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Abstract
Undesirable toxicity is one of the main reasons for withdrawing drugs from the market or

eliminating them as candidates in clinical trials. Although numerous studies have attempted

to identify biomarkers capable of predicting pharmacotoxicity, few have attempted to dis-

cover robust biomarkers that are coherent across various species and experimental set-

tings. To identify such biomarkers, we conducted meta-analyses of massive gene

expression profiles for 6,567 in vivo rat samples and 453 compounds. After applying rigor-

ous feature reduction procedures, our analyses identified 18 genes to be related with toxic-

ity upon comparisons of untreated versus treated and innocuous versus toxic specimens of

kidney, liver and heart tissue. We then independently validated these genes in human cell

lines. In doing so, we found several of these genes to be coherently regulated in both in vivo
rat specimens and in human cell lines. Specifically, mRNA expression of neuronal regener-

ation-related protein was robustly down-regulated in both liver and kidney cells, while

mRNA expression of cathepsin D was commonly up-regulated in liver cells after exposure

to toxic concentrations of chemical compounds. Use of these novel toxicity biomarkers may

enhance the efficiency of screening for safe lead compounds in early-phase drug develop-

ment prior to animal testing.

Introduction
In the early phases of drug development, efficient methods of assessing the safety of new drugs
are needed. Current toxicity assessments typically require excessive animal sacrifice, large
quantities of the drug compound, and long-term testing [1]. Generally involving the observa-
tion of drug responses in animals and the extrapolation thereof to humans, these assessment
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methods can be expensive, time consuming, and low in throughput [2]. Accordingly, demand
for in vitromethods capable of predicting compound toxicity in humans is growing. Recently,
molecular biomarker-based methods of predicting toxicity have gained traction for their poten-
tially greater speed and accuracy compared to conventional methods [3].

In toxicogenomics, researchers seek to identify reliable molecular markers whose expression
is tightly coupled to the development of specific target organ/systemic toxicity [3]. Historically,
the rat has been the preferred model system for identifying organ-specific markers that respond
to a wide variety of clinical compounds [4]. For example, in rats, 19 genetic biomarkers, includ-
ing Kim1 (kidney injury molecule-1) and Spp1 (secreted phosphoprotein 1), and 35 genes,
including Grik4 (glutamate receptor, ionotropic kainite 4) and Hspb7 (heat shock 27kDa pro-
tein family, member 7), have been identified as markers for kidney toxicity [5,6], while a
200-gene signature has been discovered for liver toxicity [7]. Alternatively, in vitromodel sys-
tems utilizing human cell lines have also identified EGR1 (early growth response 1), ATF3
(activating transcription factor 3), GDF15 (growth differentiation factor 15), and FGF21 (fibro-
blast growth factor 21) to be biomarkers of drug toxicity, based on responses to 158 clinical
compounds [8].

Nevertheless, although previous toxicogenomic studies have identified many candidate
genes, their results are typically limited to specific compounds and the context in which they
were derived (i.e., species and experimental setting) [9]. This raises major challenges in discern-
ing the coherence between in vitro and in vivo settings, the appropriateness of the use of ani-
mal-derived markers in humans, and the robustness of a biomarker to different types of
chemical perturbations. To address these challenges, we conducted a meta-analysis of publicly
available toxico-transcriptomic datasets, followed by stepwise feature-selection procedures, to
identify molecular biomarkers that respond robustly to a broad range of drugs in both in vivo
rat specimens and in vitro human cell lines. Importantly, using computational and experimen-
tal cross-validation, we identified two novel toxicity molecular biomarkers, neuronal regenera-
tion related protein (NREP) and cathepsin D (CTSD), as holding distinct prediction
capabilities. As these marker proteins exhibit the ability to forecast in vivo toxicity and are eas-
ily detected in human cell line models, we believe that they can be important additions to exist-
ing toxicity assessment, with the potential to filter or prioritize drug candidates in the early
stages of drug development.

Materials and Methods

Workflow
Our data mining and experimental workflow consisted of three main stages: 1) data prepara-
tion, 2) computational identification of biomarker candidates and generation/validation of the
prediction model, and 3) human cell line-based evaluation of biomarker candidates. The work-
flow is presented in Fig 1 and is explained in detail below.

Data collection and preprocessing
We initially performed a keyword-based search and downloaded toxicity-related gene expres-
sion profiles with associated pathology information from in vivo rat studies stored in multiple
repositories and databases. The following keywords were utilized: organ toxicity, kidney toxic-
ity, nephrotoxicity, liver toxicity, hepatotoxicity, heart toxicity, cardiac toxicity, brain toxicity,
neurotoxicity, blood toxicity, hemotoxicity, lung toxicity, respiratory system toxicity, skin tox-
icity, dermotoxicity, phototoxicity, immune system toxicity, immunotoxicity, ocular and visual
system toxicity, phototoxicity, endocrine system toxicity, and pituitary toxicity. We collected
gene expression profiles (n = 19,521) from the following resources: i) Gene Expression
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Fig 1. Overview of toxicity biomarker discovery. First, we collected toxicogenomic meta-data from public resources, preprocessed gene expression array
data, and assigned toxicity classes. Second, we attempted to identify differentially expressed genes (DEGs) through meta-analysis and subsequent
multistage feature reductions. DEGs were subjected to systems analysis of biological pathways and networks, and an optimized set of biomarkers was used
to generate and validate a prediction model. The final step involved computationally and experimentally testing the applicability of the discovered biomarkers
in human cells. GEO, Gene Expression Omnibus at the National Center for Biotechnology Information; ArrayExpress, ArrayExpress at the European

