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The cluster analysis has been a popular method for the statistical clas-

sification. In particular, some high-dimensional medical data have been

confronted with such classification problem. The classical cluster analysis,

however, has the theoretical shortcoming, because the inference to deter-

mine the number of clusters does not have any theoretical backgrounds. To

estimate the number of clusters, this dissertation explores the cluster anal-

ysis through EM algorithm, Maximum a Posteriori and Gibbs sampler. In

addition, we investigate some appropriate assessment tools such as Baysian

Information criteria, Laplace Metropolis criteria and the modified Fisher’s

discriminant criteria in order to determine the number of clusters .
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Chapter 1

Introduction

The cluster analyses are extensively applied to data in many areas, such

as medicine, geology, economics, the DNA microarray technology, etc. The

cluster analyses can be applied to data without response variable. For ex-

ample, the DNA microarray data usually consists of a lot of genes and

expression levels. The objective of DNA microarray technology is to iden-

tify clusters of genes or samples

In this thesis, we will discuss several cluster analyses and focus our at-

tention on the model-based clustering with the multivariate normal mixture

model(McLachlan, 2000). In a mixture model, each component probability

distribution corresponds to a cluster and each observation estimates the

probability belonging each cluster. The method has the problems to deter-

mine the number of clusters and to choose an appropriate clustering model.

For solving the problems, various algorithms are proposed.

In this thesis, we will compare and assess several methods for the clus-

tering with a multivariate normal mixture. Fraley and Raftery(1998) sug-

gested a method to estimate the number of clusters using the EM algo-

rithm and to assess their clustering model with Bayesian Information Cri-

terion(BIC). Fraley and Raftery(2005) proposed a method to estimate the



number of clusters using the maximum a posteriori(MAP) and Bensmail et.

al.(1997) developed a method to estimate the number of clusters using the

Gibbs sampler and to assess his clustering model with Laplace Metropolis

criteria.

To estimate the number of cluster, we compare several methods such

as EM algorithm, Maximum a Posteriori(MAP), the Gibbs sampler. In

addition, Bayesian Information Criterion(BIC), Laplace Metropolis crite-

ria, and a Modified Fisher’s discriminant criteria are used to evaluate the

optimization for the number of clusters.

The chapter 2 reviews some traditional cluster analyses, such as the

hierarchical methods and the non-hierarchical methods. The chapter 3

discusses the EM algorithm for the maximum likelihood estimation of a

multivariate normal mixture model. In contrast, the Markov chain Monte

Carlo methods for estimation of the number of clusters are the topic of the

chapter 4. The chapter 5 explores some evaluation methods such as BIC,

Laplace Metropolis criteria and modified Fisher’s discriminant criteria. The

chapter 6 demonstrates the simulation study to check our discussion. The

chapter 7 addresses the conclusion and discussion.
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Chapter 2

Cluster Analyses

The cluster analysis is a method to find an optimal grouping; the ob-

servations in each group are relatively similar and the observations among

different groups are relatively dissimilar. The cluster analysis is used to re-

duce observations and to classify different groups. The commonly used dis-

criminant analysis and the cluster analysis are called the supervised model

with response and rhe unsupervised model without response respectively.

The similarities for the cluster analyses are based on some measures of

distance such as Euclidean distance, Minkowski distance and Mahanlanobis

distance.

Assume that d-dimensional observations xi = (xi1, xi2, · · · , xid)T where

i = 1, 2, · · · , n.

• The Euclidean distance is defined to be

d(xi,xj) =
√

(xi1 − xj1)2 + · · ·+ (xid − xjd)2

=
√

(xi − xj)T (xi − xj)

• The Minkowski metric is defined to be



d(xi,xj) =

[
d∑

i=1

|xi − xj |m
] 1

m

In particular, d(xi,xj) becomes the Euclidean distance, when m =

2.

• The Mahanlanobis distance is defined to be

d(xi,xj) =
√

(xi − xj)T Σ−1(xi − xj)

The cluster analysis can be explained in two types of method : the

hierarchical clustering and the non-hierarchical clustering. The hierarchical

clustering relies on some measures of similarity among observations. In

contrast, the non-hierarchical clustering takes a preliminary choice for the

cluster centers and then searches for groups separated by the similarity

between each observation and each cluster center.

2.1 Hierarchical Method

The key step in the hierarchical clustering is to select a distance mea-

sure. Given a distance measure, the similarities among observations are

computed. Using the similarity measures, observations are combined into

some similar groups. This method involves a sequential process, but we

consider all possible clustering possibilities. The clustering summary can

4



be graphically represented by the dendrogram. The branches of the den-

drogram represent the form of clusters and the similarity among clusters.

We can find easily the formation of the clusters as we wish by cutting the

dendrogram.

The hierarchical clustering algorithm has two types of approaches such

as agglomerative and divisive approaches. The agglomerative methods start

with each observation in a separate cluster. At each step two similar clusters

are merged by their pairwise distance. In contrast, the divisive methods

start with all observations in a single cluster. At each step two clusters

are recursively divided into one of the existing clusters. Let’s explore the

agglomerative clustering algorithm.

2.1.1 Agglomerative Clustering

Let’s consider one cluster (UV ) combined with two clusters U ,V and

merge another cluster W . Then the similarity is computed from the set of

pairwise distances dij , where i is i-th observation in (UV ) , and j is j-th

observation in W . The two closest clusters are merged by the smallest dis-

tance (d(UV)W). The following five distance measures are commonly used.

These five distance measures give rise to different hierarchical methods.

• Single linkage or nearest neighbor

The distance between two clusters is defined as the minimum distance

d(UV)W = min (dUW, dVW)

• Complete linkage or farthest neighbor

5



The distance between two clusters is defined as the maximum distance

d(UV)W = max (dUW, dVW)

• Average linkage

The distance between two clusters is defined as the average distance

d(UV)W =

∑nUV
i=1

∑nW
j=1 dij

n(UV)nW

where n(UV), nW are the number of items in clusters (UV ) and W .

• Centroid Method

Compute the centroid for each cluster. The distance between two

clusters is defined as the Euclidean distance between the centriods(mean

vectors) of two clusters:

d(UV )W = distance between centroids of clusters (UV ) and W .

• Ward’s Method (Ward, 1963)

This is called the incremental sum of squares method. The Ward’s

Method is based on the minimization of within-cluster distances and

this is equivalent to approximately maximizing the multivariate nor-

mal classification likelihood when the covariance matrix is the same

for each cluster and proportional to the identity matrix.

The hierarchical methods have mostly been used because of simple and

easy feasibility. The graphical representation is through making an inspec-

6



tion of the whole data and examining an initial property of the distribution

of data. However the hierarchical methods have no provision, for a reallo-

cation of observations that may have been incorrectly grouped at an early

stage. In particular, these are sensitive to outliers, and the problems are

serious in a very large data, as some gene expression data from microar-

ray(Tamayo et al., 1999).

Thus the hierarchical methods might be used to give a good initial

value of the other clustering methods (Fraley and Raftery, 1998).

2.2 Non-Hierarchical Methods

The non-hierarchical methods require a specification of the desired

number of clusters, K. The non-hierarchical methods are separated into K

groups; as dissimilar as possible among observations. The non-hierarchical

clustering can allow the observations to be moved from one cluster to

another. The non-hierarchical methods start with either an initial par-

titioning of observations or an initial set of seed points. Thus these are

also called partitioning. The popular non-hierarchical clusterings are three

methods: K-means clustering, SOM(Self-Orgnaized Map), model-based

clustering(MCLUST(R-package), Fraley and Raftery, 1998).

2.2.1 K-Means Clustering

Consider the K-means clustering(MacQueen, 1967) to be known as the

method of generating the common knowledge. It is to decide the appro-

7



priate number of clusters K. The observations x are randomly assigned to

K clusters. The K cluster centers are computed using the current cluster

memberships, and then the sum of squared distance of each observation(i.e.

the error sum of squares of the partition, ESS) are calculated. We recom-

pute its cluster centroid, reassign each observation to the closest cluster

center. It is repeated until the process converges to at least a local mini-

mum.

The error sum of squares of the partition(ESS) is given by

W (C) =
K∑

k=1

nk

∑

C(i)=k

(xi − xk)2

where xk is the average of k-th cluster and nk is the number of k-th cluster.

In summary, the K-means clustering is the method minimizing W (C).

The drawback of K-means method is to determine the number of clus-

ters K, influenced by K and seed points.

2.2.2 Self-Organizing Map(SOM)

The Self-Organizing map(SOM) is widely used to visualize and inter-

pret the large high-dimensional data, which reduce the dimension of data

through the use of self-organizing neural networks(Kohonen, 1989, 1990).

It is the technique reducing dimension and clustering by producing a map

of usually one or two dimensions that plot the similarities of the data by

grouping similar observations together. It is called the topology-preserving

map. It is not influenced by the amount of data. ÖÖÖÖ

Assume that an output node has as many as the number of clusters

8



K on one or two dimensional grid. Let wk, k = 1, . . . , K, be the weight

vector of each output node and xj , j = 1, . . . , n be the input vectors.

1. Randomly choose an input vector xj .

2. Determine the `winning node´ to be the closest weight vector by

computing the Euclidean distance between a selected input and each

weight vector. Given the winning node k , the weight update is given

by

wk = wk + α (xj −wk) , 0 < α < 1

3. Repeat 1 and 2 until a weight vector of winning node is converged to

the input vector. Each input vector is detected to be output node of

weight vector with similarity.

2.2.3 Clustering with Mixture Model

In the clustering with a mixture model, assume that a random vector

x = (x1,x2, · · · , xn) has the K-distributions and each of the n observations

is assigned to the nearest distribution. This method can allow reallocation

as other partitioning methods, but it requires more assumptions than other

partitioning methods. Given data x with independent multivariate obser-

vations x1, · · · ,xn, K-components mixture model function is given by

f(xj) =
K∑

k=1

τkfk(xj), j = 1, · · · , n.

9



where the proportion of the populations τ = (τ1, · · · , τK) are nonnega-

tive quantities that sum to one, that is, 0 ≤ τk ≤ 1 (k = 1, · · · ,K) and
∑K

k=1 τk = 1. The fk(xj) is called the k-th component densities of the mix-

ture. The f(xj) is called the K-component mixture density or unconditional

density of xj . Each component represents a cluster.

Let’s focus on the mixture model with normal components. That is

assumed to take the component densities as a multivariate normal. That

is,

f(xj |Θ) =
K∑

k=1

τkφ(xj |µk,Σk) (2.1)

where Θ = (τ1, · · · , τ(K−1),µ1,µ2, · · · , µK ,Σ1,Σ2, · · · ,ΣK), µk is k-th

component mean, Σk is k-th component covariance matrix(k = 1, · · · ,K),

and

φ(xj |µk,Σk) ≡ 1√
det(2πΣk)

exp
{
−1

2
(xj − µk)

T Σ−1
k (xj − µk)

}
(2.2)

The above multivariate normal density is characterized with respect to µk

and Σk.

Banfield and Raftery(1993) proposed a parametrization of the com-

ponent covariance matrix through the standard spectral decomposition of

Σk,

Σk = λkDkAkD
T
k , (2.3)

where Dk is the orthogonal matrix of eigenvectors, Ak is a diagonal matrix

whose elements are proportional to the eigenvalues of Σk. λk is the largest

eigenvalue of Σk and is an associated constant of proportionality.

