가

The Effect of Extracellular Collagen on Synthesis of Extracellular Matrix in a 3-Dimensional Culture of Intervertebral Disc Cells

Hong Jun Park, M.D., Soo Bong Hahn, M.D.*, Seong-Hwan Moon, M.D.*, Hyang Kim, B.S.*, Hwan-Mo Lee, M.D.*, Yung Khee Chung, M.D., Jung Han Yoo, M.D., Yong Wook Park, M.D., and Nam Hyun Kim, M.D.*

Department of Orthopaedic Surgery, Hallym University College of Medicine, Department of Orthopaedic Surgery, Yonsei University College of Medicine*, Seoul, Korea

- Abstract -

Study Design: In-vitro experimental study

Objectives: To determine the proteoglycan synthesis of the rabbit nucleus pulposus cells in various concentration of extracellular collagen type I and II under the stimulation of TGF- 1.

Summary of Literature Review: Therapeutic effect of growth factor and gene therapy can be altered by composition of extracellular matrix. However, the effect of extracellular collagen types I and II on synthetic activity of intervertebral disc cells is not thoroughly studied before.

Materials and Methods: The nucleus pulposus cells were isolated and cultured from 10 skeletally mature rabbits. Cultures were trypsinized and incorporated into alginate beads with different concentration of extracellular collagen type I and II (0.5%, 1.0% and 1.5%). Those cultures with TGF- $\,^{1}$ (10 ng/ml) served stimulated condition of matrix synthesis. Newly synthesized proteoglycans were assessed by $\,^{35}$ S-sulfate incorporation using chromatography on Sephadex G-25 in PD-10 columns. Scintillation count was normalized with DNA content by Hoechst dye method.

Results: In basal condition, difference in proteoglycan synthesis in given concentration of extracellular collagen type I and II were statistically insignificant. In stimulated condition with TGF- $\,^{1}$, difference in proteoglycan synthesis in given concentration of extracellular collagen type I and II was also statistically insignificant. However, cultures in stimulated condition with TGF- $\,^{1}$ showed increased amount of newly synthesized proteoglycans compared to those of basal condition regardless of the concentration of extracellular collagen type I and II (p < 0.05).

Conclusion: Anabolic response of rabbit nucleus pulposus cells is relatively insensitive to extracellular matrix composition, which facilitates application of gene therapy in various conditions of disc degeneration.

Key Words: Extracellular collagen, Proteoglycan, Nucleus pulposus cell, TGF-1

Address reprint requests to

Seong-Hwan Moon, M.D.

Department of Orthopaedic Surgery, Yonsei University College of Medicine #134 Shinchon-dong, Soedaemun-gu, Seoul 120-752, Korea

Tel: 82-2-361-5649, Fax: 82-2-363-1139, E-mail: shmoon@yumc.yonsei.ac.kr

2001 (2001-01-07), Stryker Pacific, BK-21

			, cytokine		
			22	, Ingber Folk	man ¹⁴⁾
			(angiogenes		
		가		last growth factor (bFGF)	
1,5)		(proteo-		8 ()	
glycan)		ų.			
B-J/		가 ,	, bFG	F	
		6,7,8,21)	01 0	가 , , 가	
		•	,	"	
		, 6-8)	(dynamic re	ciprocity) "	27)
,	,	•	(dynamic re	cytokine	
			가		,32)
		,	71		,
		6,8,12,15,21)	Intonloulein	가	34.35)
		•	Interleukin	71	34,35)
	가,	,	TGF-		
	71,	6,7,33)		18,28,29)	
		•		·	
,				1	
				가 ²⁾ ,	
		71			
		가		,	
		가		34,35)	TGF- 1
20)		가			,
³⁰⁾ .	,		cytokine		
가	71.71		•	_1	
	가 가	•		가	
		71	,		
	DNA	가 ,			
	20	가		•	
	24)				
	,				
		20),			
			1.		
,	,				
			12-16	New Zealand white ra	
			Kg) 10	sodium pentobarbit	al (Euthanasia
,			B solution)	,	
28,2				4	
	pepti				is pulposus)
		owth factor- 1 (TGF- 1)	(annulus	fibrosus)	
insulin-lik	e growth factor-I			, 0.4% pronase (protease from