NREP andCTSD: Novel Pharmacotoxicity Biomarkers

PLOS ONE | DOI:10.1371/journal.pone.0136698 September 3, 2015 3 / 21



Omnibus (GEO) at the National Center for Biotechnology Information [10], ii) ArrayExpress
at the European Bioinformatics Institute [11], iii) Chemical Effects in Biological Systems
(CEBS) at the National Institute of Environmental Health Sciences [12], and iv) the Toxicoge-
nomics Project-Genomics Assisted Toxicity Evaluation System (TG-GATEs) of the National
Institute of Health Sciences of Japan [13]. Various microarray platforms from Affymetrix Inc.
(Santa Clara, CA), Agilent Technologies Inc. (Santa Rosa CA), Illumina Inc. (San Diego, CA),
and GE Healthcare/Amersham Biosciences (Tempe, AZ) were used for these studies. Affyme-
trix CEL data format files were quantile normalized using the Robust Multiarray Averaging
(RMA) method [14]. Background-subtracted median intensity values for Agilent and pre-pro-
cessed values for Illumina and GE Healthcare/Amersham data were quantile normalized. After
additionally downloading related data, including experimental conditions and pathology
results, we conducted in-depth manual curation of the experimental conditions, based on the
ToxRefDB format [15], and mapped histopathological descriptions of specific organs to stan-
dardized specific pathology codes (S1 Table). For toxicity class assignment, we used the pathol-
ogy scores assigned by the individual studies: namely, 0 (within normal limits), 1 (minimal), 2
(mild), 3 (moderate), or 4 (severe), based on the pathology code of the corresponding organ
and according to previous guidelines [16]. We focused on kidney, liver, and heart tissue, which
are the primary organs used in research on drug-induced organ injury. We excluded genes
with> 50% missing values in each study. We also excluded samples with> 80% missing genes
[17]. After filtering out samples and genes with missing values, inter-array gene expression val-
ues were quantile normalized for 8,508 sample arrays (1,335 kidney, 6,491 liver, and 682 heart
specimens) to make the entire dataset coherent in distribution. No further correction of non-
systematic variation from between-batch effects was implemented, since the datasets for our
study were originally generated by several different groups, who used a wide variety of chemical
perturbations, and thus, are highly confounded with numerous sources of potential batch
effect.

Toxicity class assignment
The toxicity class of each sample was assigned using the average of severity scores for the
mapped histopathological codes. For this, we used the partial least squares discriminant analy-
sis (PLS-DA) approach [18] implemented in the mixOmics R package [19] to determine the
optimal threshold value of the average severity score that minimizes the classification error rate
in a 10-fold cross-validation (S1 Fig). PLS-DA is one of the most popular classification tech-
niques for generating a multivariate model that maximizes the discrimination between pre-
defined sample groups [20]; however, the approach is prone to overfitting that requires rigor-
ous internal validation by cross-validation and/or externally with an independent dataset. In
the present study, the PLS-DA classification model was built for the top 300 DEGs from the
meta-analysis for each of the discretized threshold values. To calculate the error rate of the
PLS-DA classification model, a three-dimensional projection space was considered (S1 Fig).
Further details on the meta-analysis are listed below. Using the optimal threshold of 0.5, we
assigned 6,567 of the 8,508 samples with histopathological information on 453 human drugs to
one of three toxicity classes: i) untreated, normal samples showing a lower average toxicity
score than the threshold; ii) level-0, drug treated with no or minor histopathological phenotype
with an average toxicity score below the threshold; and iii) level-1, drug treated with major

Bioinformatics Institute; TG-GATEs, Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System of the National Institute of Health Sciences of
Japan; CEBS, Chemical Effects in Biological Systems at the National Institute of Environmental Health Sciences; sPLS-DA, sparse partial least squares
discriminant analysis.

doi:10.1371/journal.pone.0136698.g001
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toxicity phenotype and an average toxicity score above the threshold. Of the 6,567 samples,
4,373 were used for discovering biomarkers and generating a prediction model, and 2,194 were
used for validation (S2 Table and S3 Table). Dosage and treatment schedule were not stratified
to reduce the complexity of the analysis.

Identification of DEGs by meta-analysis
For 4,373 training samples, we identified DEGs (i.e., candidate molecular biomarkers) using the
random-effect meta-analysis method Hedges’ g, applying the standardized mean difference as
an effect-size index in a stepwise manner [21]. The random-effect model assumes that all studies
are heterogeneous; therefore, in assigning weights of studies, it simultaneously considers intra-
study and inter-study variance. This characteristic of the random-effect model helps to reduce
bias between studies, including batch effects, during analysis. Subsequent meta-analysis (MA)
comparisons were used to identify DEGs for five target classes: (i) MA1, untreated versus treated
to identify pan-organ treatment-specific DEGs; (ii) MA2, kidney versus liver versus heart speci-
mens among drug-treated samples to identify organ-specific DEGs; and (iii) MA3, level-0 versus
level-1 kidney specimens; (iv) MA4, level-0 versus level-1 liver specimens; and (v) MA5, level-0
versus level-1 heart specimens to identify organ-specific DEGs in accordance with toxicity
responses. DEGs were identified in each comparison using a p-value cut-off of 0.0005. This p-
value threshold was selected, because 44 known toxicity markers (S4 Table) [5, 9, 22–25] were
most significantly enriched under this threshold and, at the same time, it provided a sufficiently
large enough number of resultant DEGs for us to perform downstream analysis.

