mediator for synaptic 

plasticity. The activation of PKC is especially implicated in the phosphorylation of 

various CaM binding GPCRs including to 5-HT1A and 5-HT2A receptors
37

, 

mGluR5
58

 and mGluR7
61

. Phosphorylation of the CaM binding sites by activated 

PKC can induce the dissociation of CaM binding from its target GPCRs. For 

example, phosphorylation of GPCRs such as 5-HT1A receptor
37

, mGluR5
58

, 

mGluR7
61

 by PKC and CaM binding to the receptors are antagonistic. Moreover, 

CaM binding can affect the interaction of GPCRs with other binding protein. In the 

present study, agonist-induced phosphorylation of mGluR5 and consequential CaM 

dissociation from the receptors can regulate the binding of other receptor-binding 

proteins. Taken together, this study also suggests that CaM indirectly regulates the 

receptor functions through modulation the affinity of mGluR5 binding to Siah-1A. 

 

At this point, a question arises how the trafficking of mGluR5 is regulated by Siah-

1A. Siah-1A is an enzyme and acts as an E3 ligase for the group I mGluRs 

(mGluR1 and mGluR5), and induces the ubiquitination and degradation of its 

substrate
46

. Ubiquitination is the process where 76-amino acid protein ubiquitin 
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attaches to the lysine residues of substrate protein covalently by the sequential 

processes of three distinct enzymes
62

. The ubiquitination process starts with an E1-

activating enzyme, forming a thioester bond that is required for transfer to E2-

conjugating enzymes, and E3 ubiquitin ligase attaches the ubiquitin to substrate 

proteins
63

. Ubiquitin is responsible for both internalization signal
64

 and lysosomal 

sorting signal
65

.  

 

A number of GPCRs are degraded via lysosomal sorting, and the ubiquitin-

attached receptor can initiate degradation
66

. Also, the ubiquitination of the receptor 

is related to receptor endocytosis. For example, an epidermal growth factor receptor 

was ubiquitinated by the Cbl family of ubiquitin ligases, which plays an important 

role in both the endocytosis and translocation of the receptor to lysosomal 

degradation
67-68

. In addition, the chemokine receptor CXCR4 was ubiquitinated by 

the Nedd4 family of E3 ubiquitin ligase AIP4, which is responsible for lysosomal 

degradation of the receptor
69

. In the present study, phospho-mimetic mutation of 

mGluR5 S901 accelerates protein degradation by enhancing the binding of Siah-1A 

to mGluR5. When treated with the lysosomal inhibitor chloroquine, however, the 

total mGluR5 S901D protein levels did not decrease, but the surface levels did. This 

indicates that Siah-1A actively regulates particular steps in endocytosis or in the 

lysosomal sorting pathways.  

 

Siah-1A is involved in both mono-ubiquitination and poly-ubiquitination
70-71

. For 

example, Siah-1A triggers the mono-ubiquitination of -synuclein
73

, which 
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functions as a molecular chaperone in the formation of SNARE complexes, and the 

poly-ubiquitination of ELL2 which is an elongation factor; RNA polymerase II
74

. In 

the ubiquitination system, single ubiquitin addition to a substrate protein is known 

as mono-ubiquitination. Then, ubiquitin contains seven lysine residues, which 

means ubiquitin binds together with other ubiquitin by an iterative process, known 

as poly-ubiquitination, that leads to the formation of the ubiquitin chain attached to 

a single lysine of substrate protein. Generally, poly-ubiquitinated proteins are sorted 

to proteasome for degradation, and mono-ubiquitinated proteins are sorted to late 

endosomes and subsequent to lysosomes for degradation
72

.  

 

A GPCR like mGluR5 undergo endocytosis, and the receptor enters into an early 

endosome, after which the receptor will either recycle back to the plasma membrane 

or sort into the late endosome and lysosome for protein degradation. For example, 

membrane receptors such as receptor tyrosine kinases (RTKs) and alpha-factor 

receptor are undergone mono-ubiquitination, and this modification play a role in the 

receptor trafficking by enhancing the internalization and protein lysosomal 

degradation
65, 72

. In this study, mGluR5 and Siah-1A interaction might bring about 

receptor mono-ubiquitination and sorts the receptor into the late endosome and 

lysosome for degradation. This model was confirmed by immuno-precipitation 

assay between Siah-1A and Hrs. Then, it was validated by showing the increased 

stability of the mGluR5 protein levels after Hrs deletion. Hrs belongs to ESCRT-0 

complex, and interacts with ubiquitinated proteins and sorts out the cargo proteins 

to the multivesicular system for protein degradation. The ESCRT machinery is 
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multi-subunit machinery that performs a topologically unique membrane bending 

and scission reaction away from the cytoplasm. This machinery plays an important 

role in the lysosomal degradation of the cargo proteins
50

. 