Streptomyces griseus) 1

	0.025% collagenase type XI	60 16	
(Clostridium histoly	yticum) 0.004% deoxyribonuclease II	-70 . Hoechst 332	258
type IV (DNase II)	가 37 16	0.01M Tris, 1 mM EDTA, 0.1 M Na	.Cl
	, Dulbecco 's modified	가 1 mg/ml	70
Eagle medium(DMI		Ç	DNA 2
(DMEM/F		μ l 2 ml Hoechst 33258	
haemocyto		FC 2 III. 11000IISC 00200	
•	al ascorbate(vitamin C), 1% penicillin-	, calf thymu	s DNA
streptomycin, 1% r	_	DN.	
$5 \times 10^5 \text{ cel}$		DIV	Lumines-
37 , 5% CC	22	cence spectrometer (LS 50B; Perkin Eln	ier) ,
•		458 nm 356 nm	•
2.	Alginate bead	4.	
1 2	(D.1 D. 101) 0.514 .:	2	7/ 1 [250] 10 .
1 2	(R&D, MN) 0.5M acetic	3 5 μCi	
acid(30 mg/ml)	•	가 가	4
	, 4 16	. , -70	•
	. 37		odium citrate, 150
,	10N NaOH 가	mM NaCl フト 37 15	
. 2	` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `	•	or(10 mM EDTA,
가	가 , alginate solution .	0.1 M 6-aminohexanoic acid, 5mM benzar	midine hydrochlo-
	0%, 0.5%, 1.0% 1.5%가	ride, 10mM N-ethylmaleimide, 0.5 mM p	henylmethyl-sul-
	2 × 106 cells/ml	fonyl fluoride)가 가	4M guanidine
1.2% alginate () .	hydrochloride, 50 mM sodium acetate (p	H 5.8)
	(19-gauge needle)	가 , 4 24	
, 102 mM CaCl ₂	2	Sephadex G-2	5 chromatography
	inate가 bead	(PD-10 column)	, scintillation
가	. beads가	counting	
15	. bead가 ,		
CaCl ₂	beads 0.15M NaCl 3	_	
CuCi2	(25 µg/ml ascorbate (vitamine	5.	
C) 1% penicillin-	streptomycin, 1% nystatin 7	3	
DMEM/F12)	. DNA	,	
DIVIEWI/1-12)	beads well 10	, (TGF- 1	,
)
	12-well cul-		, SPSS (SPSS Inc,
ture plate	. 3 37 ,5%		One-way Analysis
CO ₂	, 가	of variance Fisher 's protected LSD pos	
TGF- 1(10 ng/ml)	(R&D, MN) 가	,	p<0.05
3. Hoechst 33258	DNA		
0	.1M NaH2PO4, 5mM EDTA, 5mM cys-	4	
	25 µg/ml papain	1.	

collagenase ,90% 3. 2 3 TGF- 1 10 ng/ml 가 3 가 (p 가(0, 0.5, 1, < 0.05). 2 가 가 1.5%) , alginate solution alginate가 (Fig. 2). bead

2. 1

TGF- 1 10 ng/ml $7 \hspace{0.2cm} (p < 0.05). \qquad 7 \hspace{0.2cm} , \qquad 1 \\ 7 \hspace{0.2cm} (0, 0.5, 1. \ 1.5\%) \qquad 7 \hspace{0.2cm} , \qquad , \qquad , \\ (Fig. 1). \qquad \qquad \qquad (cartilagenous end plate)$

Fig. 2. The effect of type II collagen on the synthesis of proteoglycan by rabbit disc cells encapsulated in alginate beads. Incorporation of 35S-sulfate into disc cells cultured in basal medium or in medium supplemented with transforming growth factor- 1 (TGF- 1) was measured. Data represent mean ± SD of three experiments performed in triplicate. The values of Y-axis were content of newly synthesized proteoglycan, which was divided by the amount of deoxyribonucleic acid. Rabbit intervertebral disc cells cultured in alginate beads, treated by TGF- 1 (10 ng/ml) showed 3 fold increase in newly synthesized proteoglycan compared to basal condition (p<0.05), while increased concentration of extracellular type II collagen failed to affect proteoglycan synthesis (p>0.05). *: p<0.05, NS: statistically non-significant.

			TGF- 1	. TG	F- , ,
,		가	,		
6)				,	4 ,
가	, 20 가		3	isoform (TGF- 1,2 a	and 3)
	,	•	, cv	tokine . ,	
가	,		TGF-	(core pr	otein)
(fragmentation				matrix metalloprote	
ナ	6,8)				nous inhibitor
	가	가	,	plasminogen activator	
9,28,29)				ctivator inhibitor type 1	가
					,
	,		,	, 2	
				가	
	,		3,25,26)		
			,		
				,	
20)				가	,
20). ,			71	,	
,			가	가	11)
			O: Cav11v32)		11)
9, 29)			Qi Scully ³²⁾	1 2	
•	•	가	alginate bead TGF- 1	1 2	,
		가	DNA		, 1
	mII 7 0	· I	DIVI	TGF- 1	, 1
, pH 7.0 ~ 7.6	рн 7.0 ,			, 2	
13).			TGF- 1		
,		3	가		
,		2	,	,	TGF- 1
	4,17).			1, 2	
	3		Qi	Scully ³²⁾ 가	
agarose gel, biodegra					가
alginate bead	4,10,13,16,17,23,39,40)	•		,	
				가	IOE
가					. IGF-I
	71			,	
,	, 가	, 32)	22,25)		
		가. 가	TGF-	, - 1 enidermal grow	th factor