Feature reduction by sparse PLS-DA and wrappers
Sparse PLS-DA (sPLS-DA) was performed to select the most discriminative genes among DEGs
obtained by the MA comparisons for the training dataset. sPLS-DA achieved variable selection
and classification in one procedure by iterating the following steps over discrete tuning parame-
ters, such as sparsity and number of latent variables: i) generation of a multi-variate model using
a given number of genes, ii) selection of pre-determined number of variables with the longest
Euclidean distance, and iii) model-validation by 10 repetitions (10x) of 10-fold cross-validation.
For classification, we considered the first three sparse PLS-DA (sPLS-DA) dimensions because
it outperformed classifiers with one or two dimensions. When more than one gene shared dis-
tance rank, all were selected. sPLS-DA was conducted using the mixOmics R package [19].

A wrapper method was applied for further feature reduction using additional classification
methods other than PLS-DA. A wrapper approach is powerful in identifying optimal variable
subsets when the number of variables is relatively small [26]. Again, sPLS-DA was used to gen-
erate gene subsets for each of the five MA comparisons, followed by five different classifiers
(linear discriminant analysis [LDA], random forest [RF], K-nearest neighbor [KNN], probabi-
listic K-nearest neighbors [PKNN], and support vector machine [SVM] methods), to find con-
ditions with the lowest median classification error in a 10-fold cross-validation using different
wrappers for each comparison. The optimal number of genes was determined by taking the
median value of the numbers of DEGs from the five classifiers that showed the lowest error for
each comparison (S2 Fig). The same Euclidean distance based method employed for sPLS-DA
was used to identify the optimal set of DEGs.

Prediction model generation and performance assessment
Using the optimal set of DEGs selected above, we compared the performances of the five classi-
fication models (LDA, RF, KNN, PKNN, and SVM). The accuracies of 10x, 10-fold cross-vali-
dations were averaged. The best performing classifier model with the lowest error rate was
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selected and further optimized with regard to the number and size of the decision tree. We
assessed the performance of the generated model in 2,194 independent test samples and com-
pared it with the performance of a model built with the 44 known genomic biomarkers.

Gene Ontology and protein-protein interaction network analysis
Gene ontology (GO) analysis was performed with DEGs from the MA3 and MA4 comparisons
against biological process terms using the Database for Annotation, Visualization and Inte-
grated Discovery (DAVID) [27] to identify enriched biological functions in response to drug-
induced toxicity in kidney and liver tissue. DEGs fromMA5 (heart toxicity) were not consid-
ered since the number of DEGs from this comparison was not sufficiently large enough for GO
analysis. Significantly enriched terms were identified using a p-value cut-off of 0.05. For net-
work analysis, we used the Cytoscape plugin “Molecular Complex Detection” (MCODE) to
identify protein-protein interaction (PPI) subnetworks [28]. The results were visualized using
Cytoscape [29]. Rat PPIs from the following 13 sources were combined: BIND [30], BIND_t
[30], BioGRID [31], CORUM [32], DIP [33], HPRD [34], IntAct [35], MINT [36], MPPI [37],
OPHID [38], InnateDB [39], MatrixDB [40], and mentha [41]. Using the ortholog mapping
relationships reported in the NCBI HomoloGene database [42], we combined the most recent
human PPIs [43] with the rat PPIs. A total of 169,723 interactions involving 13,768 proteins
were included in the network model.

Analysis of a toxicogenomic dataset for human primary hepatocytes
A large-scale human cell-based pharmacotoxicity assay dataset is publically available for the
liver. We obtained data from the TG-GATEs database [13], which contains a large-scale gene
expression profile (n = 2,004 samples) and associated cell viability data (determined based on
DNA content) for human primary hepatocyte cells treated with 158 chemical compounds.
Information in this dataset was considered to be relevant to our biomarker candidates discov-
ered in comparisons MA1 and MA4. Before the analysis, we first filtered out untreated samples
with low DNA content (< 80%), which may represent contamination or some unknown envi-
ronmental stress, and removed treated samples with> 100% DNA content to limit our search
space to toxicity, not to hyper-proliferation. Application of these filters yielded a total of 572
untreated and 838 treated samples. In these samples, we examined the differential expressions
of the five MA1 DEGs (NREP, ATRN, TBXA2R, KIFC1, and EPHX1) obtained in our study
after all feature reductions (Table 1). Second, using varying thresholds of 76–98% DNA con-
tent, we assigned toxicity classes of level-0 (> = threshold) or level-1 (< threshold) to the
treated samples, and further analyzed the differential expressions of the three MA4 DEGs
(CTSD, TPM4 and RPL35A) for liver toxicity obtained after feature reductions (Table 1). For
the analysis, raw expression data (.cel format) were RMA normalized with the Affy R package.

Cell lines and drug assays
HepG2 (human liver carcinoma) and HEK293 (human embryonic kidney) cell lines were pur-
chased from American Type Tissue Collection (Rockville, MD, USA) and cultured in Dulbec-
co’s modified Eagle’s medium (DMEM) with 10% fetal bovine serum (FBS) under a humidified
atmosphere with 5% CO2 at 37°C. HepG2 cells at 70–80% confluence were incubated for 48 h
with 0–20 mM acetaminophen; HEK293 cells at 70–80% confluence were incubated for 72 h
with 0–40 μM cisplatin. For these experiments, each of the two compounds was dissolved in
both dimethyl sulfoxide (DMSO) and growth medium (DMEM with 10% FBS) before being
added to cells. Cells incubated with 1% DMSO or growth medium served as controls. The effect
of exposure to the respective compounds on cell viability was determined using MTS assay
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(Promega Corp., Madison, WI, USA), which estimates titers of metabolically active cells. Levels
of toxicity for each cell line was determined based on MTS assay results: level-0,
viability� 60%, or level-1, viability< 60%. On the basis of preliminary MTS assay results,
HepG2 cells were treated with 1 mM (level-0) and 10 mM (level-1 for DMSO) or 20 mM
(level-1 for DMEM) acetaminophen for 48 h, and HEK293 cells were treated with 2 μM (level-
0) or 20 μM (level-1) cisplatin for 72 h.