Ak = diag(1, λk2/λk, · · · , λkp/λk)

10



Table 2.1: Types of Covariance Matrix Σk : Spectral Decomposition

Largest Other Eigenvector Type of Covariance
Identifier Eigenvalue Eigenvalues Matrix (Model)
EII Equal Identity Identity (Spherical Variance)
VII Vary Identity Identity (Spherical Variance)
EEI Equal Equal Identity (Diagonal Variance)
VEI Vary Equal Identity (Diagonal Variance)
EVI Equal Vary Identity (Diagonal Variance)
VVI Vary Vary Identity (Diagonal Variance)
EEE Equal Equal Equal (Ellipsoidal Variance)
VVV Vary Vary Vary (Ellipsoidal Variance)
EEV Equal Equal Vary (Ellipsoidal Variance)
VEV Vary Equal Vary (Ellipsoidal Variance)

Different symbols correspond to different model parameterizations. The
three letter codes are those used to designate equal(E) or varing(V) vol-
ume, shape, orientation. (I) designates a spherical shape or an axis-aligned
orientation in MCLUST software(Fraley and Raftery, 1999, 2003).

Table 2.2 shows the parametrization of the covariance matrix Σk.

There are two approaches. One approach is to assign an observation

to the cluster with the largest value of the posterior probability(Rencher,

1998). The posterior probability represents an estimation of the probability

that an observation belongs to the i-th cluster, Ci:

P̂ (Ci|x) =
τ̂iφ(x|µ̂i, Σ̂i)∑K

k=1 τ̂kφ(x|µ̂k, Σ̂k)

where τ̂k, µ̂k, and Σ̂k are the maximum likelihood estimates of τk, µk, and

Σk respectively. Another approach is to assign x to the i-th cluster using

a multivariate normal mixture model. Taking log of this function(2.2),

log (φ(x|µi,Σi)) ≡ −1
2

log(2π)− 1
2

log(Σi)− 1
2

(x− µi)
T Σ−1

i (x− µi) .

11



Table 2.2: Types of Covariance Matrix Σk : Geometric Features

Identifier Model Distribution Volume Shape Orientation
EII λ I Spherical Equal Equal N/A
VII λk I Spherical Variable Equal N/A
EEI λ A Diagonal Equal Equal Coordinate Axes
VEI λk A Diagonal Variable Equal Coordinate Axes
EVI λ Ak Diagonal Equal Variable Coordinate Axes
VVI λk Ak Diagonal Variable Variable Coordinate Axes
EEE λ DADT Ellipsoidal Equal Equal Equal
VVV λk Dk Ak DT

k Ellipsoidal Variable Variable Variable
EEV λ Dk A DT

k Ellipsoidal Equal Equal Variable
VEV λk Dk A DT

k Ellipsoidal Variable Equal Variable

The maximum likelihood estimator for the parameters are given by

τ̂i =
n̂i

n
(2.4)

µ̂i =

∑n
j=1 ŷijxi

n̂i
(2.5)

n̂i =
n∑

j=1

ŷij . (2.6)

Computation of Σ̂k depends on its parametrization(2.3).

log
(
φ(x|µ̂i, Σ̂i)

)
≡ −1

2
log(2π)− 1

2
log(Σ̂i)− 1

2
(x− µ̂i)

T Σ̂
−1
i (x− µ̂i)

Here, the first term is not the parameter of the mixture model, and thus

we delete −1
2 log(2π). Thus if taking log of the equation (2.1) is expressed

as follows:

12



log f(xj |Θ̂) = log(τ̂i)− 1
2

log(Σ̂i)− 1
2

(xj − µ̂i)
T Σ̂

−1
i (xj − µ̂i)

For either of these approaches, we need to estimate τ̂i, µ̂i, and Σ̂i by the

maximum likelihood method. That is, these are obtained by maximizing

the likelihood function. The likelihood function for a multivariate normal

mixture model with K components is given by

L(x|Θ) =
n∏

j=1

K∑

k=1

τkφ(xj |µk,Σk).

where Θ = (τ1, · · · , τ(K−1), µ1,µ2, · · · , µK ,Σ1,Σ2, · · · ,ΣK). For maxi-

mizing the likelihood function, we have to solve the following likelihood

equation.

∂L(Θ)/∂Θ = 0,

or equivalently, on the log likelihood,

∂ log L(Θ)/∂Θ = 0.

The computation of MLE is easier when the likelihood is quadratic in

the parameters such as in the independent normally distributed observa-

tion. The MLE’s of τi, µi, and Σi are given by

τ̂i =
1
n

n∑

j=1

P̂ (Ci|xj), i = 1, 2, . . . ,K − 1,

µ̂i =
1

nτ̂i

n∑

j=1

P̂ (Ci|xj), i = 1, 2, . . . , K,

Σ̂i =
1

nτ̂i

n∑

j=1

(xj − µ̂i)(xj − µ̂i)
T P̂ (Ci|xj), i = 1, 2, . . . , K.

13



When the likelihood is not quadratic and the information about a group as

the clustering is unknown, we can apply some iterative algorithms, such as

Newton-Raphson methods, Fisher’s scoring algorithms, the Expectation-

Maximization(EM) algorithm(Dempster et al, 1977) and Markov chain

Monte Carlo (MCMC) presented in the following chapter.

In an iteration procedure, we need the vector to represent whether each

observation did or did not arise from the k-th component of the mixture.

Let yj be a K−dimensional vector. The vector yj is called the component-

label vector.

yjk =
{

1 if xj belongs to group k
0 otherwises

Assuming that each yj is independent and identically distributed according

to a multinomial distribution of one draw on K categories with probabilities

τ1, · · · , τK . Suppose that the conditional density of xj given yj = k is

P (yj) = τ
yj1

1 τ
yj2

2 · · · τyjK

K .

where j = 1, · · · , n. Then yj follows the multinomial distribution such as

yj ∼ MultK(1, τ ),

where τ = (τ1, · · · , τK)T .

Since the density of an observation xj given yj is given by
∏K

k=1 φk(xj |µk,Σk)yjk , the mixture model is

K∏

k=1

[
τ̃kφ(xj |µ̃k, Σ̃k)

]yjk

14



Therefore the likelihood function is

n∏

j=1

K∏

k=1

[
τ̃kφ(xj |µ̃k, Σ̃k)

]yjk

(2.7)

Taking the log of (2.7) produces

log L(Θ̃) =
n∑

j=1

K∑

k=1

yjk log
[
τ̃kf(xj |µ̃k, Σ̃k)

]
,

where Θ = (τ1, τ2, · · · , τK−1, ξ
T )T , ξ = (µ1, µ2, · · · , µK ,Σ1,Σ2, · · · ,ΣK).

log L(Θ̃) =
n∑

j=1

K∑

k=1

yjk log(τ̃kφ(xj |µ̃k, Σ̃k))

=
K∑

k=1

n∑

j=1

yjk log(τ̃kφ(xj |µ̃k, Σ̃k))

The log-likelihood function for the multivariate normal mixture model is

written as

f(x|Θ̂) =
K∑

k=1

nk log(τ̂k) +
K∑

k=1

n∑

j=1

yjk log(φ(xj |µ̂k, Σ̂k)) (2.8)

In this clustering, it is difficult to estimate the parameters. We need an

iterative process for estimating such as the Expectation-Maximization(EM)

algorithm in the MCLUST software or Markov Chain Monte Carlo(MCMC)

methods. The EM algorithm is based on data argument for the maximum

likelihood estimation and the MCMC method is based on the Bayesian

approach.
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Chapter 3

EM Algorithm

As we discussed in the previous chapter, the parameters of mixture

model can be estimated by MLE. There are several kinds of the point

estimation such as method of moments, maximum likelihood estimators

and Bayes estimators. Maximum likelihood estimation(MLE) is important

in statistical theory and data analysis(McLachlan and Basford, 1988). This

estimation is a general-purpose method with some attractive properties:

consistency, efficiency and asymptotic normality under the usual regularity

conditions(Gentle et al. 2004).

The Expectation-Maximization(EM) algorithm is a general approach

to the maximum likelihood estimation for problems which is not quadratic

or the likelihood is not complete due to the incomplete data. The EM al-

gorithm is conceptually simple and numerically stable.

However the EM algorithm has some drawbacks as follows(Gentle et

al. 2004):

• It does not automatically provide an estimate of the covariance matrix



of the parameter estimates.

• It is sometimes very slow to converge.

• In some problems, the E-step may be analytically intractable, al-

though in such iterations there is the possibility of effecting it via

Monte Carlo EM algorithm.

• Like the Newton-type methods, it does not guarantee convergence to

the global maximum when there are multiple maxima. Furthermore,

in this case, the estimate depends upon the initial value.

• It can fail to converge. Because we have singularity in the covariance

estimate and have variability of the covariance between components

and have the large numbers of components. For avoiding this prob-

lem, the Maximum a posteriori can be an alternative.

In this thesis, the EM algorithm and the Maximum a posteriori(MAP)

will be investigated.

3.1 EM Algorithm

For a cluster analysis, let’s assume that each observation includes one

cluster with an incomplete data. The EM algorithm has the basic idea to

transform an incomplete data into a complete data problem because the

complete data likelihood has computationally more tractable for a required

maximization.

For the EM algorithm for a mixture model, let z = (x,y) denote

the vector containing a complete data, in which x is observed and y is

17



unobserved.

Let L(z|θ) denote a posterior distribution or a likelihood function.

The EM algorithm formalizes an idea for dealing with missing-data prob-

lem. Starting with a guessed value for the parameter θ, let’s carry out the

following iteration:

1. Replace the missing data y by their expectation given the guessed

value of the parameters and the observed data. Let this conditional

expectation be ỹ.

2. Maximize a posterior distribution or a likelihood L(z|θ) with respect

to θ replacing the missing data y by their expected values. This is

equivalent to maximizing L(θ, ỹ|x).

3. Reestimate the missing data y using their conditional expectation

based on the updated θ.

4. Reestimate θ and continue until a convergence is reached.

3.1.1 E-step and M-step

On each iteration of the EM algorithm, there are two steps: the E-

step(Expectation step) and the M-step(Maximization step). A posterior

distribution or a likelihood is given by

LC(z|θ) =
n∏

j=1

f(zj |θ)

where LC denotes the complete-data likelihood. Taking the log of LC(z|θ)

gives

18



log LC(z|θ) =
n∑

j=1

log f(zj |θ).

In addition, because y is unobserved, integrating y out of the complete

data likelihood produces

log LO(x|θ) =
∫

LC(z|θ)dy.

This is the E-step of the EM algorithm. Let θ(0) be an initial value for θ.

On the first iteration, the E-step calculates

Q(θ|θ(0)) = logLC(θ) = E
θ(0) {log LC(θ|x)}

In the M-step, it is calculated

Q(θ(1)|θ(0)) ≥ Q(θ|θ(0))

for all θ ∈ Ω.

On the (k + 1)-th iteration of the EM algorithm, the E-step and the

M-step are summarized as

E-step : Calculate Q(θ|θ(k))

Q(θ|θ(k)) = E
θ(k) {log f(θ,y|x)}
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M-step : Determine θ(k+1) to be any value of θ ∈ Ω that maximizes

Q(θ|θ(k)):

Q(θ(k+1)|θ(k)) ≥ Q(θ|θ(k)), ∀ ∈ Ω.

These two steps are iterated until the difference of the likelihood value

between on the (k + 1)-th iteration and (k)-th iteration by the stopping

criteria(an arbitrarily small amount) is converged.

3.1.2 Convergence of EM Algorithm

The likelihood L(θ) does not decrease after each EM iteration(Dempster

et.al., 1977), that is,

L(θ(k+1)) ≥ L(θ(k))

for k = 0, 1, 2, · · · . Hence the EM algorithm has the convergence property

which is bounded.