- 74 -

19.37)	가	
, 가 (mesenchym	e) ,	
drocyte-like cell)	(notochordal cell)	(chon
, Qi Scully ²		የ ት
,	integrin recepto	r
(quantity) (aggregate)	, 가 , ,	(quali
ty) ,	가	가
가 ·	7	ŀ
, TGF- 1 , 가 ,	가	,

가

REFERENCES

- 1) Anderson JAD: Back pain and occupation. In: Jayson MIV ed. The lumbar Spine and Back Pain.3rd ed. London, Chirchill Livingstone: 2-36,1987.
- 2) Antoniou J, Steffen T, Nelson F, et al: The human lumbar vertebral disc: evidence of changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J Clin Invest, 98:996-1003,1996.
- 3) Ballock RT, Heydemann A, Izumi T and Reddi AH: Regulation of the expression of the type-II collagen gene in periosteum-derived cells by three members of the transforming growth factor-beta superfamily. J Orthop Res, 15:463-467,1997.
- 4) **Benya PD and Shaffer JD**: Dedifferentiated chondro-cytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell, 30:215-224,1982.
- 5) **Borenstein D**: Epidemiology, etiology, diagnostic evaluation, and treatment of low back pain. Curr Opin Rheumatol, 4:226-232,1992.
- 6) **Buckwalter JA**: Aging and degeneration of the human intervertebral disc. Spine, 20:1307-1314,1995.
- 7) Buckwalter JA, Pedrini-Mille A, Pedrini V and Tudisco C: Proteoglycans of human infant intervertebral disc: electron microscopic and biochemical studies. J Bone Joint Surg, 67-A:284-294,1985.
- 8) Butler D, Trafimow JH, Andersson GB, McNeill TW and Huckman MD: Discs degenerate before facets. Spine, 15:111-113,1990.
- 9) Gan JC, Ducheyne P, Vresilovic E and Shapiro IM: Bioactive glass serves as a substrate for maintenance of phenotype of nucleus pulposus cells of the intervertebral disc. J Biomed Mater Res, 51:596-604, 2000.
- 10) Gruber HE, Fisher EC Jr, Desai B, Stasky AA, Hoelscher G and Hanley EN Jr: Human intervertebral disc cells from the annulus: three-dimensional culture in agarose or alginate and responsiveness to TGF- 1. Exp Cell Res, 235:13-21,1997.
- 11) Hayes AJ, Benjamin A and Ralphs JR: Role of actin stress fibers in the development of the Intervertebral disc: cytoskeletal control of extracellular matrix assembly. Dev Dyn, 215:179-189,1999.
- 12) Hutton WC, Elmer WA, Boden SD, Horton WC and Carr K: Analysis of chondroitin sulfate in the lumbar intervertebral discs at two different stages of degeneration

- as assayed by discogram. J Spinal Disord, 10:47-54,1997.
- 13) Ichimura K, Tsuji H, Matsui H and Makiyama N: Cell culture of the Intervertebral disc of rats: factors influencing culture, proteoglycan, collagen, and deoxyribonucleic acid synthesis. J Spinal Disord, 4:428-436,1991.
- 14) Ingber DE and Folkman J: Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J Cell Biol, 109:317-330,1989.
- 15) Inkinen RI, Lammi MJ, Lehmonen S, Puustjarvi K, Kaapa E and Tammi MI: Relative increase of biglycan and decorin and altered chondroitin sulfate epitopes in the degenerating human intervertebral disc. J Rheumatol, 25:506-514,1998.
- 16) Itay S, Abramovici A and Nevo Z: Use of cultured embryonal chick epiphyseal chondrocytes as grafts for defects in chick articular cartilage. Clin Orthop, 220:284-303,1987.
- 17) **Kim BS and Jahng JS**: Change of the effect of TGF- 1 on physeal chondrocytes according to culture methods in vitro. J of Korean Orthop Assoc, 34:849-857,1999.
- 18) Konttinen YT, Kemppinen P, Li TF, et al: Transform ing and epidermal growth factors in degenerated interver tebral discs. J Bone Joint Surg, 81-B:1058-1063,1999.
- 19) Lee JW and Kim NH: Change of type I and type II collagen biosynthesis by growth factors in cultured cells isolated from rabbit intervertebral disc. J of Korean Orthop Assoc, 33:1867-1882,1998.
- 20) Lehmann TR, Spratt KF, Tozzi JE, et al: Long-term follow-up of lower lumbar fusion patients. Spine, 12:97-104.1987.
- 21) **Lipson SJ and Muir H**: Proteoglycans in experimental intervertebral disc degeneration. Spine, 6:194-210,1981.
- 22) Luyten FP, Hascall VC, Nisseley SP, Morales TI and Reddi AH: Insulin-like growth factors maintain steady state metabolism of proteoglycans in bovine articular cartilage explants. Arch Biochem Biophys, 267:416-425,1988.
- 23) Maldonado BA and Oegema TR Jr: Initial characteri zation of the metabolism of intervertebral disc cells encap sulated in microspheres. J Orthop Res, 10:677-690,1992.
- 24) Mankin HJ: Localization of tritiated thymidine in articular cartilage of rabbits. J Bone Joint Surg, 44-A:688 698,1962.
- 25) Morales TI: Transforming growth factor-beta and insulin-like growth factor-1 restore proteoglycan metabo-