Semi-quantitative RT-PCR and qRT-PCR
Total RNA was extracted using QIAzol lysis reagent (Qiagen, Hilden, Germany), according to
the manufacturer’s instructions. Aliquots of total RNA (1 μg) were used to synthesize first-
strand cDNA with Superscript reverse transcriptase (Invitrogen, Carlsbad, CA, USA) for PCR
amplification. Semi-quantitative RT-PCR was then performed under the following conditions:
40 cycles of denaturation at 95°C for 15s, annealing at 60°C for 30 s, and extension at 72°C for
10 s, followed by a terminal extension at 72°C for 10 min. A house keeping gene, GAPDH,
served as an internal control. Quantitative RT-PCR (qRT-PCR) was performed using the 7500
Real-Time PCR system (Applied Biosystems, Foster City, CA, USA) with Power SYBRMaster
Mix (Applied Biosystems). The thermocycling conditions used for the PCR experiments were
40 cycles of denaturation at 95°C for 15 s and extension at 60°C for 1 min. The following
primer sequences for PCR were used: NREP, 5’-catgcactgcacttcttcgt-3’ and 5’-catgcactg-
cacttcttcgt-3’; CTSD, 5’-catgcactgcacttcttcgt-3’ and 5’-catgcactgcacttcttcgt-3’; TPM4, 5’-ttgag-
gaggagttggacagg-3’ and 5’-gctgcatctcctgaatctcc-3’; TRPM4, 5’-ccactgtcaggaccaccttt-3’ and 5’-
ccccagtgtgaggaatctgt-3’; and GAPDH: 5’-gagtcaacggatttggtcgt-3’ and 5’-gacaagcttcccgttctcag-3’.

Results

Characterization of toxicogenomic meta-data
We characterized the 6,567 meta-data samples in terms of tested organs, drug identity, and
treatment conditions (dose and duration) in relation to toxicity levels. Toxicity to 453 drugs
was evaluated in kidney (n = 47), liver (n = 278), heart (n = 66), or multiple organ (n = 62)
specimens (Fig 2A and 2B). Varying degrees of toxicity were observed for drugs tested in a sin-
gle organ (Fig 2A and S5 Table). Drugs tested in multiple organs exhibited organ-selective tox-
icity (Fig 2B): for example, well-known nephrotoxins, such as cisplatin and gentamicin, were
toxic to the kidney but not to the liver. Conversely, the well-known liver-damaging drugs acet-
aminophen and fluvastatin showed selective hepatotoxicity but not nephrotoxicity in our data-
set (Fig 2B). As expected, dose-dependent and treatment time-dependent toxicity was also
observed in our dataset (Fig 2C). Therein, phenacetin was toxic at 15 μg/kg and 45 μg/kg in the
liver and kidney, respectively; meanwhile, thioacetamide induced kidney and liver toxicity in
all samples at 1,000 μg/kg after 8–15 days of treatment (Fig 2C).

Table 1. Number of selected genes after meta-analysis, sPLS-DA, and wrapper approaches for all five meta-analysis comparisons.

Comparison Meta-analysis sPLS-DA Wrappers

Untreated vs. treated (MA1) 108 7 5

Organ vs. organ comparison (MA2) 3667 3 3

Level−0 vs. level−1 Kidney (MA3) 303 24 7

Level−0 vs. level−1 Liver (MA4) 661 3 3

Level−0 vs. level−1 Heart (MA5) 12 3 3

Total 4,023 40 21

doi:10.1371/journal.pone.0136698.t001
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Fig 2. Characterization of pharmacogenomicsmeta-data. (A) Distribution of toxicity levels for 391 compounds from single-organ studies. Compounds
were rank-ordered by relative toxicity level. (B) Distribution of toxicity levels for 62 compounds frommulti-organ studies. Asterisks indicate compounds
showing organ-specific toxicity. (C) Distribution of toxicity levels for two selected drugs at different doses and treatment durations. The same color scale is
used in all panels. Missing information is shown in grey. For each row, the sum of samples with level-0 and level-1 toxicity per each organ is 100%. See S5
Table for the exact values used to generate this figure.

doi:10.1371/journal.pone.0136698.g002
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Discovery of pharmacotoxicity biomarkers
Using a multi-step method, we attempted to identify robust molecular biomarkers of toxicity
to 453 drugs among 4,373 meta-data samples. With these biomarkers, we then built a predic-
tion model that was subsequently tested in an independent dataset of 2,194 samples (Fig 3A
and S3 Table). First, we applied Hedges’ g statistic to identify DEGs across multiple orthogonal
datasets that compared innocuous versus toxic drug treatments separately for kidney (MA3),
liver (MA4), and heart (MA5) tissue. Two additional comparisons were conducted to detect
primary responders to broad chemical perturbations in treated versus un-treated specimens
for multi-organ datasets (MA1) and to distinguish organ-specific responses to drug treatment
for liver, kidney, and heart specimens (MA2). DEGs discovered in MA1 and MA2 were consid-
ered along with DEGs fromMA3-5 during feature selection so that the results from organ-spe-
cific comparisons of toxic versus non-toxic treatment in MA3-5 would be supported by those
from comparison of pan-organ and organ-specific responses to drug treatment in MA1 and
MA2, respectively.