Under some fairly mild regularity conditions, the EM algorithm can

be shown to converge to a local maximum of the observed-data likeli-

hood(Dempster, Laird, and Rubin(1977), Boyles(1983), Wu(1983), McLach-

lan and Krishnan(1997)). Although these conditions do not always hold in

practice, the EM iteration has been widely used for maximum likelihood

estimation for the mixture models with good results.
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3.1.3 Application of EM Algorithm for Mixture Model

Let’s explore the application of the EM algorithm for the multivariate

normal mixture model.

f(xj |Θ) =
K∑

k=1

τkfk(xj |θk),

Even with the observed data x and unobserved data y, y is replaced by

ŷ in the E-step. This can be obtained by the complete data log-likelihood

(2.8)

ŷji =
τ̂ifi(xj |µ̂i, Σ̂i)∑K

k=1 τ̂kfk(xj |µ̂k, Σ̂k)

This is the posterior probability that xj belongs to the i-th component of

the mixture model(McLachlan and Krishnan, 1997).

Then in the M-step, we can estimate the parameters maximizing the

complete data log-likelihood at the values computed in the E-step, yji. On

the (k+1)-th iteration, we update the following parameter estimates(McLachlan

and Krishnan, 1997):

τ̂
(k+1)
i =

ni

n
i = 1, 2, . . . ,K − 1,

µ̂
(k+1)
i =

∑n
j=1 ŷ

(k+1)
ji xi

n
(k+1)
i

i = 1, 2, . . . , K,

n̂i
(k+1) =

n∑

j=1

ŷ
(k+1)
ji i = 1, 2, . . . , K.
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Computation of the covariance estimate Σ̂k depends on its parametriza-

tion(Table 2.2)(Celeux and Govaert, 1995).

3.2 Maximum A Posteriori(MAP)

The EM algorithm is based on the maximum likelihood estimation. Be-

cause of some drawbacks of the EM algorthm, Maximum a posteriori(MAP)

can be replaced as MLE.

The E-step is effectively the same as the computation of MLE of θ in

the EM algorithm, requiring the calculation of the Q-function, Q(θ|θ(k))

. The M-step differs in that the objective function for the maximization

process is equal to Q(θ|θ(k)) augmented by the log prior density, log f(θ).

On the (k + 1)-th iteration of the EM algorithm it is implemented to com-

pute the MAP estimate as follows.

E-step : Calculate the conditional expectation of the log complete-data

posterior density given the observed data vector x, using the current MAP

estimate θ(k) of θ. That is,

E
θ(k) {log f(θ,y|x)} = Q(θ|θ(k)) + log f(θ)

where θ(k) ∈ Ω.

M-step : Determine θ(k+1) to maximize E
θ(k) {log f(θ, y|x)}.
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3.2.1 Application of Maximum A Posteriori for Mixture
Model

By the prior of parameters for the multivariate normal mixture model,

we consider the conjugate prior(Gelman and Rubin, 1996). We used a

normal prior on the mean conditional on the covariance matrix:

µ|Σ ∼ N(µp,Σ/κp)

∝ |Σ− 1
2 | exp

{
−κp

2
trace

[
(µ− µp)

TΣ−1(µ− µp)
]}

,

and an inverse gamma prior on the variance for the diagonal and spherical

models,

σ2 ∼ inverseGamma(νp/2, ς2
p/2) ∝ (σ2)

νp+2

2 exp

{
− ς2

p

2σ2

}
,

and an inverse Wishart prior on the covariance matrix for the ellipsoidal

models,

Σ ∼ inverseWishart(νp,Λp) ∝ (Σ)
νp+d+1

2 exp
{
−1

2
trace

[
Σ−1Λ−1

p

]}
.

The initial values for the prior hyperparameters are summarized as
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µp : the mean of the data

κp : 0.01

νp : d + 2 (d = the number of the dimensions)

ς2
p :

sum(diag(var(data)))/d

G2/d

Λp :
var(data)

G2/d

The M-step estimator for the mean and variance of multivariate mix-

ture normal model under the normal inverse gamma and normal inverse

Wishart conjugate priors(Chris Fraley and Adrian E. Raftery, 2005) are

shown in Table 3.1. The rows for the variance correspond to the assump-

tions of equal or unequal spherical variance across components, and equal

or unequal ellipsoidal variance across components.

nk =
n∑

j=1

yjk,

x̄k =
n∑

j=1

yjkxj/nk,

Wk =
n∑

j=1

yjk(xj − x̄k)(xj − x̄k)T ,

ei = the i-th column of the identity matrix.
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Table 3.1: M-step Estimators for The Mean and Variance

Estimate Estimate
Parameter Without Prior With Prior

µk x̄k
nkx̄k+κpµp

κp+nk

σ̂2
∑G

k=1 trace(W k)
nd

ς2p+
∑G

k=1 trace
[

κpnk
(κp+nk)

(x̄k−µp)(x̄k−µp)T +W k

]

νp+(n+G)d+2

σ̂2
k

trace(W k)
nkd

ς2p+trace
[

κpnk
(κp+nk)

(x̄k−µp)(x̄k−µp)T +W k

]

νp+nkd+d+2

diag(δ̂2
i )

diag(
∑G

k=1 W k)
n

diag
(
ς2p+eT

i

∑G
k=1

[
κpnk

(κp+nk)
(x̄k−µp)(x̄k−µp)T +W k

]
ei

)

νp+n+2

diag(δ̂2
ik)

diag(W k)
nk

diag
(
ς2p+eT

i

[
κpnk

(κp+nk)
(x̄k−µp)(x̄k−µp)T +W k

]
ei

)

νp+nk+2

Σ̂
∑G

k=1 W k

n

Λp+
∑G

k=1

[
κpnk

(κp+nk)
(x̄k−µp)(x̄k−µp)T +W k

]

νp+n+G+d+1

Σ̂k
W k
nk

Λp+
[

κpnk
(κp+nk)

(x̄k−µp)(x̄k−µp)T +W k

]

νp+nkd+d+2
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Chapter 4

Monte Carlo Markov
Chain(MCMC)

The Markov chain Monte Carlo(MCMC) has become a very important

computational tool in Bayesian statistics, since it allows inference to be

drawn from the complex posterior distribution where the analytical or nu-

merical integration techniques cannot be applied. From this point of view,

the Markov chain Monte Carlo(MCMC) is closely related to the EM algo-

rithm. However the MCMC needs to integrate the posterior distribution

of model parameters give the data, and the EM algorithm may need to

integrate the distribution of observable given parameter values.

The underlying idea of MCMC is to construct a Markov Chain via

Monte Carlo simulation to get posterior distribution as its equilibrium or

stationary distribution(Tierney, 1994). The Monte Carlo integration draws

samples from the required distribution(equilibrium or stationary distribu-

tion), and then forms the sample average to approximate expectations;

E(p(Θ)) ≈ 1
M

M∑

i=1

f(Θi)



where

Θ = the parameters

p(Θ) = the prior of the parameters

M = the number of total iteration

f(Θi) = one of the parameters

Suppose we generate a sequence of random variables Θ = {Θt : t ∈ T}
where T = {0, 1, 2, · · · }. The next state Θt+1 is sampled from a distribution

P (Θt+1|Θt) which depends only on the current state of the chain, Θt. This

sequence is called a Markov chain, and P (·|·) is called the transition kernel

of the chain. Assume that the chain is time-homogenous: that is, P (·|·) does

not depend on t. That is, the chain does not depend on t or on its initial

state Θ0 and P (t)(·|Θ0) eventually converges to a unique stationary(or

invariant) distribution.

As t increases, the sampled points Θ will be increasingly line-dependent

samples from P (t)(·|Θ), namely, after a sufficiently long burn-in of say m

iterations. Θt (t = m+1, . . . , M) will be dependent samples approximately

from p(Θ). We can now use the output from Markov chain to estimate the

expectation E(f(Θ)) where Θ has the different p(Θ).

Burn-in samples are usually discarded for this calculation and then an

estimator f̄ of f gives

f̄ =
1

M −m

M∑

i=m+1

f(Θi) (4.1)

This is called an ergodic average. Convergence to the required expectation

is ensured by the ergodic theorem.(Roberts, 1995; Tierney, 1995)
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MCMC draws these samples by running a cleverly constructed Markov

chain for a long time. The commonly used MCMC methods are the Metropolis-

Hastings algorithm(M-H algorithm) and Gibbs sampler. The Metropolis-

Hastings algorithm(Metropolis et al.(1953), Hastings(1970)) is a very gen-

eral MCMC method. The Gibbs sampler(Geman and Geman, 1984) is a

special case of Metropolis-Hastings algorithm.

4.1 Metropolis-Hasting Algorithm

The equation (4.1) shows how a Markov chain can be used to esti-

mate E(f(Θ)) where the expectation is taken over its stationary distribu-

tion. However we have a problem about how to construct a Markov chain

such that its stationary distribution is precisely our distribution of interest

p(Θ). A method for solving this problem is the Metropolis-Hastings algo-

rithm(Metropolis et al.(1953), Hastings(1970)). This algorithm was first

proposed by Metropolis et al.(1953) and generalized by Hasting(1970).

In this algorithm, the Markov chain simulation is constructed by two

steps: the proposal step, the acceptance step. In the proposal step, given

the current iterate Θ(t), a proposal value Θ′ is drawn from a distribution

P (·|Θ(t)), such that Θ′ is symmetrically distributed about the current value

Θ(t). In the acceptance step, this proposal value Θ′ is accepted as the next

iterate Θ(t+1) of the Markov chain with probability α(Θ(t),Θ′):

α(Θ(t),Θ′) = min

(
1,

p(Θ′)P (Θ′|Θ(t))
p(Θ(t))P (Θ(t)|Θ′)

)
.
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If the proposal value is rejected, then Θ(t+1) is taken to be the current

value Θ(t).

The algorithm is summarized as follows,

1. Specify an initial value θ(0)

2. Repeat for t = 0, 1, 2, · · · ,M .

(a) Propose

Θ′ ∼ P (·|Θ(t))

(b) Set

Θ(t+1) =
{

Θ′ if Unif(0, 1) ≤ α(Θ(t),Θ′);
Θ(t) otherwise.

3. Return the values

Θ(1),Θ(2), · · · ,Θ(M).

4.2 Gibbs Sampler

The Gibbs Sampler(Geman and Geman(1984), Tanner and Wong(1987)

and Gelfand and Smith(1990)) is actually a special case of single-component

in the Metropolis-Hasting algorithm. The Gibbs Sampler is a popular

MCMC algorithm. The advantage is almost no theory, no more than the

dependent conditional probability.

Let the set of the full conditional distribution of parameter be

{
p(Θ1|Θ2, . . . ,Θd), p(Θ2|Θ1, Θ3, . . . , Θp), · · · , p(Θp|Θ1, . . . ,Θ(p−1))

}
,
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where p is a number of parameters {p(Θ1|Θ2, . . . ,Θp)} , i = 1, 2, . . . , p and

M is a number of iteration.

The algorithm is summarized as follows,

1. Specify an initial value Θ(0) =
{

Θ(0)
1 , . . . , Θ(0)

p

}
.

2. Repeat for j = 1, 2, . . . , M

generate Θ(j+1)
1 from p(Θ1|Θ2, . . . , Θp)

generate Θ(j+1)
2 from p(Θ2|Θ(j+1)

1 , Θ3, . . . ,Θp)
...
generate Θ(j+1)

p from p(Θp|Θ(j+1)
1 , . . . , Θ(j+1)

p−1 )

3. Return the value
{
Θ(1)|Θ(2), . . . , Θ(M))

}
.