- lism of bovine articular cartilage after depletion by retinoic acid. Arch Biochem Biophys, 315:190-198,1994.
- 26) Morales TI and Roberts AB: Transforming growth factor beta regulates the metabolism of proteoglycans in bovine cartilage organ cultures. J Biol Chem, 263:12828-12831,1988.
- 27) **Mosher DF**: Physiology of thrombospondin. Annu Rev Med, 41:85-97,1990.
- 28) Nishida K, Gilbertson LG, Robbins PD, Evans CH and Kang JD: Potential applications of gene therapy to the treatment of intervertebral disc disorders. Clin Orthop, 379 Suppl:234-241,2000.
- 29) Nishida K, Kang JD, Gilbertson LG, et al: Modulation of the biologic activity of the rabbit intervertebral disc by gene therapy: an in vivo study of adenovirus-mediated transfer of the human transforming growth factor beta 1 encoding gene. Spine, 24:2419-2425,1999.
- 30) O 'Driscoll SW, Keeley FW and Salter RB: Durability of regenerated articular cartilage produced by free autogenous periosteal grafts in major full-thickness defects in joint surfaces under the influence of continuous passive motion. a follow-up report at one year. J Bone Joint Surg, 70-A:595-606,1988.
- 31) **Qi WN and Scully SP**: Effect of type II collagen in chon-drocyte response to TGF-1 regulation. Exp Cell Res, 241:142-150,1998.
- 32) **Qi WN and Scully SP**: Extracellular collagen modulates the regulation of chondrocytes by transforming growth factor-betal. J Orthop Res, 15:483-490,1997.
- 33) Robinson D, Mirovsky Y, Halperin N, Evron Z and Nevo Z: Changes in proteoglycans of intervertebral disc in diabetic patients: a possible cause of increased back pain. Spine, 23:849-856,1998.
- 34) Shinmei M, Kikuchi T, Yamagishi M and Shimomura Y: The role of interleukin-1 on proteoglycan metabolism of rabbit annulus fibrosus cells cultured in vitro. Spine, 13:1284-1290,1988.
- 35) Shinmei M, Masuda K, Kikuchi T and Shimomura Y: The role of cytokines in chondrocyte mediated cartilage degradation. J Rheumatol, (Suppl 18)16:32-34,1989.
- 36) Sporn MB and Roberts AB: Transforming growth factor-: recent progress and new challenges. J Cell Biol, 119:1017-1021,1992.
- 37) **Thompson JP, Oegema TR and Bradford DS**: Stimula tion of mature canine intervertebral disc by growth fac tors. Spine, 16:253-260,1991.

- 38) Trippel SB, Wroblewski J, Makower AM, Whelan MC, Schoenfeld D and Doctrow SR: Regulation of growth-plate chondrocytes by insulin-like growth-factor I and basic fibroblast growth factor. J Bone Joint Surg, 75-A:177-189,1993.
- 39) Vacanti CA, Langer R, Schloo B and Vacanti JP: Syn -
- thetic polymers seeded with chondrocytes provide a template for new cartilage formation. Plast Reconstr Surg, 88:753-759,1991.
- 40) Wakitani S, Kimura T, Hirooka A, et al: Repair of rabbit articular surfaces with allograft chondrocytes embedded in collagen gel. J Bone Joint Surg, 71-B:74-80,1989.

:				
:	alginate bead	3	transforming growth factor	1 1
2 :	10			
1 2	0.5%, 1.0%,	1.5%	alginate solution	, TGF-
1 (10 ng/ml)		, alginate bead	3	,
		³⁵ S -s	ulfate incorporation	
, Hoechst	DNA			
: 1	2	3	TGF- 1	
	가	(p < 0.05),	1 2	가
:		가		
, 가			,	
,	가			
	, , , TGF- 1			
• ,	, , , 101- 1			

134

Tel: 82-2-361-5649, Fax: 82-2-363-1139, E-mail: shmoon@yumc.yonsei.ac.kr