Excluding the MA2 comparison, a total of 982 DEGs were found to be relevant to responses
to drug treatment (Fig 3B). Intriguingly, about 30% of the DEGs fromMA3, MA4, and MA5
were co-detected in more than one organ, suggesting their use in detecting toxicity in multiple
organs. However, none of these DEGs was detected in all three organs, likely reflecting a lower
detection power in the heart than in the kidney and liver. Some of the organ-selective DEGs
identified here correspond to previously reported toxicity markers (S6 Table). For example,
DEGs noted in MA3, such as kidney injury molecule-1 (Kim1), ceruloplasmin (Cp), clusterin
(Clu), and secreted phosphoprotein 1 (Spp1), are known kidney toxicity markers [24]. DEGs
in MA4 included known liver toxicity markers, such as heme oxygenase (decycling) 1
(Hmox1), cathepsin L1 (Ctsl) [9], receptor-interacting serine-threonine kinase 3 (Ripk3), sol-
ute carrier family 7 (cationic amino acid transporter, y+ system), member 1 (Slc7a1), and che-
mokine (C-C motif) ligand 2 (Ccl2) [23].

To identify an efficient, succinct, and robust set of markers with sufficient resolution power
to discriminate target classes, we performed feature reduction using the 4,023 DEGs obtained
therein. To this end, we applied sPLS-DA, a multivariate exploratory approach that is a compu-
tationally efficient one-stage variable-selection and classification method [19], to select the
smallest number of features from each comparison that would minimize the average misclassi-
fication error rate using a 10-fold cross-validation. A total of 40 genes were selected from the
five comparisons (S7 Table). We further used five wrapper methods, LDA, RF, KNN, PKNN,
and SVM, in an attempt to further reduce features, especially for comparison MA1 and 3 (S2
Fig). Application of these methods resulted in the selection of 21 genes from the five compari-
sons (Table 1). This rigorous feature reduction was necessary to narrow down our discoveries
to the most discriminative and smallest set of biomarkers for greater utility in multiplex gene
expression assay platforms, where the number of biomarkers (probes) is often limited techni-
cally by the number of resolvable detection channels and economically by the cost per probe.

Fig 3C–3I) highlights seven of 18 genes with the highest fold-change values from the four
drug-relevant comparisons. Of these, the top-ranked Spp1 and third-ranked Ctss are well-
known kidney pharmacotoxicity markers [5]. The other five genes Nrep, Trpm4, Tubb5, Ctsd,
and Tpm4 are all novel pharmacotoxicity biomarker candidates.

Evaluation of the toxicity prediction model with a test dataset
We compared the performance of five different classification models built using the training
samples and selected the best classifier to build a toxicity prediction model for the kidneys,
liver, and heart. We applied LDA, RF, KNN, PKNN, and SVM as classification algorithms and
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Fig 3. Meta-analysis identifies candidate biomarkers of organ toxicity. (A) Schematic flow chart of the meta-analysis. Untreated, untreated samples
(pathology score < 0.5); level-0, innocuous treatment; level-1, toxic treatment. (B) Venn diagram for the overlap of DEGs identified from the four drug-related
meta-analysis comparisons in (A). Numbers indicate gene counts. (C-I) Forest plots display the study-specific meta-analysis effect-sizes and 95%
confidence intervals for the studies included in the training dataset. Plots for the seven DEGs from the MA1, MA3, and MA4 datasets with the greatest
absolute average effect-size (> 0.55; See S8 Table) are shown. Plots for the remaining 11 DEGs are shown in S3 Fig. Nrep in untreated versus treated
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assessed the prediction accuracy thereof via 10-fold cross-validation as a performance measure
(Table 2). Among these methods, RF with 10-fold cross-validation achieved the best perfor-
mance (82% correct classification); thus, it was selected as the final classifier. Next, we evalu-
ated the performance of the 21-gene RF prediction model in 2,194 independent test samples in
comparison to a model with an identical degree of complexity built using previously known
organ-specific toxicity markers, which we compiled from various studies [5, 9, 22–25]. As
shown in Table 2, the accuracy of our 21-gene RF prediction model was slightly higher (62%)
than the model built with previously known biomarkers (60.5%).

Pathway and network level functional characterization of the
differentially expressed genes
To characterize underlying biological responses to chemical stress, we separately investigated
enriched biological processes associated with DEGs discovered in the MA1, MA3, and MA4
comparisons by GO analysis. Due to a lack of available DEGs, MA5 (level-0 versus level-1
heart specimens) was excluded from the analysis. GO terms related to cell death, stress
response, immune response, metabolic process, and signal transduction were identified (Fig
4A). Specifically, in the comparison of untreated versus treated specimens (MA1), the GO
terms with the most significant p-values were “response to external stimulus” (p = 2.56×10−5),
“inflammatory response” (p = 3.24×10−5), and “cellular metabolic process” (p = 5.57×10−3),
whereas terms related to cell death or apoptosis were not significant, suggesting that this com-
parison detected gene expression signals relevant to the early responses to chemical stress prior
to the development of pathophysiological responses. In contrast, DEGs associated with both
kidney and liver toxicity responses were enriched for cell death and mitochondrial apoptosis,
as well as “response to external stimulus” and “inflammatory response.” Interestingly, GO anal-
yses also yielded liver-specific terms, such as “organ regeneration” (p = 1.05×10−03) and “cellu-
lar metabolic process” (p = 3.35×10−15). The liver is the only internal human organ capable of
regeneration upon tissue loss or after acute toxic injury [44]. Moreover, one of the liver’s most

specimens; Spp1 (secreted phosphoprotein 1), Ctss (cathepsin S), Tubb5 (tubulin β5), and Trpm4 (transient receptor potential cation channel, subfamily M,
member 4) in level-0 versus level-1 kidney specimens; and Ctsd (cathepsin D) and Tpm4 (tropomyosin 4) in level-0 versus level-1 liver specimens. The sizes
of the circles are proportional to the fold-change (log2 ratio). The summarized effect-size (mean fold-change) of all enrolled studies is shown as a black circle
at the bottom of the plot. p-value, Z-test for the overall effect of the summarized meta-analysis results for each gene.

doi:10.1371/journal.pone.0136698.g003

Table 2. Performance of prediction models using the 21 identified differentially expressed genes.