After the burn-in samples are discarded, the draws Θ(i)
1 , Θ(i)

2 , . . . ,Θ(i)
p , (i =

m + 1, . . . , M) for a sufficiently large i, are regarded as samples from the

normalized posterior distribution with density.

p(Θ1, Θ2, . . . , Θp|x)∫
p(Θ1, Θ2, . . . ,Θp|x)dΘ1dΘ2 · · · dΘp

.

The coordinate Θ(i)
j is regarded as a draw from its marginal posterior dis-

tribution with density

p(Θj |x)∫
p(Θj |x)dΘj

.
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4.2.1 Application of Gibbs Sampler for Mixture Model

The conjugate prior for the parameters of the multivariate normal dis-

tribution may be used(Smith and Roberts, 1993). The prior distribution

of the mixing proportions τ = (τ1, · · · , τK)T is a Dirichlet distribution τ ∼
D(α1, · · · , αK) where α1 = · · · = αK = 1 ,the means µk|Σk ∼ N(ξk, Σk/κk)

and the variance matrices depends on the model(Bensmail et al., 1997).

The estimation method via Gibbs sampler consists of the following

steps(Bensmail et al., 1997) at (l)-th iteration :

1. Simulate the classification variables y = (y1, y2, · · · , yn) according to

their posterior probabilities,

ŷ
(l)
ji =

τ̃iφ(xj |µ̃i, Σ̃i)∑K
k=1 τ̃kφ(xj |µ̃k, Σ̃k)

; i = 1, · · · ,K, j = 1, · · · , n

This step is the same as E-step of the EM algorithm.

2. Simulate the vector τ̃ of mixing proportions according to its posterior

distribution conditional on the ŷ
(l)
ji s.

3. Simulate the parameters Θ of the model according to their posterior

distributions conditional on the ŷ
(l)
ji s.

We now give the details of Step 3 of Gibbs sampling for the mean

and variance of multivariate mixture normal model under the normal in-

verse gamma and normal inverse Wishart conjugate priors(Bensmail et
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al., 1997) are shown in Table 4.1. Given y = (y1, . . . , yn) where yj =

(yj1, yj2, . . . , yjK) with class information, we use the notation

πk = 1/K

ξk = x̄

τk = 1

mk = m0 = 5

s2
k = s2

0 = σ̂2 : σ̂2 = the greatest eigenvalue of S

Ψ0 = S : S: the empirical variance matrix of the whole data

nk =
n∑

j=1

yjk,

x̄k =
n∑

j=1

yjkxj/nk,

Wk =
n∑

j=1

yjk(xj − x̄k)(xj − x̄k)T ,

ei = the i-th column of the identity matrix.

where k = 1, . . . , K.

32



Table 4.1: Conjugate prior of Gibbs Sampling

Model Parameter Conjugate Prior
EII Mean µk|λ ∼ Nd(ξk, λId/τk)(k = 1, . . . ,K)

Covariance λ ∼ Ig(m0/2, s2
0/2)

VII Mean µk|λk ∼ Nd(ξk, λkId/τk)

Covariance λk ∼ Ig(mk/2, s2
k/2)

EEE Mean µk|Σ ∼ Nd(ξk,Σ/τk)(k = 1, . . . ,K)

Covariance Σ ∼ W−1
d (m0,Ψ0)

VEE Mean µk|λkΣ0 ∼ Nd(ξk, λ/τk)(k = 1, . . . , K)

Covariance λk ∼ Ig(rk/2, ρk/2) k = 2, . . . , K

Σ0 ∼ W−1
d (m0,Ψ0)

λ ∼ Ig(·, ·) : the inverted gamma distribution
Σ ∼ W−1

d (·, ·) : the inverse Wishart distribution
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Table 4.2: Posterior Distribution for Gibbs Sampling

Model Parameter Gibbs Components

EII Mean µk/λ, ν ∼ Nd(ξ̄k,
λ

nk+τk
Id)

Covariance λ|ν ∼ Ig
(

m0+n
2 ,

1
2

{
s2
0 +

∑
k trace(W k) +

∑
k

nkτk
nk+τk

(x̄− ξk)T (x̄− ξk)
})

VII Mean µk/λk, ν ∼ Nd(ξ̄k,
λk

nk+τk
Id)

Covariance λk|ν ∼ Ig
(

mk+nkd
2 ,

1
2

{
s2
k +

∑
k trace(W k) +

∑
k

nkτk
nk+τk

(x̄− ξk)T (x̄− ξk)
})

EEE Mean µk/Σ, ν ∼ Nd(ξ̄k,
Σ

nk+τk
)

Covariance Σ|ν ∼ W−1
d (m0 + n,

Ψ0 +
∑

k

{
W k + nkτk

nk+τk
(x̄− ξk)(x̄− ξk)T

})

VEE Mean µk/Σ0, λk, ν ∼ Nd(ξ̄k,
λk

nk+τk
Σ0)

Covariance λk|Σ0, ν ∼ Ig ((rk + nkρ)/2,
1
2

{
ρk + trace

(
W kΣ−1

0

)
+ nkτk

nk+τk
(x̄− ξk)T (x̄− ξk)

})

Σ0|λ1, . . . , λK , ν ∼ W−1
k (m0 + n,

Ψ0 +
∑

k

{
W k/λk + nkτk

nk+τk
(x̄− ξk)(x̄− ξk)T

})

ξ̄k = (nkx̄k + τkξk)/(nk + τk)
λ ∼ Ig(·, ·) : the inverted gamma distribution
Σ ∼ W−1

d (·, ·) : the inverse Wishart distribution
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Chapter 5

Assessment of Models

Some issues arise from evaluating the cluster analyses. One issue is to select

an optimal number of clusters K or to choose the models. Another issue

is to determine a clustering method. However, apart from the model-based

clustering, other methods do not deal with the first issue.

In the model-based clustering, we consider the selection of the number

of clusters and models simultaneously. An example is to determine the

number of component clusters and a model in the multivariate normal

mixture model using the model-selection criteria(Bayesian model selection).

There have been some discusses about model-selection criteria (Leroux

(1992), Roeder and Wasserman(1997), Campbell et al.(1997) and Dasgupta

and Raftery(1998)). In this chapter, we explore the Bayesian-based infor-

mation criteria and propose the criteria based on the discriminant analy-

sis. First of all, the Bayesian approach is the Bayesian information crite-

rion(Schwarz(1978), Kass and Raftery(1995), Fraley and Raftery(1998)(2002),

McLachlan and Peel( 2000)) and the Laplace- Metropolis criteria(Jeffreys(1961),

Raftery (1996), Lewis and Raftery(1997), Bensmail et al.(1997)) are re-

viewed.



5.1 Bayesian Information Criterion(BIC)

Bayesian Information Criterion (BIC) by Schwarz(1978) is one of the

most popular Bayesian model selection criteria. The Bayesian information

criterion is based on Bayes factors and posterior model probabilities(Kass

and Raftery, 1995). The Bayes factor is equal to the ratio of the marginal

or integrated likelihood for each model.

Consider different models Mi(i = 1, · · · ,K) which are mutually exclu-

sive and exhaustive. We assign the prior probability p(Mi) with
∑K

i=1 p(Mi) =

1 to Mi. After observing data x, the posterior probability of the model Mi

is

p(Mi|x) =
p(Mi)p(x|Mi)∑K

k=1 p(Mk)p(x|Mk)
, i = 1, 2, · · · ,K

where p(x|Mi) is the probability of the data x given the model Mi. If all

models have equally prior, i.e. p(Mi) = τ0, then

p(Mi|x) =
p(x|Mi)∑K

k=1 p(x|Mk)
, i = 1, 2, · · · ,K

The posterior odds ratio of model Mi relative to model Mj reduces to

p(Mi|x)
p(Mj |x)

=
p(Mi)p(x|Mi)
p(Mj)p(x|Mj)

The Bayes factor is defined by

p(x|Mi)
p(x|Mj)

=
p(Mi|x)
p(Mj |x)

p(Mi)
p(Mj)

=
posterior odds ratio

prior odds ratio
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This Bayes factor is a measure of whether the data x has increased or

decreased with the odds of Mi relative to Mj . However, this depends on

the data and prior.

The Bayes factor has often taken the logarithm, 2 log p(x|Mi)
p(x|Mj)

. The

major difference between the Bayes factors and the likelihood ratio statistics

are two points.

The first point is that the p(x|Mi) is not the classical likelihood. The

Bayesian marginal probability of the data is arrived by integrating the joint

density of the parameters and of the observations over all values that the

parameters can be taken in their allowable space. Therefore, the marginal

density can be expressed as

p(x|Mi) =
∫

p(x|Θi,Mi)p(Θi|Mi)dΘi = EΘi|Mi
[p(x|Θi,Mi)] (5.1)

where Θi is the pi × 1 vector of parameters under this model. p(x|Mi)

means the expected value of all possible likelihoods, where the expectation

is taken with respect to the prior distribution of the parameters. This

implies that the dimension of the parameter vector space does not increase

with the number of observations n, that is, pi/n goes to 0 as n →∞. This

assumption is important for the asymptotic theory to hold.

The second point is that the Bayes factor is not explicitly related to

any critical value defining a rejection region of a certain size.

Using the second-order Taylor series expansion, it is taking logarithm

of the integrand in (5.1).
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log [p(x|Θi,Mi)p(Θi|Mi)] (5.2)

≈ log
[
p(x|Θ̃i,Mi)p(Θ̃i|Mi)

]
− 1

2
(Θi − Θ̃i)T H ˜Θi

(Θi − Θ̃i)

where H ˜Θi
is the corresponding negative Hessian matrix. Thus we obtain

p(x|Mi) =
∫

exp [log {p(x|Θi,Mi)}] dΘi

≈ exp
[
log

{
p(x|Θ̃i,Mi)p(Θ̃i|Mi)

}]∫
exp

[
−1

2
(Θi − Θ̃i)T H ˜Θi

(Θi − Θ̃i)
]

dΘi
.

The integral term is of a Gaussian form, so it can be evaluated readily.

Hence

p(x|Mi) ≈ p(x|Θ̃i,Mi)p(Θ̃i|Mi)(2π)
pi
2 |H−1

˜Θi

| 12 (5.3)

where H−1
˜Θi

is the variance-covariance matrix of the Gaussian approxima-

tion to the posterior distribution. This approximation (5.3) is known as

the Laplace’s method. Furthermore,

log [p(x|Mi)] = log
[
p(x|Θ̃i,Mi)

]
+log

[
p(Θ̃i|Mi)

]
+

pi

2
log 2π+

1
2

log
(

H−1
˜Θi

)
.

Next, we get

2 log
p(x|Mi)
p(x|Mj)

≈ 2 log

[
p(x|Θ̃i,Mi)
p(x|Θ̃j ,Mj)

]
+ 2 log

p(Θ̃i|Mi)
p(Θ̃j |Mj)

+(pi − pj) log(2π) + log



|H−1

˜Θi

|
|H−1

˜Θj

|


 .
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An variant to approximation (5.2) is when the expansion of the logarithm

of the product of the prior density and of the conditional distribution

of the observations is about the maximum likelihood estimator Θ̂, in-

stead of the mode of the posterior distribution(Tierney and Kadane(1989),

O’Hagan(1994), Kass and Raftery(1995)). That is,

p(x|Mi) ≈ p(x|Θ̂i,Mi)p(Θ̂i|Mi)(2π)
pi
2 |H−1

ˆΘi

| 12 (5.4)

where H−1
ˆΘi

is the observed information matrix evaluated at the maximum

likelihood estimator. In practice, if the observations are i.i.d., one has

HΘ̂ = nH1,Θ̂, where H1,Θ̂ is the observed information matrix calculated

from a single observation. Then we get

p(x|Mi) ≈ p(x|Θ̂i,Mi)p(Θ̂i|Mi)(2π)
pi
2 (n)

pi
2 |H−1

1,
ˆΘi

| 12 (5.5)

.

