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ABSTRACT 

 

The proinflammatory cytokine effects on neurotrophins production 

in bone marrow mesenchymal stem cells 

 

Jang-Kyeun Jung 

 

 

The Graduate School 

Yonsei University Department of Medicine 

(Directed by professor Dong-Joon Park) 

 

Understanding the mechanisms by which bone marrow stem cells produce neurotrophic 

factors may represent an important way to optimize their beneficial paracrine and autocrine 

effects. Components of the damaged nervous microenvironment may stimulate neurotrophic 

factor production to promote stem cell-mediated repair. We hypothesized that the 

proimflammatory cytokines  (tumor necrosis factor-alpha or Interlukin1beta)  may activate 

human bone marrow mesenchymal stem cells (BMSC) to increase the release of neurotrophic 

factors (nerve growth factor, brain derived nerve growth factor) and that nuclear factor-kappa 

B (NF kappa B), mitogen-activated protein kinases(MAPKs) pathway mediates neurotrophic 

factor production from human BMSC. Furthermore, to modify BMSC ex vivo to capitalize 

on the positive effects of cytokines, understanding of detail signal pathway is important. To 
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study this, human BMSC were cultured, passaged, divided into four groups (100,000 cells, 

triplicates) and treated as follows: 1) with vehicle; 2) with stimulant alone (24 h TNF-alpha 

or 24 h IL-1β); 3) with inhibitor alone [NF kappa B (PDTC), p38MAPK(SB203580), or ERK 

(PD98059)]; and 4) with stimulant and the various inhibitors. After 24 h incubation, BMSC 

activation was determined by measuring expression for NGF, BDNF (RT-PCR, ELISA, 

Western blot). TNF-alpha but not IL-1β significantly increased human BMSC NGF 

production versus controls. Stem cells exposed to TNF-alpha demonstrated increased 

activation of NF kappa B, ERK, and p38MAPK. NGF expression was significantly reduced 

by NF kappa B and ERK inhibition but not p38MAPK inhibition. Inhibitor alone did not 

activate BMSC NGF expression over controls. Moreover, siRNA for RSK1 but not MSK1 

could knock down NGF expression. With these results, TNF-alpha activates human BMSC to 

increase NGF expression, which depends on an NFkB and MEK/Erk/RSK pathway 

mechanism.  

 

Key words ; Nerve growth factor, brain derived neurotrophic factor, mesenchymal stem cells, 

tumor necrosis factor, cell therapy. 
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Introduction 

Stem cell therapy has the potential to be a key component in the field of regenerative 

medicine (1). Mesenchymal stem cells, in particular, may be a leading candidate for cell-

based therapy for the neurological disease. In otolaryngology, treatment of neural disorders, 

such as anosmia, facial nerve palsy or sensory neural hearing loss, is one of the most difficult 

problems in modern medicine due to the limitations of neuronal regeneration. Mesenchymal 

stem cells are a unique subset of stem cells that can be isolated from the bone marrow, 

adipose tissue, and even umbilical cord blood (2, 3).  

Among several kinds of cell-based therapies, bone marrow-derive mesenchymal stem cells 

or bone marrow stromal cell (BMSC) is a strong therapeutic candidate. BMSCs enriched in 

vitro by self-renewal after isolation from adult bone marrow, virtually eliminate the ethical, 
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immunological and logistical problems associated with embryonic or adult neural stem cell 

therapies. Furthermore, there is increasing evidence showing that BMSCs survive, selectively 

migrate to injured areas and provide therapeutic benefits in a variety of neuronal diseases, 

such as cerebral ischemia (4-6), traumatic brain injury (7), spinal cord injury(8,9) anosmia 

and facial palsy. These studies suggest the possibility of transplantation therapy using 

BMSCs for patients with various neural disorders. However, the mechanisms by which 

BMSCs provide therapeutic benefits remain unclear. BMSCs, including stem and progenitor 

cells, are multipotent and capable of differentiation into mesodermal derivatives such as bone, 

cartilage, fatty tissue and even neural cells such as neurons (10, 11). Although the 

transdifferentiation theory is attractive, it is inconsistent with in vivo data (12). Despite some 

encouraging results, these studies have shown that adult stem cells typically exhibit low level 

of engraftment and transdifferentiation within diseased or injured tissue and therefore do not 

contribute physically to tissue regeneration to a significant extent.  