Classifier model Feature Accuracy

Training set LDA 21 DEGs 74.7

RF 21 DEGs 82

KNN 21 DEGs 76.9

PKNN 21 DEGs 73

SVM 21 DEGs 77.4

Test set RF 21 DEGs 62

RF 21 genes selected among known biomarkers# 60.5*

#Comparison of the classification performances of RF models in independent test samples for our 21-gene model and a model of the same size

comprising sPLS-DA-selected known genes (n = 44; S4 Table).

*Average of 1,000 iterations of the model building and validation procedures.

LDA: linear discriminant analysis, RF: random forest, KNN: K-nearest neighbor, PKNN: probabilistic K-nearest neighbors, SVM: support vector machine,

DEG: differentially expressed genes, sPLS-DA: sparse partial least squares discriminant analysis

doi:10.1371/journal.pone.0136698.t002
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Fig 4. Functional analysis of DEGs. (A) Enriched GO terms associated with DEGs from three meta-analysis comparisons. DEGs fromMA5 were excluded
from the analysis owing to insufficient dataset size. p-value: modified Fisher’s exact test implemented in the Database for Annotation, Visualization and
Integrated Discovery (DAVID). (B, C) Highly interconnected subnetworks present within the individual sets of DEGs fromMA3 and MA4. A circular node
indicates proteins, a diamond node indicates proteins/genes, and solid lines and dashed arrows respectively indicate physical and genetic interactions
reported in our input databases (see Methods for details). Node color indicates the median expression fold-change of the training dataset (level-1/level-0).

doi:10.1371/journal.pone.0136698.g004
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Fig 5. Computational and experimental validations identify NREP and CTSD as biomarkers of toxicity in human cell lines. (A) Density plots
comparing expression levels of NREP between untreated and treated samples of liver primary hepatocytes reported in TG-GATEs. (B) Boxplots display fold-
changes inCTSD (toxic/innocuous) at each of the given cell viability thresholds measured for the liver primary hepatocytes reported in TG-GATEs. * t-test p-
value < 0.05, ** < 0.001. (C, D) Dose-responsive viability of HEK293 (C) and HepG2 (D) cells exposed to cisplatin (C) or acetaminophen (D). DMSOwas
used to dissolve the compounds. Cell viability was measured by MTS assay. Error bars represent ± standard deviation of triplicate experiments. See S4A
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important roles is to metabolize various xenobiotics. Accordingly, our DEGs well represent the
biology of organ-specific responses to toxicity.

To further identify protein complexes within DEGs noted in MA3 and MA4 comparisons,
we applied the cluster finding algorithmMCODE to the PPI network formed by the 303 genes
fromMA3 and the 661 genes fromMA4 that corresponded with the DEGs. MCODE identified
five clusters for MA3 and 14 clusters for MA4 (Fig 4B and 4C). Notably, proteasomes and ribo-
somes were identified for both MA3 and MA4. Cluster-1 from MA3 and cluster-1 fromMA4
are different subsets of the giant proteasome complex. Proteasome mediated degradation of
damaged proteins is an important defense mechanism against xenobiotic-driven reactive oxy-
gen species-mediated stress [45–47]. Meanwhile, cluster-2 fromMA3 and cluster-2, -3, -4, and
-5 fromMA4 are part of the ribosomal complex. Up-regulation of ribosomal machinery is also
a known cellular defense mechanism against various genotoxic compounds that restores
homeostasis by activating translation [48].

Different PPI components from DNA damage response-related processes were also discov-
ered for both comparisons, namely, cluster-3 fromMA3 and cluster-6, -7, -8, -9, -10, and -11
fromMA4. Consistent with the GO analyses, MCODE identified protein complexes involved
in inflammatory responses, including caspase-1-induced activation of interleukins (IL)-1B and
IL-18 (cluster-4 of MA3), elevated components of complement (cluster-5 of MA3), and β-col-
ony-stimulating factor 2 receptor (CSF2RB) complex (cluster-7 of MA4). Notably, comple-
ment activation is associated with various organ injuries, including acetaminophen-induced
liver injury [49], and CSF2RB is a high-affinity receptor for IL-3, IL-5, and colony-stimulating
factor [50]. Intriguingly, we identified several liver-specific PPI subnetworks, including nucleo-
porin (cluster-12) and hepatic lectin (cluster-14 of MA4), the latter of which is down-regulated
in the liver upon exposure to various drugs. As a transmembrane protein, hepatic lectin is a
known target of liver-specific drug delivery that internalizes receptor-bound molecules and
viruses through endocytosis [51]. Thus, its down-regulation may possibly reflect a defense
mechanism against hepatotoxins.