The approximation to twice the logarithm of the Bayes factor becomes

2 log
p(x|Mi)
p(x|Mj)

≈ 2 log

[
p(x|Θ̂i,Mi)
p(x|Θ̂j ,Mj)

]
+ 2 log

p(Θ̂i|Mi)
p(Θ̂j |Mj)

+(pi − pj) log(2π)− (pi − pj) log n + log



|H−1

1,
ˆΘi

|
|H−1

1,
ˆΘj

|


 .

Even though the asymptotic approximation to the posterior distribution

does not depend on the prior, the resulting approximation to the Bayes

factor depends on the ratio of priors evaluated at the corresponding max-

imum likelihood estimators. If the term on the logarithm of the prior
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densities is excluded, the resulting expression is called the Bayesian in-

formation criterion(BIC)(Schwarz(1978), Kass and Raftery(1995), Leonard

and Hsu(1999)).

Suppose that the prior conveys some sort of minimal information rep-

resented by the distribution Θi|Mi ∼ N(Θ̂i,H
−1

1,
ˆΘi

). This is a unit infor-

mation prior centered at the maximum likelihood estimator and having a

precision equivalent to that brought up by a sample of size n = 1. Using

this in (5.5):

p(x|Mi) ≈ p(x|Θ̂i,Mi)(2π)−
pi
2 |H−1

1,
ˆΘi

|− 1
2

× exp
[
−1

2
(Θ̂− Θ̂)T (H

1,
ˆΘ1,

ˆΘ)(Θ̂− Θ̂)
]

(2π)
pi
2 (n)−

pi
2 |H−1

1,
ˆΘi

| 12

= p(x|Θ̂i, Mi)(n)−
pi
2

Hence we get

2 log
p(x|Mi)
p(x|Mj)

≈ 2 log

[
p(x|Θ̃i,Mi)
p(x|Θ̃j ,Mj)

]
− (pi − pj) log n.

which is the Schwarz BIC(Kass and Raftery(1995), O’Hagan(1994))

5.2 Laplace-Metropolis Criteria

The Laplace’s method (5.3) produces more accurate estimates of the

marginal likelihood than the posterior simulation for several different mod-

els and for the large amount of simulation. However, the Laplace’s method
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is often not applicable due to requiring the derivative. For avoiding this

limitations of the Laplace’s method, the Laplace-Metropolis criteria is pro-

posed(Raftery, A. E. and Lewis, S. M. ,1996).

The Laplace-Metropolis criteria used to posterior simulation is to esti-

mate the quantities it needs. The Laplace’s method for integrals(de Bruijn,

1970) is based on a Taylor series expansion of the real-valued function

log p(x|Θi,Mi).

In log p(x|Θi,Mi), Θ̃i is the value of Θi at which the function

log p(x|Θi,Mi) attains its maximum, and H ˜Θi
is minus the inverse Hes-

sian of function evaluated at Θ̃i. If the likelihood is hard to calculate,

however, this may take too much computer time.

5.3 Modified Fisher’s Discriminant Criteria

In the model-based clustering by the iterative procedure such as EM

algorithm, MAP and MCMC, we consider the maximization step of each

iteration of clustering which is equal to the discriminant analysis based on

the mixture model with the prior probabilities. To evaluate the cluster

analysis, we consider idea using the discriminant analysis.

First, consider the discriminant analysis for two groups. Assume that

the two populations have the common covariance matrix Σ = Σ1 = Σ2

but distinct mean vector µ1 and µ2. Let the sample derived from the

two populations be x = (x1, x2) where xT
1 = (x11, x12, . . . , x1n1), xT

2 =

(x21, x22, . . . , x2n2). Each vector xij consists of measurements on d-variables.

41



The discriminant function according to Fisher’s discriminant rules is

the linear combinations of these d-variables that maximizes the distance

between the two groups mean vectors. Let this linear combination be y =

aT x which transforms each observation vector to a scalar.

We can find the means ȳ1 =
∑n1

i=1 y1i/n1 = aT x̄1, ȳ2 =
∑n2

i=1 y2i/n2 =

aT x̄2, where x̄1 =
∑n1

i=1 x1i/n1 , x̄2 =
∑n2

i=1 x2i/n2. To attain our objec-

tive, we have to find the vector a that maximizes the standardized differ-

ence(Mahanlanobis distance) (ȳ1−ȳ2)

Sy
. Since (ȳ1−ȳ2)/Sy can be negative,

we use the squared distance (ȳ1−ȳ2)2

S2
y

where

S2
y =

∑n
i=1 (yi − ȳ)2

n− 1
= aT S2

xa (5.6)

where the sample covariance matrix of S2
x. Due to the assumption of

Σ = Σ1 = Σ2, S2
x is replaced by a pooled sample covariance matrix Spl.

Spl =
1

N − 2

2∑

i=1

(ni − 1)Si =
W

N − 2
(5.7)

where ni, Si and W denote the sample size, the covariance matrix of the

i-th group and the within sums of squares respectively. Hence (5.6) are

expressed as

S2
y = aT Spla

The standardized difference can be written:

(ȳ1 − ȳ2)2

S2
y

=
[aT (x̄1 − x̄2)]2

aT Spla
(5.8)

by ȳ = aT x̄ and the maximum of the standardized difference (5.6) occurs

when
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a = S−1
pl (x̄1 − x̄2),

or when a is any multiple of S−1
pl (x̄1 − x̄2).

Furthermore, a is not unique, but the direction of the vector a is

unique. That is, the relative values or ratios of a1, a2, . . . , ad are unique, and

y = aT x projects the point x onto the line on which (ȳ1−ȳ2)2

Sy
2 is maximized.

The optimum direction given by a = S−1
pl (x̄1 − x̄2) is effectively parallel

to the line joining x̄1 and x̄2, because the squared distance (ȳ1−ȳ2)2

Sy
2 is

equivalent to the standardized distance between x̄1 and x̄2.

(ȳ1 − ȳ2)2

S2
y

=
[aT (x̄1 − x̄2)]2

aT Spla
(5.9)

=

[
(x̄1 − x̄2)T S−1

pl (x̄1 − x̄2)
]2

(x̄1 − x̄2)T S−1
pl SplS

−1
pl (x̄1 − x̄2)

= (x̄1 − x̄2)T S−1
pl (x̄1 − x̄2)

for y = aT x with a = S−1
pl (x̄1 − x̄2). Because aT = (x̄1 − x̄2)T S−1

pl , we

can rewrite (5.9) as

(ȳ1 − ȳ2)2

S2
y

= aT (x̄1 − x̄2), (5.10)

and any other direction represented by a = S−1
pl (x̄1 − x̄2) yield a smaller

difference between aT x̄1 and aT x̄2.

Extending (5.10) to K-groups, we use E of the equation (5.12) in place

of Spl by(5.7). Now we can replace the H matrix as (x̄1 − x̄2)(x̄1 − x̄2)T .

Namely,
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(ȳ1 − ȳ2)2

S2
y

=
aTHa

aTEa
(5.11)

where

E =
K∑

i=1

ni∑

j=1

(xij − x̄i)(xij − x̄i)T (5.12)

H =
K∑

i=1

ni(x̄i − x̄)(x̄i − x̄)T

In this case, with only two groups,

E =
2∑

i=1

ni∑

j=1

(xij − x̄i)(xij − x̄i)T (5.13)

H =
2∑

i=1

ni(x̄i − x̄)(x̄i − x̄)T

Replace x̄ in (5.13) by x̄ = n1x̄1+n2x̄2
n1+n2

.

H = n1(x̄1 − x̄)(x̄1 − x̄)T + n2(x̄2 − x̄)(x̄2 − x̄)T

= n1

(
x̄1 − n1x̄1 + n2x̄2

n1 + n2

) (
x̄1 − n1x̄1 + n2x̄2

n1 + n2

)T

+n2

(
x̄2 − n1x̄1 + n2x̄2

n1 + n2

)(
x̄2 − n1x̄1 + n2x̄2

n1 + n2

)T

=
n1

(n1 + n2)2
{n2(x̄1 − x̄2)} {n2(x̄1 − x̄2)}T

+
n2

(n1 + n2)2
{n1(x̄1 − x̄2)} {n1(x̄1 − x̄2)}T

=
n1n

2
2

(n1 + n2)2
(x̄1 − x̄2)(x̄1 − x̄2)T +

n2
1n2

(n1 + n2)2
(x̄1 − x̄2)(x̄1 − x̄2)T

=
n1n2

(n1 + n2)
(x̄1 − x̄2)(x̄1 − x̄2)T
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To extend (5.8) to K groups,

[aT (x̄1 − x̄2)]2

aT Spla
+

[aT (x̄2 − x̄3)]2

aT Spla
+ · · ·+ [aT (x̄K−1 − x̄K)]2

aT Spla
=

aTHa

aTEa

(5.14)

Moreover, extending (5.12) to K groups gives

H =
K∑

i=1

ni(x̄i − x̄)(x̄i − x̄)T

=
n1n2

(n1 + · · ·+ nK)
(x̄1 − x̄2)(x̄1 − x̄2)T +

n2n3

(n1 + · · ·+ nK)
(x̄2 − x̄3)(x̄2 − x̄3)T

+ · · ·+ nK−1nK

(n1 + · · ·+ nK)
(x̄K−1 − x̄K)(x̄K−1 − x̄K)T (5.15)

By using H (5.15) and E matrix the equation (5.14) reduces to the distance

function

Let’s set(5.14) as follows

λ =
aTHa

aTEa
. (5.16)

we can write (5.16) in the form

aTHa =λaTEa
aT (Ha− λEa)= 0

(5.17)

we examine values of λ and a that are solution of (5.17) in a search for the

value of a that results in maximum λ. The solution a = 0 is not permissible
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because it gives λ = 0/0 in (5.17). Other solutions are found from

Ha− λEa = 0

which can be written in the form

(E−1H− λI)a = 0 (5.18)

The solutions (5.18) are the eigenvalues λ1, λ2, . . . , λd with the asso-

ciated eigenvectors a1, a2, . . . , ad of E−1H, where λ1 > λ2 > . . . > λd.

The higher the λ =
∑d

i=1 λi, the higher the attainment of the objective of

the discriminant analysis and the cluster analysis, since λ is the degree of

discrimination by the discriminant functions.

Let’s assume that the prior probabilities are equal or unknown. Namely

the classification rule becomes: Assign x to G1 if

aT x = (x̄1 − x̄2)T S−1
pl x >

1
2
(x̄1 − x̄2)T S−1

pl (x̄1 + x̄2) (5.19)

If the prior probabilities are different, τ1 and τ2 of the two populations are

different, we can express (5.19) as follows:

aT x = (x̄1 − x̄2)T S−1
pl x− log

(
τ2

τ1

)
>

1
2
(x̄1 − x̄2)T S−1

pl (x̄1 + x̄2) (5.20)

The (5.20) is re-expressed as

(x̄1−x̄)T S−1
pl x+log τ1−(x̄2−x̄)T S−1

pl x−log τ2 >
1
2
(x̄1−x̄2)T S−1

pl (x̄1+x̄2)

(5.21)

Using (5.21),
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aTHa

aTEa
+

K∑

k=1

log(τk). (5.22)

If y = aT x have the maximum value, it means to discriminate K

groups. The a1 is the eigenvector of E−1H corresponding to the largest

eigenvalue λ1. The bigger value of λ1 means that observations are quite

distinctive from each other by K groups. Let’s consider y = aT
1 x by

y = aT x in (5.22). Thus (5.22) can be reexpressed as

aT
1 Ha1

aT
1 Ea1

+
K∑

k=1

log(τk) (5.23)

which also be rewritten

BSS
WSS

+
K∑

k=1

log(τk). (5.24)

where BSS = n
∑K

k=1(ȳk − ȳ)2 is the between sums of squares for y and

WSS =
∑n

i=1(yi − ȳ)2 is the within sums of squares for y.