Rodents after middle cerebral artery occlusion (MCAo) obtain therapeutic benefit within 

days, and very few BMSCs express neural markers (13). Clearly, weeks or months are 

needed for BMSCs to transdifferentiate into the lost neural cells and appropriately integrate 

into complex neural connections (14, 15). Alternatively, orthotropic BMSCs naturally secrete 

a variety of cytokines and growth factors, which mainly support hematopoietic stem cells to 

differentiate into mature blood cells (16). Interestingly, the pattern and quantity of such 

functional secretion of BMSCs could be changed in response to their existing 

microenvironment (17). BMSCs in ischemic conditions increase the synthesis of some 

cytokines and growth factors (18–20). 

These findings suggest that BMSCs may work as ‘small molecular factories’ by secreting 

cytokines, neurotrophins, growth factors, and other supportive substances at least acutely 
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after stroke which activates the restorative properties on endogenous brain parenchymal cells. 

Altered neurotrophic and growth factor gene expression may be the initial spark for 

therapeutic progress, which may produce therapeutic benefits in the ischemic brain.  

Neurotrophic factors are target-derived factors, with critical roles in the survival, 

differentiation, and the maintenance of the function of different neurons both in peripheral 

and central nervous system (CNS). In mammals, the neurotrophic factor family consists of 

four members: Nerve growth factor (NGF), Brain derived neurotrophic factor (BDNF), 

Neurotrophin-3 (NT-3) and Neurotrophin-4/5 (NT-4/5). Neurotrophic factors encode 

structurally related proteins, which are proteolytically processed and secreted in the 

extracellular space.  

In our previous study, chemically damaged rat olfactory mucosa showed spontaneous 

recovery within nine weeks. During this period, we found active biological activities in the 

regenerating olfactory mucosa related to the expression of neurotrophic factor mRNAs. Using 

extracts of this biologically active olfactory mucosa, we demonstrated increased synthesis of 

neurotrophic factors in BMSCs under the influence of regenerating olfactory mucosa 

conditioned medium (in press). Our results support the hypothesis that transplanted stem cells 

secrete essential neurotrophic factors that promote the regeneration of damaged nerve tissue. 

Common condition influencing in ischemic brain and damaged olfactory mucosal 

microenvironments may be the inflammation. The inflammatory condition of the recipient 

site may activate the secretion of neurotrophic factors for the transplanted stem cells.     

Tumor necrosis factor alpha (TNF-α) is a pro-inflammatory cytokine that is produced by a 

variety of cell types. The function of TNF-α is ambiguous because the effect of TNF-α is 

mediated by two receptors with different activation paths (21). The activation of TNF 

receptor 1 has been reported to decrease BMSC growth factor production (22), generate 
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reactive oxygen species, and induce apoptosis (23). In contrast, TNF receptor 2 cannot 

transmit apoptotic signals, instead its activation leads to nuclear factor κB (NF-κB) activation, 

which may be essential for cell survival, proliferation, growth factor production and 

expression of anti-apoptotic proteins (24-26). Even though the effect of BMSCs on 

inflammation has been widely studied, the influence of inflammation on BMSCs is still 

poorly understood. It has been previously reported that TNF-α has a significant effect on 

human BMSC proliferation and growth factor production in vitro and that these effects are 

mediated through IκB kinase 2 (IKK-2) and NF-κB pathway activation (26,-27). It is also 

known that in response to TNF-α, stem cells increase the release of paracrine factors by a p38 

mitogen-activated protein kinase and signal transducer and activator of transcription 3 

(STAT3)-dependent mechanism (28, 29). In addition, TNF-α-exposure is known to increase 

the expression of intracellular adhesion molecule-1 (ICAM-1, CD54) in endothelial cells (30). 

However, the influence of TNF-α to neurotrophic factors secretion in BMSC remains unclear.  

Interleukin 1 β (IL-1β) is another major proinflammatory cytokine can also considerably up 

regulate the expression of NGF (31, 32). It is also unclear about its effects on BMSC.  

Mitogen-activated protein kinases (MAPKs) are ubiquitous kinases and are involved in 

signal transduction in eukaryotic organisms. This family of kinases is characterized by their 

activation by MAPKs through the dual phosphorylation of Thr and Tyr residues in their 

activation loop. The MAPK family includes extracellular signal-regulated kinases (ERK), 

which are activated in response to growth factors, via the Ras proto-oncogene. Moreover, c-

Jun N-terminal kinase (JNK) and p38 MAPK constitute two other families, collectively 

known as stress-activated protein kinases (SAPK), because they are induced by UV radiation, 

heat-shock, oxidative stress. The stimulation of ERK initiates a cascade of activating events, 

including the phosphorylation of p90 ribosomal S6 protein kinase 1 (RSK1), and its 
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translocation to the nucleus, where RSK1 phosphorylates nuclear substrates (33). Moreover, 

the phosphorylation of mitogen- and stress-activated protein kinase (MSK), which localized 

in the nuclei (34), could lead to the phosphorylation and activation several transcription 

factors like cAMP-response element-binding protein (CREB) and activating transcription 

factor 1 (ATF1) (35).  