NREP and CTSD: novel biomarkers of toxicity in human cell lines
Recapitulation of our biomarker candidates in appropriate human cell models would poten-
tially allow for their adoption into prediction of toxicity for drug candidates early in drug devel-
opment. Accordingly, the following two-track approach was undertaken to identify toxicity
markers applicable to human cell lines: 1) evaluating the performance of eight of the 21 candi-
date markers from MA1 (untreated versus treated) and MA4 (level-0 versus level-1 liver speci-
mens) in TG-GATEs, a massive in vitro toxicogenomic dataset for human hepatocytes [13]; 2)
experimentally testing expression changes for five of the 21 candidate markers fromMA1,
MA3, and MA4 that were selected based on pooled effect-size (> 0.55) after exposure to rele-
vant pharmacological compounds in the human cell lines HEK293 and HepG2. Three of the 21
candidate genes fromMA5 were not included because a human heart cell line is not commer-
cially available (S8 Table).

TG-GATEs comprises 1,410 transcriptome profiles and associated cell titers for human pri-
mary hepatocytes exposed to 119 pharmacological compounds. For this analysis, we first

and S4B Fig for the results with the same compounds dissolved in growth media. (E, F)NREPmRNA levels after exposure to the indicated concentrations of
cisplatin for 72 h and acetaminophen for 48 h, respectively, determined by RT-PCR. (G-H) qRT-PCR assays for NREP (G) andCTSD (H). Y-axis indicates
fold-changes in expression compared to chemically untreated samples (n = 5). Level-0 and level-1 drug concentrations for DMSO and DMEMwere selected
based on cell viability of > or < 60%, respectively, in C-D and S4A and S4B Fig. *p < 0.05, ** p < 0.001; Student’s t-test. Error bars represent ± standard
deviation.

doi:10.1371/journal.pone.0136698.g005
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performed t-tests for differences in expression of the five early-toxicity marker candidates,
NREP, ATRN, TBXA2R, KIFC1, and EPHX1, between untreated and treated samples. Of these,
only NREP, which had the largest fold-changes in the meta-analysis (S8 Table), showed consis-
tent and statistically significant depletion upon drug treatment (Fig 5A). Second, fold-changes
in the expression of each of the three liver marker candidate genes, CTSD, TPM4, and RPL35A,
were estimated using varying toxicity thresholds determined by relative cell titers (Fig 5B). Of
these candidates, CTSD was found to be a statistically significant positive toxicity marker that
showed an increasing fold-change with decreasing cell viability threshold (Fig 5B).

In parallel, we experimentally evaluated five novel toxicity biomarker candidates, NREP,
TUBB5, TRPM4, CTSD, and TPM4, which showed the largest pooled effect-size (> 0.55) in RF
analysis (S8 Table), in the human cell lines HEK293 and HepG2. In comparison to innocuous
samples (level-0), NREP, a DEG identified from the comparison of untreated and treated speci-
mens, was markedly down-regulated in both HEK293 (Fig 5C, 5E and 5G) and HepG2 cells
(Fig 5D, 5F and 5G) treated with toxic concentrations (level-1) of known organ-selective tox-
ins. Expression of CTSD, a DEG identified from the comparison of level-0 and level-1 liver
specimens (MA4), was significantly elevated upon exposure to toxic concentrations of the liver
toxin acetaminophen (Fig 5D and 5H). Notably, the observed expression changes in the two
validated biomarker candidates were found to be robust against the type of vehicle used for
drug preparation (DMSO or growth medium) (Fig 5G and 5H).

On the contrary, TRPM4 and TPM4, DEGs discovered in comparison of level-0 and level-1
kidney specimens (MA3) and liver specimens (MA4), respectively, did not show consistent
expression changes in relevant human cells treated with toxic concentrations of the drug com-
pounds (S4E and S4F Fig). TUBB5 showed no changes in gene expression in HEK293 cells
(data not shown).

Importantly, NREP and CTSD were cross-validated by a two-track approach in human cells:
computationally validated in silico via TG-GATEs and experimentally validated in vitro in the
human cell lines HEK293 and HepG2. We found that NREP is a multi-organ biomarker for a
wide variety of chemical perturbations and is down-regulated in response to drug-induced tox-
icity. We also found that CTSD is a liver-specific biomarker of toxicity that is concurrently
induced with the onset of a pathological phenotype following various chemical perturbations.

Discussion
Biomarkers of drug-induced toxicity enable cost effective pre-clinical evaluation of drug candi-
dates in cell line models; however, their use is currently limited by a lack of markers robustly
applicable to a wide variety of chemical compounds and predictive of in vivo pathological
outcomes.

In the present study, we utilized massive toxicogenomic meta-datasets from various in vivo
rat studies covering 453 pharmacological compounds at different doses and durations and
accompanied by histopathological information. With these datasets, we performed meta-analy-
sis, followed by multiple feature reduction procedures, to identify organ-specific biomarker
candidates of drug-induced toxicity (Table 3). Subsequent in silico and in vitro analyses in
human cell lines validated NREP and CTSD as strong biomarkers of drug-induced toxicity. The
canonical functions of NREP include cell migration through activation of RalA in the initial
wound matrix of proto-myofibroblasts and myofibroblasts [52] and wound healing in human
and mouse cell lines [53, 54]. CTSD is a lysosomal aspartic endopeptidase known to mediate
apoptosis in response to oxidative stress [55]. In the present study, NREP was down-regulated
in response to general chemical stress and coupled to the onset of multi-organ toxicity. As well,
CTSD was found to be up-regulated upon drug-induced toxicity in the liver.
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Herein, the compilation of the large number of relevant toxicogenomic studies enabled us
to perform meta-analyses capable of identifying robust prediction biomarkers that were other-
wise undiscovered in the individual studies because of their limited statistical power. Neverthe-
less, combining different studies inevitably incorporates experimental biases. Potential sources
of bias in toxicogenomic meta-analyses include experimental model selection, drug selection,
organ selection, and pathological phenotype selection. In the present study, to tackle the bias in
experimental model selection, both in vivo rat models and human cell line models were
employed in the initial discovery and subsequent validation, respectively. Several previous
studies have indeed shown that these types of pre-clinical models successfully predict toxicity
in humans [56, 57]. Regarding the potential bias in drug selection, among 453 unique com-
pounds compiled in our study, the three most-frequently tested drugs were acetaminophen
(n = 191, 2.9%), diquat dibromide (n = 142, 2.2%) and 1,4-dichlorobenzene (n = 80, 1.2%),
indicating that our study is not heavily biased in favor of only a few compounds. To avoid
potential organ bias in combined analyses, we conducted separate analyses for three major
organs: kidney (n = 1,140), liver (n = 4,813), and heart (n = 614). With regard to possible path-
ological phenotype bias, our compiled dataset was annotated with comprehensive organ-spe-
cific histopathology terms, as shown in S1 Table. The most frequently used terms were
“infiltration, cellular” (n = 4,701, 71.6%) and “necrosis” (n = 3,599, 54.8%).