We explored some method to evaluate the clustering methods and the

number of clusters/models for several groups or components. We propose

replacing the Laplace-Metropolis estimator or BIC as the equation (5.23).

This is called Modified Fisher’s Discriminant Criteria. This criteria is

applied to the Gibbs sampler for Mixture models.
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Chapter 6

Simulation

We now present five examples to illustrate the performance of methods.

The first two examples use some generated data, and third example is

based on the real data and the remaining examples analyze the microarray

data.

The number of clusters are estimated by the EM algorithm, the Max-

imum a Posteriori( MAP) and the Gibbs sampler. Both of EM algorithm

and MAP wERE evaluated by BIC. The Gibbs sampler was assessed by

both of Laplace-Metropolis criteria and Modified Fisher’s discriminant cri-

teria. Table 6.1 displays the summary of estimation and assessment. Each

example is investigated by the EM algorithm, the Maximum a Posteriori(

MAP) and the Gibbs sampler.

Table 6.1: The Applied Algorithm

Notation Estimation Method Assessment Method
EM(BIC) EM Algorithm BIC

MAP(BIC) Maximum a Posteriori BIC
Gibbs Gibbs Sampler Laplace-Metropolis

(Laplace) Criteria
Gibbs Gibbs Sampler Modified Fisher’s

(Modified Fisher) Discriminant Criteria



McLachlan and Basford(1988) showed that models EII and EEE are

probably the multivariate normal mixture model for clustering data. The

model VII, the generalization of EII, has proved to be powerful in many

real examples(Celeux and Govaert, 1995). In applying the Gibbs sampler

as the approximation, the VII and EEE models could improve fittness.

For model assessment, we check the misclassification rate. If the data

have two categories, the misclassification rate is summarized as follows:

Table 6.2: Classification
predicted group Total
0 1

real group 0 n00 n01 n0·
1 n10 n11 n1·

Total n·0 n·1 n··

The misclassification error rate is given by

misclassficiation rate =
n12 + n21

n00 + n01 + n10 + n11
=

n12 + n21

n

6.1 Simulated Data

6.1.1 Example 1: 2-Dimensional Generated Data(VII Model)

We generated 200 points of VII model from a bivariate two-component

normal mixture with equal proportions τT = (0.5, 0.5), mean vectors µT
1 =

(8, 8), µT
2 = (2, 2), and variance matrices Σ1 = 4I, Σ2 = I(Bensmail et al.

1997).
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The model comparison results of EM(BIC) are shown in Table 6.3. The

corrected model VII and the correct number of clusters 2 are coincided.

The estimated posterior means and covariances are µ̃1
T = (8.037, 7.90),

µ̃2
T = (2.07, 1.99), λ̃1 = 3.44, λ̃2 = 0.98, which are very close to the true

values. Figure 6.1 shows the posterior distribution of the principal circles

of the two clusters.

Table 6.3: EM(BIC) Result for VII Model
No. of Clusters 2 3 4 5

EII -1756.28 -1730.75 -1709.83 -1720.96
VII -1690.96 -1700.37 -1714.24 -1723.78
EEI -1766.38 -1726.16 -1719.96 -1729.96
VEI -1701.44 -1708.92 -1723.03 -1736.37
EVI -1775.75 -1740.19 -1745.74 -1765.34
VVI -1709.92 -1723.92 -1748.69 -1769.74
EEE -1764.15 -1726.16 -1719.31 -1729.91
EEV -1768.23 -1731.28 -1728.00 -1742.06
VEV -1702.39 -1715.34 -1740.74 -1754.91
VVV -1707.67 -1720.04 -1733.09 -1754.25

(Misclassification Rate=0.00)

The MAP corresponds to the corrected model VII and the correct num-

ber of clusters 2 in Table 6.4. The estimated means and covariances are

µ̃1
T = (7.97, 7.84), µ̃2

T = (2.12, 2.05), λ̃1 = 3.33, λ̃2 = 0.97, which are very

close to the true values. Figure 6.2 shows the posterior distribution of the

principal circles of the two groups.

Table 6.5 is the results that we estimate the number of clusters using

the Gibbs sampler and select the models using the Laplace Metropolis

criteria. This Gibbs(Laplace) selected the corrected model VII and the

correct number of clusters 2, and the misclassification rate is 0.00. The

estimated means and covariances are µ̃1
T = (8.03, 7.86) , µ̃2

T = (2.02, 2.00)
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Figure 6.1: Clustering result applied to the EM(BIC) in the simulated data.
The circles are the standard deviations of each mixture component.
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Figure 6.2: Clustering result applied to the MAP(BIC) in the simulated
data. The circles are the standard deviations of each mixture component.
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Table 6.4: MAP(BIC) Result for VII Model
No. of Clusters 2 3 4 5

EII -1756.96 -1740.10 -1728.80 NA
VII -1691.97 -1701.96 -1719.48 NA
EEI -1767.05 -1734.57 -1735.4 NA
VVI -1711.05 -1725.7 NA NA
EEE -1764.94 -1734.27 -1740.54 -1758.54
VVV -1709.29 -1723.37 -1755.49 NA

(Misclassification Rate=0.00)

Table 6.5: Gibbs(Laplace) Result for VII Model
No. of Clusters 2 3 4 5

EII -898.39 -910.48 -922.76 -952.73
VII -839.15 -841.33 -849.00 -850.18
EEE -874.30 -873.15 -871.75 -882.02
VEE -946.06 -951.99 -958.95 -966.04

(Misclassification Rate=0.00)

, λ̃1 = 3.63 , λ̃2 = 0.97. Figure 6.3 shows the posterior distribution of the

principal circles of the two groups.

Otherwise, we estimate the number of clusters using the Gibbs sampler

and select the models using the proposed criteria. This corresponds to

the corrected model VII and the correct number of groups or components

2. The estimated means and covariances are µ̃1
T = (8.66, 8.68) , µ̃2

T =

(2.04, 2.00) , λ̃1 = 3.04 , λ̃2 = 1.03, which are very close to the true values.

Figure 6.4 shows the posterior distribution of the principal circles of the

two groups.
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Figure 6.3: Clustering result applied to the Gibbs(Laplace) in the simulated
data. The result reaches maximum using the Laplace Metropolis criteria.
The circles are the standard deviations of each mixture component.
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Figure 6.4: Clustering result applied to the Gibbs(Modified Fisher) in the
simulated data. The result reaches maximum using the criteria based on
the discriminant analysis. The circles are the standard deviations of each
mixture component.
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Table 6.6: Gibbs(Modified Fisher) Result for VII Model
No. of Clusters 2 3 4 5

EII 4.92 4.95 4.94 3.82
VII 11.12 10.45 9.80 9.19
EEE 8.31 8.63 7.23 6.60
VEE 0.38 0.63 0.33 0.29

(Misclassification Rate=0.00)

Table 6.7: Misclassification Rate Comparison
Estimation Method EM MAP Gibbs Gibbs
Assessment Method (BIC) (BIC) (Laplace) (Modified Fisher)

MODEL VII VII VII VII
No. of Clusters 2 2 2 2

Misclassification Rate 0.00 0.00 0.00 0.00

6.1.2 Example 2: 20-Dimensional Generated Data(VII Model)

We simulated 200 points of VII model from a bivariate twenty-component

Gaussian mixture with equal proportions, mean vectors µT
1 = (8, 8, 0, 0, 0, · · · , 0, 0, 0),

µT
2 = (2, 2, 0, 0, 0, · · · , 0, 0, 0), and variance matrices Σ1 = 4I, Σ2 = I(Bensmail

et al. 1997).

The model comparison results via EM algorithm are shown in Table

6.8. The corrected model VII and the correct number of clusters 2 are

coincided. The posterior means are

µ̃1
T = (8.07, 7.98,−0.01,−0.26, 0.1,−0.06,−0.26, 0.43,−0.29,−0.24,

−0.17,−0.34, 0.31, 0.22,−0.09,−0.33, 0.08,−0.02,−0.20, 0.09),
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Table 6.8: EM(BIC) Result for VII Model (20-dimension)
No. of Clusters 2 3 4 5

EII -15548.91 -15547.62 -15580.43 -15603.78
VII -14600.03 -14683.86 -14768.15 -14841.81
EEI -15641.22 -15640.62 -15644.83 -15666.21
VEI -14691.75 -14777.17 -14855.20 -14932.39
EVI -15733.66 -15768.41 -15867.44 -15916.65
VVI -14789.30 -14928.11 -15077.95 -15227.34
EEE -16352.56 -16383.21 -16400.80 -16385.54
EEV -17132.97 -17832.58 -18563.01 -19276.50
VEV -16245.14 -17081.27 -18155.45 -19077.88
VVV -16344.25 NA NA NA

(Misclassification Rate=0.00)

µ̃2
T = (2.05, 2.03, 0.05, 0.09, 0.00, 0.09,−0.01,−0.02,−0.02, 0.01,

0.06,−0.02, 0.14, 0.03,−0.10, 0.01, 0.05,−0.01, 0.03, 0.02),

λ̃1 = 3.44, λ̃2 = 0.98, which are very close to the true values.

The MAP corresponds to the corrected model VII and the correct num-

ber of clusters 2(Table 6.9). The estimator of the posterior means and

covariance are

µ̃1
T = (8.07, 7.98,−0.01,−0.26, 0.10,−0.06,−0.26, 0.43,−0.29,−0.24,

−0.17,−0.34, 0.31, 0.22,−0.09,−0.33, 0.08,−0.02,−0.20, 0.09),

µ̃2
T = (2.05, 2.03, 0.05, 0.09,−0.00, 0.09,−0.01,−0.02,−0.02, 0.01,

0.06,−0.02, 0.14, 0.03,−0.10, 0.01, 0.05,−0.01, 0.03, 0.02),

λ̃1 = 4.08, λ̃2 = 0.97, which are very close to the true values.

We estimate the number of clusters using the Gibbs sampler and select

the models using Laplace Metropolis criteria(Table 6.10). This corresponds
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Table 6.9: MAP(BIC) Result for VII Model (20-dimension)
No. of Clusters 2 3 4 5

EII -15549.94 -15555.69 -15582.92 -15618.07
VII -14601.75 -14667.64 -14755.34 -14840.91
EEI -15665.49 -15666.2 -15672.72 -15698.96
VVI -14871.4 NA NA NA
EEE -16438.23 -16492.36 -16476.77 -16487.85
VVV -16609.77 NA NA NA

(Misclassification Rate=0.00)

Table 6.10: Gibbs(Laplace) Result for VII Model (20-dimension)
No. of Clusters 2 3 4 5

EII -11841.65 -11950.39 -11818.78 -11952.84
VII -7310.23 -7369.71 -7425.43 -7483.38
EEE -8290.191 -8336.80 -8392.24 -8432.03
VEE -8257.451 -8214.13 -8276.50 -8327.75

(Misclassification Rate=0.00)

to the corrected model VII and the correct number of clusters 2. The

estimated means and covariances are

µ̃1
T = (8.01, 7.92,−0.00,−0.26, 0.10,−0.06,−0.25, 0.42,−0.29,−0.24,

−0.17,−0.33, 0.31, 0.22,−0.09,−0.33, 0.08,−0.02,−0.19, 0.09),

µ̃2
T = (2.11, 2.09, 0.05, 0.08,−0.00, 0.09,−0.01,−0.01,−0.02, 0.00,

0.06,−0.02, 0.14, 0.03,−0.10, 0.01, 0.05,−0.01, 0.03, 0.02),

λ̃1 = 4.00 , λ̃2 = 0.95, which are very close to the true values.