 

mGluR5 plays important roles in both synaptic plasticity and neuronal 

development. Glutamate receptors, such as ionotropic glutamate receptors (NMDA, 

AMPA, kainate) and metabotropic glutamate receptors, play important roles in the 

regulation of synaptic plasticity. There are two necessary factors for regulating 

synaptic strength: receptor phosphorylation and receptor induction by increased 

intracellular calcium levels
16, 76

. In the case of mGluR5, these two processes also 

exist. Activation of mGluR5 induces calcium release, and the mGluR5 S901 residue 

is phosphorylated by PKC
25, 77

. This receptor phosphorylation occurs after the 

receptor activation by agonists. Interestingly, the activation of mGluR5 can initiate 

these conflicting events. The activation of mGluR5 increases the intracellular 

calcium levels and enhances the CaM-mGluR5 binding. The receptor-activation-

induced PKC phosphorylation of the mGluR5 S901 residue, however, displaces 

CaM. In the experiment model, the phosphorylation of mGluR5 S901 appeared to 

avoid enhanced CaM affinity, and the activation of mGluR5 decreased the mGluR5 

protein stability on the membrane and increased the Siah-1A binding to mGluR5. In 

the brain, however, numerous channels and receptors could increase the 

intracellular calcium levels and/or the activation of protein kinases/phosphatases, 

and could also be activated under discrete conditions for synaptic plasticity and 

synaptic transmission. Thus, different synaptic transmission stages may provide 
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various receptor binding capacities for CaM, which would affect mGluR5 

trafficking. These regulatory mechanisms for the CaM-mGluR5 interactions can be 

seen as contradictory. When these mechanisms are reconciled, CaM can be used as 

the central mediator for the integration of various synaptic signals.  

 

The activity of mGluR5 is strictly regulated and is important for preventing 

neurological and psychological diseases. Dysfunction of mGluR5 has been 

implicated in numerous central nervous system disorders, including anxiety, 

depression, epilepsy, neuropathic pain, autism, drug addiction, Parkinson’s disease, 

and fragile X mental retardation syndrome
78-84

. For example, the reduction or 

knock-out of mGluR5 has been shown to inhibit anxiety and depression. In the 

fragile X mental retardation disease and autism, the absence of the fragile X mental 

retardation protein induces uncontrolled mGluR5 signaling, and this signaling can 

be considered as the primary pathological mechanism
84

. Recently, norbin gene 

deletion, which has positive effects on mGluR5 expression on surfaces like CaM, 

was reported to have caused schizophrenic symptoms in animal models
36

. This data 

indicates that strict control of the surface membrane expressed receptor is critical 

for the normal brain function. In this study, the interaction between CaM and Siah-

1A were shown to have important roles in the trafficking of mGluR5 regulation by 

controlling the number of receptors on the membrane. It remains to be seen, 

however, why neurons indirectly regulate the receptor binding protein efficacy 

through CaM rather than directly regulating proteins through receptor modifications, 

such as phosphorylation.  
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Present study was shown that Siah-1A and CaM competed each other for binding 

to mGluR5, and Siah-1A regulated mGluR5 trafficking toward lysosomal 

degradation. Then, Siah-1A binding capacity was increased by mGluR5 S901 

phosphorylation. Taken together, this study suggests a dynamic model that CaM 

regulates mGluR5 trafficking through the PKC-dependent regulation of the 

receptor-binding protein Siah-1A. From these finding, I expect that these results 

could enhance to understand the GPCR functions and the pathophysiology of 

mGluR5-related diseases in the CNS.  
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V. CONCLUSION 

 

Present study demonstrated that competitive interaction between Siah-1A and 

CaM was an important regulatory mechanism of mGluR5 trafficking. The 

regulation mechanism of the mGluR5 trafficking was concluded as follows:  

 

1. Siah-1A and CaM binding amino acid sequence to mGluR5 C-terminus 

overlaps considerably. 

 

2. Protein stability of mGluR5 was decreased by Siah-1A. The overexpression 

of Siah-1A decreased mGluR5 level and knock-down of Siah-1A recovered 

S901D protein level to that of WT. 