Additional challenges associated with heterogeneous sources of data involve addressing
nonsystematic variation originating from between-batch effect, such as laboratory conditions,

Table 3. List of the 21 candidate biomarkers of drug-induced toxicity.

Comparison GeneSymbol Official Name from HGNC Functional Categories

Untreated vs. treated (MA1) Ephx1 epoxide hydrolase 1, microsomal (xenobiotic) activation and detoxification of epoxides

Atrn attractin cell survival

Nrep neuronal regeneration related protein cell migration

Kifc1 kinesin family member C1 proplatelet formation

Tbxa2r thromboxane A2 receptor inflammation

Organ vs. organ comparison
(MA2)

Azgp1 zinc-alpha-2-glycoprotein 1 cell proliferation, kidney injury

Nrg1 neuregulin 1 development of multiple organ systems

Hao2 hydroxyacid oxidase 2 peroxisomal enzyme, expressed predominantly in
liver and kidney

Level−0 vs. level−1 Kidney
(MA3)

Spp1 secreted phosphoprotein 1 inflammation, oxidative stress, fibrosis

Ctss cathepsin S inflammation

Tubb5 beta 5 tubulin immune response

Trpm4 transient receptor potential cation channel,
subfamily M, member 4

T-cell activation

Amigo2 adhesion molecule with Ig-like domain 2 apoptosis

Il1rl2 interleukin 1 receptor-like 2 immune response

Atp1b2 sodium/potassium-transporting ATPase subunit
beta-2

ion homeostasis

Level−0 vs. level−1 Liver
(MA4)

Tpm4 tropomyosin 4 repair and regeneration

Ctsd cathepsin D immune response, apoptosis, oxidative stress

Rpl35a ribosomal protein L35A cytotoxic damage

Level−0 vs. level−1 Heart
(MA5)

Gpam glycerol-3-phosphate acyltransferase, mitochondrial proliferation

Pcp4l1 purkinje cell protein 4 like 1

Rxrg retinoid X receptor gamma hematopoietic stem cell differentiation

HGNC: HUGO Gene Nomenclature Committee

doi:10.1371/journal.pone.0136698.t003
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reagent lots, and personnel differences [58]. Although, several available algorithms are able to
correct for batch effects, these would not be appropriate or efficient for use in studies such as
ours, since our compiled datasets originated from studies of differing experimental conditions
and of many different chemical stress conditions. Thus, the studies would be highly con-
founded with several potential sources of batch effect. The presence of nonsystematic variation
may result in false positives and/or false negatives. Between these, false positives were the great-
est concern in our study. To address this concern, we attempted to validate positive results
experimentally in human cell lines. In doing so, we identified and validated two toxicity bio-
markers that were highly robust against drug-induced toxicity.

In our study, organ-specific interactions were assessed only for toxicity levels (level-0 versus
level-1) not for treatment status (untreated versus treated), as the focus of our study was to
identify candidate biomarkers that could predict organ-specific toxicity rather than to outline
organ-specific responses to chemical stress. Accordingly, we initially attempted to discover
DEGs in MA1 without considering organ-specificity, since, when identified, these DEGs may
serve as ubiquitous chemical stress markers to help interpret the results of organ-specific com-
parisons (MA3-5). NREP, which was identified from MA1, was both computationally and
experimentally validated in our study as a multi-organ responder to chemical stress coupled to
toxic phenotype.

Not all of the biomarkers identified in vivo were recapitulated in human cells. Only two of
eight genes were reproduced in an orthogonal liver cell line toxicogenomic dataset, and four of
five genes were experimentally validated by qRT-PCR in human cell lines. This limited coher-
ence may originate from differences in species and between in vivo and in vitro experimental
settings. One potential difference in the experimental settings that may have affected our
results was the type of vehicle used for drug preparation. DMSO, a popular cryoprotectant for
long-term cell storage, is widely used as a solvent and vehicle for many pharmaceutical com-
pounds, especially in in vitro settings. Frequently, the effect of DMSO on drug responses and
toxicity is ignored. Nevertheless, in our study, we experimentally confirmed that the two drug-
induced toxicity biomarkers were not affected by the type of drug-solvent.

In this study, we identified and validated two novel gene expression biomarkers that were
found to be predictive of drug-induced toxicity. If incorporated into an existing panel of bio-
markers or further developed into an independent cell line-based molecular assay system, these
biomarkers might enable guided design of lead compounds, obviating the need to test large
numbers of drugs in animals in order to evaluate in vivo toxicity. This would improve the over-
all efficiency of drug-development processes.
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