Otherwise, we estimate parameters using the Gibbs sampler and select

the models using the proposed criteria(Table 6.11). This corresponds to the
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Table 6.11: Gibbs(Modified Fisher) Result for VII Model (20-dimension)
No. of Clusters 2 3 4 5

EII -1.16 -3.07 -5.35 -8.65
VII 12.50 12.50 12.50 12.50
EEE 4.69 7.80 4.89 1.22
VEE 0.80 -3.57 -5.73 -8.29

(Misclassification Rate=0.00)

Table 6.12: Misclassification Rate Comparison(20-dimension)
Estimation Method EM MAP Gibbs Gibbs
Assessment Method (BIC) (BIC) (Laplace) (Modified Fisher)

MODEL VII VII VII VII
No. of Clusters 2 2 2 2

Misclassification Rate 0.00 0.00 0.00 0.00

corrected model VII and the correct number of clusters 2. The estimated

means and covariances are

µ̃1
T = (1.99, 1.70, 0.00, 0.14, 0.03, 0.14,−0.10, 0.04, 0.07,−0.17,

0.01, 0.01, 0.02,−0.03, 0.16,−0.13,−0.12, 0.02, 0.19, 0.03),

µ̃2
T = (10.25, 10.45,−0.06,−0.31, 0.26,−0.10,−0.47, 0.72,−0.39,

−0.49, 0.08,−0.42, 0.41, 0.35,−0.18,−0.40, 0.03, 0.09,−0.13, 0.07),

λ̃1 = 0.97 , λ̃2 = 4.71, which are close to the true values.

All results is pretty good as a whole, assumed model VII and the num-

ber of clusters 2(Table 6.12).
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6.2 The Real data

6.2.1 Example 3: IRIS Data

Consider Fisher’s iris data(Fisher 1936; Anderson and Edgar 1935),

which gives the measurements in centimeters of the variables sepal length

and width and petal length and width. It is measured by 50 flowers from

each of 3 species of iris; iris setesa, versicolor, virginica. Therefore, this

data is the correct number of clusters 3.

The results by the EM algorithm are shown in Table 6.13.

Table 6.13: EM(BIC) Result(IRIS)
No. of Clusters 2 3 4 5

EII -1123.41 -878.77 -784.31 -734.39
VII -1012.24 -853.81 -783.83 -746.99
EEI -1047.98 -818.06 -740.50 -699.40
VEI -961.29 -784.17 -721.54 -708.06
EVI -1017.33 -812.87 -752.55 -720.73
VVI -867.57 -759.67 -725.11 -725.96
EEE -688.10 -632.97 -591.41 -604.93
EEV -644.60 -617.7 -613.44 -621.69
VEV -561.73 -562.55 -603.93 -635.21
VVV -574.02 -580.84 -628.96 -683.82

(Misclassification Rate=0.33)

The model VEV and the number of clusters 2 are not coincided as the

actual number of clusters 3. The posterior means are µ̃1
T = (5.01, 3.43, 1.461, 0.25),

µ̃2
T = (6.26, 2.87, 4.91, 1.68).

Figure 6.5 shows the posterior distribution of the principal circles of

the two groups. This misclassification rate is 0.33.
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In applying the MAP, the BIC reach the maximum at the model VVV

and the number of clusters 2(Table 6.14). Figure 6.6 shows the posterior

distribution of the principal circles of the two groups shows. This misclas-

sification rate is 0.33.

Table 6.14: MAP(BIC) Result(IRIS)
No. of Clusters 2 3 4 5

EII -1124.85 -885.70 -799.83 -808.43
VII -1016.35 -865.14 ,-796.02 -797.98
EEI -1049.33 -824.21 -751.42 -762.32
VVI -891.00 -782.82 -751.98 -776.44
EEE -690.53 -638.90 -655.36 -618.93
VVV -598.27 -625.85 -670.66 -727.03

(Misclassification Rate=0.33)

The result applied the Gibbs sampler, the Laplace Metropolis crtieria

reach the maximum at the model EEE and the number of clusters 4 (Table

6.15). Figure 6.7 shows the posterior distribution of the principal circles of

the four groups. This misclassification rate is 0.37.

Table 6.15: Gibbs(Laplace) Result(IRIS)
No. of Clusters 2 3 4 5

EII -872.46 -990.54 -974.46 -1096.43
VII -514.89 -450.07 -487.90 -497.28

EEE -427.37 -441.81 -382.16 -395.17
VEE -431.35 -446.89 -461.54 -477.32

(Misclassification Rate=0.37)

We estimate parameters using the Gibbs sampler and select the models

using the proposed criteria. The result correspond to the model VII and the

correct number of groups 3. The estimated means and covariances are τ =

(0.35, 0.22, 0.43), µ̃1
T = (4.79, 3.41, 1.38, 0.18), µ̃2

T = (5.97, 2.78, 4.16, 1.32),

µ̃3
T = (6.62, 2.97, 5.41, 2.00), λ̃1 = 0.13 , λ̃2 = 0.12, λ̃3 = 0.25.
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Figure 6.5: Clustering result applied to the EM(BIC) in the iris data. The
circles are the standard deviations of each mixture component.
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Figure 6.6: Clustering result applied to the MAP(BIC) in the iris data.
The circles are the standard deviations of each mixture component.
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Figure 6.7: Clustering result applied to the Gibbs(Laplace) in the iris data.
The result reaches maximum using the Laplace Metropolis criteria. The
circles are the standard deviations of each mixture component.
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Figure 6.8: Clustering result applied to the Gibbs(Modified Fisher) in the
iris data. The result reaches maximum using the criteria based on the dis-
criminant analysis. The circles are the standard deviations of each mixture
component. The
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Table 6.16: Gibbs(criteria) Result(IRIS)
No. of Clusters 2 3 4 5

EII 0.11 -2.57 -4.46 -7.68
VII 14.34 21.76 12.90 12.90
EEE 0.58 8.77 8.77 -6.19
VEE -0.83 -3.01 -5.26 -7.92

(Misclassification Rate=0.08)

Table 6.17: Misclassification Rate Comparison
Estimation Method EM MAP Gibbs Gibbs
Assessment Method (BIC) (BIC) (Laplace) (Modified Fisher)

MODEL VEV VVV EEE VII
No. of Clusters 2 2 4 3

Misclassification Rate 0.33 0.33 0.37 0.08

6.3 The cDNA Microarray Data

Recently, the high density DNA microarray technology has made it

possible to monitor the expression levels of thousands of genes on a single

experimental slide. The interactions among many genes, have assessed

the change during a biological process and have assessed the difference of

related samples.

The two types of microarray experiments are the cDNA microarray

and oligonucleotide arrays. Both of cDNA microarray and oligo chip ex-

periments measure the expression level for each DNA sequence by the ratio

of signal intensity between the control and the test sample. Thus we do

not divide the two types in thesis.
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As previously stated, microarray experiments assess a large number

of genes under some multiple conditions. The conditions may be a time

series during a biological process or a collection of related or different tis-

sue samples(e.g., control and test tissues). In this thesis, we focus on the

sample based clustering of the gene expression data clustering: gene based

clustering and sample based clustering.

The objective of sample based clustering is that the samples be parti-

tioned into homogeneous groups. Each group corresponds to some partic-

ular phenotype such as diseased samples, normal samples or drug treated

samples.

A gene expression data can be represented by a real-valued expression

matrix

The cluster analysis applies one or more of pre-processing procedures:

filtering-out genes with expression levels which do not change significantly

across samples, performing a logarithmic transformation of each expression

levels or standardizing. In this thesis, before clustering the gene expres-

sion data, we applied the following pre-processing steps. The first step is

thresholding: floor of 100 and ceiling of 16,000. The second step is filtering:

the exclusion of genes with max / min ≤ 5 and (max−min) ≤ 500, where

max and min refer respectively to the maximum and minimum expression

levels of a particular gene across mRNA samples. The third step is a step

that the expression levels are transformed by the base 10 logarithm.

Besides these, because of the property of a microarray experiment that

the number of genes(is 103 to 104 genes) predominant over the number of

samples(is generally less than 100). We demand to obtain the informative

genes. The informative genes are a small set of genes whose expression

levels strongly correlated with the class distinction on sample.
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The K-means, SOM of the non-hierarchical methods and the hierarchi-

cal methods can be directly applied to the cluster samples using all genes

not passing through the precess to obtain the informative genes. But as

the signal-to-noise ratio is usually smaller than 1:10, we have to go through

procedure of obtaining the informative genes.

Let’s Consider the method of selecting informative genes the cluster

samples. These are divided by two categories: supervised and unsupervised

approach. The supervised approach is based on the supervised informative

genes selection. The supervised methods are commonly used by biologists

to pick up informative genes.

Otherwise, the unsupervised approach do not have the reference sam-

ples to guide informative genes selection. Therefore, this approach is much

more complex than supervised approach. We could consider two general

strategies: the unsupervised gene selection(Alter U. et al.(2000), Ding,

Chris(2001), Yeung et al.(2000)) and the interrelated clustering(Thomas

et al.(2001), Xing et al.(2001))

The unsupervised gene selection assumed that gene selection and sam-

ple clustering are independent. That is, the gene dimension is reduced

through a gene selection and the clustering algorithms such as K-means

and SOM are applied(Tang et al(2001a)(2001b)).

In this thesis, we focus on the supervised informative genes selection.

Consider the major steps about this. In the first step, a subset of samples

is selected to form the training set. Then, the second step is an informative

gene selection step. The informative genes are a few genes whose expression

patterns can distinguish different phenotypes of samples. In the last step,

the whole set of samples are clustered using only the informative genes.
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6.3.1 Example 4: SRBCT Data

Consider gene expression data from the microarray experiments of

Small Round Blue Cell Tumors (SRBCT) of childhood cancer study of

Khan et al.(2001)(http://www.nhgri.nih.gov/DIR/Microarray/Supplement).

This data set contains 83 samples with 2308 genes: 29 cases of Ewing sar-

coma (EWS), 11 cases of Burkitt lymphoma (BL),18 cases of neuroblastoma

(NB) and 25 cases of rhabdomyosarcoma (RMS). A total of 63 training sam-

ples and 25 test samples are provided. Five of the test set are non-SRBCT

and are not considered here. Therefore, this data is the correct number of

clusters 4.

Consider the informative genes as the genes having from the most

largest value to the fifth largest value by computation between and within

group sum of squares in the training samples. Then the test sampls are

clustered using only the informative genes.

The result by EM algorithm is shown in Table 6.18.

Table 6.18: EM(BIC) Result(SRBCT)
No. of Clusters 2 3 4 5

EII -1086.71 -884.02 -785.97 -743.3
VII -1048.67 -888.86 -773.31 -737.42
EEI -880.27 -820.88 -597.88 -583.17
VEI -841.38 -779.75 -595.58 -584.69
EVI -614.73 -473.12 -477.15 -465.72
VVI -670.2 -471.01 -479.25 -493.8
EEE -757.35 -723.8 -629.99 -614.39
EEV -621.15 -520 -537.58 -568.03
VEV -614.27 -513.09 -535.31 -541.85
VVV -625.68 -530.03 -563.89 -557.66

(Misclassification Rate=0.31)
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The estimated model EVI with the number of clusters 5 is not coin-

cided as the actual number of clusters . The estimated means are µ̃1
T =

(0.98, 0.37, 0.66, 0.23, 2.91), µ̃2
T = (0.27, 0.26, 0.28, 0.95, 0.16),

µ̃3
T = (4.04, 2.57, 0.48, 0.19, 0.42), µ̃4

T = (0.17, 0.58, 0.31, 2.00, 0.20), µ̃5
T =

(0.47, 0.43, 0.55, 1.46, 0.43). The estimated eignevalues are λ̃1 = 0.29 ,

λ̃2 = 0.03, λ̃3 = 0.06, λ̃4 = 0.03, λ̃5 = 2.18. This misclassification rate

is 0.31.