 

3. Siah-1A and mGluR5 binding was affected by interaction with CaM but not 

by PKC phosphorylation itself of mGluR5 S901. 

 

4. The mGluR5 and Siah-1A interaction induced the acceleration of mGluR5 

trafficking into intracellular sites. It reduced total amount of the functional 

mGluR5 protein on the plasma membrane. 

 

5. Binding of Siah-1A on mGluR5 C-terminus is important for regulation of 

mGluR5 trafficking. 
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6. In hippocampal neurons, Siah-1A regulates mGluR5 protein stability and 

surface expression. 

 

These results indicate that CaM binding which is regulated by S901 

phosphorylation plays a central role in regulating interaction between mGluR5 

and Siah-1A and subsequent mGluR5 trafficking, and expect that these results 

could enhance to understand the GPCR functions and mGluR5-related diseases 

in the CNS. 
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ABSTRACT (IN KOREAN) 

 

mGluR5 인산화에 따른 receptor trafficking 조절 기전 

 

<지도교수 김 철 훈> 

 

연세대학교 대학원 의과학과 

 

고 석 진 

 

 

 Glutamate는 중추신경계의 흥분성 신호 전달물질로서, ionotropic 과 

metabotropic glutamate receptor (mGluRs) 에 모두 작용하여 뇌에서 흥분성 

신경 전달을 매개한다. 그 중에서 mGluRs 는 기능과 역할의 차이로 3

가지 그룹으로 구분되며, 신경 전달물질의 유리와 이온채널의 기능을 

포함한 다양한 신경기능을 조절한다. Group I 에 속하여져 있는 mGluR5 

는 synaptic transmission 을 조절하고 통증, 불안, 약물중독, 그리고 알츠

하이머병을 비롯한 많은 신경학적 질병에 연관되어 있다. 기존 연구에

서 mGluR5 C-terminus 의 S901 부위는 PKC 에 의해 인산화 되는 부위

임이 확인되었고, S901 부위의 인산화는 mGluR5 와 calmodulin (CaM) 

사이의 결합을 저해시킴으로써 mGluR5 의 세포막 발현을 감소시킴이 

발표되었다. 그러나 CaM 에 의존적인 mGluR5 의 trafficking 조절기전

은 잘 알려져 있지 않았다. 최근 연구에 따르면 CaM 과 ubiquitin E3 

ligase 인 seven in absentia homology 1A (Siah-1A) 가 서로 경쟁을 통하여 
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group I mGluRs 에 결합한다고 밝혀졌으며 또한 group I mGluRs 의 

ubiquitination 과 분해를 Siah-1A 가 매개한다는 것이 밝혀졌다.  

본 연구에서는 CaM 과 Siah-1A 간의 경쟁적 결합에 의해 조절되는 

mGluR5 trafficking 기전을 밝혔다. Siah-1A 의 결합에 의해 mGluR5 

S901D 변이가 mGluR5 wild-type 에 비하여 단백질의 안전성이 저하되는 

것을 확인하였고, mGluR5 S901 부위의 인산화가 mGluR5 와 CaM 사이

의 결합을 저해하고, Siah-1A 와의 결합을 증가 시키는 것을 확인하였다. 

또한 Siah-1A 와 CaM 의 경쟁적 결합이 CaM 에 의존적인 mGluR5 의 

trafficking 을 조절하는 것을 확인하였다. 또한 mGluR5 C-terminus 에 존

재하는 Siah-1A 의 중요한 결합부위를 찾아내었고, 그 결합이 mGluR5 

의 trafficking 을 조절하는데 중요한 인자라는 것을 발견하였다. 또한, 

hippocampal neuron 에서 mGluR5 와 Siah-1A 의 결합은 mGluR5 의 세

포막 발현을 감소시키고, 이는 이 결합이 mGluR5 의 endosomal 

trafficking 에 영향을 주어서 발생하는 현상임을 밝혔다. 본 연구는, 

mGluR5 의 trafficking 이 PKC 인산화에 의존적인 수용체 결합단백에 

의해 조절되는 CaM 을 통하여 조절된다는 것을 밝혔고, 이를 통하여, 

이 연구결과는 GPCR 의 기능과 mGluR5 와 연관된 중추신경계질병에 

대한 이해를 증진시키는데 기여할 것으로 생각한다. 

 

----------------------------------------------------------------------------------------------------- 

핵심 되는 말: mGluR5, CaM, Siah-1A, 수용체 인산화, 수용체 trafficking 
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