Using the MAP, the BIC reach the maximum at the model VVI and

the number of clusters 3(Table 6.19). This misclassification rate 0.33.

Table 6.19: MAP(BIC) result(SRBCT)
No. of Clusters 2 3 4 5

EII -1087.37 -886.31 -791.29 -755.02
VII -1050.12 -892.30 -779.19 -753.12
EEI -881.72 -823.01 -650.24 -596.89
VVI -687.61 -506.87 -522.87 -542.50
EEE -762.54 -730.65 -640.01 -629.21
VVV -644.31 -592.96 -632.58 -673.67

(Misclassification Rate=0.33)

The result by the Gibbs sampler, the Laplace Metropolis criteria reach

the maximum at the model EEE and the number of clusters 2(Table 6.20).

This misclassification rate is 0.53.

Table 6.20: Gibbs(Laplace) Result(SRBCT)
No. of Clusters 2 3 4 5

EII -714.88 -725.81 -652.49 -732.22
VII -543.39 -451.10 -396.73 -399.72

EEE -386.90 -395.83 -402.43 -411.14
(Misclassification Rate=0.53)

We estimate parameters using the Gibbs sampler and select the models
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using the proposed criteria. The result corresponds to the model VII and

the correct number of groups 4. This result is the same as the actual

number of clusters 4. The estimated means are τ = (0.23, 0.24, 0.16, 0.37),

µ̃1
T = (1.02, 0.42, 4.80, 0.56, 0.35), µ̃2

T = (3.14, 0.16, 0.32, 0.08, 0.58),

µ̃3
T = (0.49, 0.55, 0.39, 1.43, 1.31), µ̃4

T = (0.78, 0.15, 0.60, 0.37, 0.44). The

estimated eigenvalues are λ̃1 = 0.46, λ̃2 = 0.34, λ̃3 = 0.27, λ̃4 = 0.15.

Table 6.21: Gibbs(Modified Fisher) Result(SRBCT)
No. of Clusters 2 3 4 5

EII 0.23 0.26 0.55 0.55
VII 6.54 11.07 14.50 13.71
EEE 3.65 10.31 11.42 12.45
VEE 0.59 1.01 1.06 0.77

(Misclassification Rate=0.08)

Table 6.22: Misclassification Rate Comparison(SRBCT)
Estimation Method EM MAP Gibbs Gibbs
Assessment Method (BIC) (BIC) (Laplace) (Modified Fisher)

MODEL EVI VVI EEE VII
No. of Clusters 5 3 2 4

Misclassification Rate 0.31 0.33 0.53 0.08

6.3.2 Example 5: Colon Cancer Data

This data was presented and analyzed in Alon et al.(1999). Expression

levels of about 6500 genes were measured for 62 samples: 40 tumor and 22

normal colon tissues. 2000 of them were selected by the authors(Alon et

al.) for clustering purposes. The correct number of clusters is 2(tumor and
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normal).

Consider the informative genes as the genes having from the most

largest value to the fifteenth largest value. Then the whole samples are

clustered using only the informative genes. The informative genes are only

used for clustering.

The result by EM algorithm is shown in Table 6.23.

Table 6.23: EM(BIC) Result(COLON)
No. of Clusters 2 3 4 5

EII -1586.48 -1556.30 -1533.41 -1548.24
VII -1588.99 -1563.00 -1527.55 -1545.81
EEI -1550.17 -1535.14 -1478.99 -1493.57
VEI -1554.16 -1534.45 -1474.62 -1490.25
EVI -1582.84 -1610.07 -1631.56 -1695.15
VVI -1586.95 -1615.46 -1618.76 -1686.15
EEE -1418.75 -1410.75 -1487.44 -1525.52
EEV -1556.07 -1839.97 -2198.44 NA
VEV -1541.96 -1822.00 -1990.39 NA
VVV -1587.59 NA NA NA

(Misclassification Rate=0.242)

The estimated model EEE with the number of clusters 3 is not co-

incided as the actual number of clusters 2. This misclassification rate is

0.242.

Using the MAP, the BIC reach the maximum at the model EEI and

the number of clusters 4(Table 6.24). This misclassification rate 0.419.

The result by the Gibbs sampler, the Laplace Metropolis criteria reach

the maximum at the model EEE and the number of clusters 2(Table 6.25).

This misclassification rate is 0.45.

We estimate parameters using the Gibbs sampler and select the mod-

els using the proposed criteria. The result corresponds to the model VII
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Table 6.24: MAP(BIC) result(COLON)
No. of Clusters 2 3 4 5

EII -794.14 -779.64 -769.99 -780.49
VII -795.93 -784.29 -770.08 -784.90
EEI -788.08 -780.48 -753.28 -761.48
VVI -835.89 -876.08 -913.60 -978.65
EEE -758.27 -755.69 -798.07 -824.44
VVV -937.06 NA NA NA

(Misclassification Rate=0.419)

Table 6.25: Gibbs(Laplace) Result(COLON)
No. of Clusters 2 3 4 5

EII -1770.88 -1743.34 -1883.06 -1877.71
VII -804.71 -810.68 -841.62 -879.31

EEE -785.61 -818.52 -855.04 -905.55
(Misclassification Rate=0.452)

and the correct number of groups 4. This result is the same as the actual

number of clusters. The estimated means are τ = (0.23, 0.24, 0.16, 0.37)

µ̃1
T = (1.02, 0.42, 4.80, 0.56, 0.35),µ̃2

T = (3.14, 0.16, 0.32, 0.08, 0.58),µ̃3
T =

(0.49, 0.55, 0.39, 1.43, 1.31),µ̃4
T = (0.78, 0.15, 0.60, 0.37, 0.44). The estimated

eigenvalues are λ̃1 = 0.46, λ̃2 = 0.34, λ̃3 = 0.27, λ̃4 = 0.15.

Table 6.26: Gibbs(Modified Fisher) Result(COLON)
No. of Clusters 2 3 4 5

EII -0.96 -3.27 -5.01 -5.01
VII 28.74 27.77 23.97 15.59
EEE 12.23 12.16 22.84 7.92

(Misclassification Rate=0.081)

Compare the influence of the number of genes(variables). Consider the

informative genes as the genes having from the most largest value to the

fifth largest value. Then the whole samples are clustered using only the
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Table 6.27: Misclassification Rate Comparison(COLON)
Estimation Method EM MAP Gibbs Gibbs
Assessment Method (BIC) (BIC) (Laplace) (Modified Fisher)

MODEL EEE EEI VII VII
No. of Clusters 3 4 2 2

Misclassification Rate 0.242 0.419 0.452 0.081

informative genes. The informative genes are only used for clustering.

Table 6.28: EM(BIC) Result(COLON-1)
No. of Clusters 2 3 4 5

EII -566.77 -559.96 -559.60 -557.78
VII -568.37 -561.94 -565.49 -555.59
EEI -549.47 -554.23 -567.72 -562.90
VEI -553.31 -554.66 -575.06 -560.85
EVI -563.66 -575.49 -599.38 -616.91
VVI -567.28 -581.23 -613.21 -616.19
EEE -538.58 -550.60 -557.72 -569.40
EEV -568.03 -593.59 -637.58 -655.69
VEV -567.29 -599.76 -647.85 -676.82
VVV -567.89 -609.53 -671.15 NA

(Misclassification Rate=0.096)

The estimated model EEE with the number of clusters 2 is not coin-

cided as the actual of clusters 2. This misclassification rate is 0.096. Using

the MAP, the BIC reach the maximum at the model EEE and the number

of clusters 2(Table 6.24). This misclassification rate 0.096.

The result by the Gibbs sampler, the Laplace Metropolis criteria reach

the maximum at the model EEE and the number of clusters 2(Table 6.25).

This misclassification rate is 0.129.

We estimate parameters using the Gibbs sampler and select the models

using the proposed criteria. The result corresponds to the model VII and

the correct number of groups 2. This result is the same as the actual
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Table 6.29: MAP(BIC) result(COLON-1)
No. of Clusters 2 3 4 5

EII -283.77 -280.73 -281.59 -286.30
VII -284.80 -282.76 -285.00 NA
EEI -275.59 -276.23 -286.69 -285.16
VVI -286.29 -296.84 -317.28 NA
EEE -272.43 -279.40 -286.47 -291.75
VVV -293.74 -321.08 -364.77 NA

(Misclassification Rate=0.096)

Table 6.30: Gibbs(Laplace) Result(COLON-1)
No. of Clusters 2 3 4 5

EII -450.39 -443.88 -472.09 -448.40
VII -274.59 -266.73 -272.43 -274.95

EEE -263.54 -265.49 -278.85 -281.45
VEE -277.36 -285.23 -292.13 -299.45

(Misclassification Rate=0.129)

number of clusters.

Table 6.31: Gibbs(Modified Fisher) Result(COLON-1)
No. of Clusters 2 3 4 5

EII -1.20 -3.34 -6.02 -7.82
VII 11.02 10.71 7.52 1.16
EEE -0.93 -2.94 -5.10 -7.39

(Misclassification Rate=0.096)
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Table 6.32: Misclassification Rate Comparison(COLON-1)
Estimation Method EM MAP Gibbs Gibbs
Assessment Method (BIC) (BIC) (Laplace) (Modified Fisher)

MODEL EEE EEE EEE VII
No. of Clusters 2 2 2 2

Misclassification Rate 0.096 0.096 0.129 0.096
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Chapter 7

Conclusion and Discussion

To estimate the number of clusters, we used the several methods: Expecta-

tion and Maximization(EM) algorithm, Maximum a Posteriori(MAP) and

the Gibbs sampler. To assess the number of clusters, we used the Bayesian

Information Criteria(BIC) and the Laplace Metropolis criteria base on the

Marginal likelihood.

In this thesis, we have compared the performance of different four al-

gorithms in the non-hierarchical clustering based on a multivariate normal

mixture. The first algorithm via the EM algorithm is generally used. How-

ever it has the problem such as the singularities and degenerates that can

arise in estimation by using the EM algorithm. For avoiding this problem,

Maximum a posteriori(MAP) and the Gibbs sampler have been proposed.

These two methods use the proper conjugate priors for parameters of the

mixture model. In the application to several data, two methods elimi-

nated singularities and degenerates above the EM algorithm(Fraley and

Raftery(2005), Bensmail et al.(1997)).

The EM, MAP, and Gibbs sampler’s estimates of the number of cluters

are similar. The assessment methods(BIC and Laplace Metropolis Crite-

ria) have similar values and fail to select the actual number of clusters.



The modified Fisher’s discriminant criteria has the smaller misclassifica-

tion rates than the other methods. The modified Fisher’s discriminant

criteria is better than the other methods.

The cluster analysis with a mixture model has the drawbacks which can

not be only applied to the case in which there are more observations than

the number of variables such as a microarray data. To overcome this prob-

lem, the gene(variable) selection procedure has been adapted. The modi-

fied Fisher’s discriminant criteria would not be influenced by the number

of variables. If it is satisfied, this cluster analysis overcomes the limitations

of the clustering with high-dimensional data and large data sets.

For some future study, the case for a non-normal mixture model is to

be investigated.
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