We examined the mechanism by which the important proinflammatory mediator, TNF-α 

increases NGF expression levels. Here we show that NF kB and ERK MAPK are essential for 

TNF-α induced NGF expression in normal human BMSC. We also show that RSK1 

phosphorylation mediates the TNF-α induced NGF production in BMSC. 
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Material and Methods 

 

Bone marrow stromal cells.  

Human mesenchymal stem cell was purchased from Pharmicell (Sungnam, Korea). 

Mesenchymal stem cells were harvested and cultured from normal human bone marrow. 

Thawing of cells and initiation of culture process were performed based on the 

manufacturer’s instructions. Human BMSCs were plated in T-225 tissue culture flasks 

(Corning, Coring, NY) and cultured with mesenchymal stem cell basal medium containing 10% 

fetal bovine serum (FBS), Mesenchymal Cell Growth Supplement (Camber BioScience), 4 

mML-glutamine, and penicillin-streptomycin at 37°C, 5% CO2 and 90% humidity. Medium 

was changed every 3 days. 

 

Experimental groups.  

After cells were 70% confluent, BMSCs were plated in T-25 tissue culture flask (Corning) in 

a concentration of 0.1 x 106 cells /flask/ml. Cells were divided into the following groups: 

1) with vehicle; 2) with stimulant alone [TNF-alpha (1 to 20ng/ml) or IL-1β (1 to 50ng/ml) ]; 

3) with inhibitor alone [NF kappa B (PDTC, 0.1 and 1mM), p38MAPK(SB203580, 10 and 

20 µM ), or ERK (PD98059, 1 and 10µM)]; and 4) with stimulant and the various inhibitors.  

Inhibitors were obtained from Calbiochem (San Diego, CA). After 12 to 48 hr incubation, 

cells and supernatants were harvested for NGF, BDNF assay.  

 

Analysis of NGF, BDNF mRNA production 

Cells were grown in T-25 culture flask and incubated for 12–48 h in a fresh medium 

containing stimuli as indicated. After discarding growth medium, total RNA was isolated 
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from cells using Trizol reagent (Invotrogen, Carlsbad, CA, USA), following the 

manufacturer’s instructions. Reverse transcription (RT) was performed with SuperScript II 

reverse transcriptase (Invitrogen, Burlington, ON, Canada), according to the manufacturer’s 

instructions. One microgram of RNA and 20 pmol/µl primers were preincubated at 70oC for 5 

min and transferred to a mixture tube. The reaction volume was 20 µl. cDNA synthesis was 

performed at 42 oC for 60 min, followed by RT inactivation at 94 oC for 5 min. Thereafter, 

the RT-generated DNA (2–5 µl) was amplified using AccuPower PCR PreMix (Bioneer). 

The primers used for cDNA amplification and conditions were as follows (Table 1). RT-PCR 

products were subsequently separated by electrophoresis on 2% agarose gels containing 0.5 

µg/ml ethium bromide and visualized with UV light. All data were normalized to the level of 

GAPDH mRNA.  

 

ELISA for NGF and BDNF protein measurement 

The supernatants were collected, cleared by centrifugation, and kept at -20oC until evaluation 

by ELISA. For measurement of neurotrophic factors concentrations in cell culture 

supernatants, 96-well microtiter plates (MaxiSorp; Nunc) were coated with 0.2 µg/well goat 

anti-human NGF (rabbit polyclonal IgG, epitope mapping at the N-terminus of the mature 

chain of NGF of human origin, 200µg/ml of PBS with＜0.1% sodium azide and 0.1% gelatin, 

Santacruz, CA, USA) and BDNF (rabbit polyclonal IgG, epitope mapping within an internal 

region of BDNF of human origin, 200µg/ml of PBS with＜0.1% sodium azide and 0.1% 

gelatin, Santacruz, CA, USA) . Abs in 50 µl of PBS at 4 oC overnight. All further steps were 

conducted at room temperature. After washing three times with PBS, nonspecific binding 

sites were blocked by incubation with 150 µl PBS + 1% BSA/ 0.05% Tween 20/well for 2 h. 

After three washes with PBS, supernatant was added to the 96-well plates, and the captured 
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NGF and BDNF were detected using biotinylated goat anti-human IgG. After 30-min 

incubation with streptavidin-horseradish peroxidase, substrate solutions (1:1 mixture of 

H2O2 and tetramethylbenzidine) were added to the wells for 20 min and the reaction was 

stopped by adding 2 N H2SO4. The plates were read at 450 nm on a microtiter plate reader. 

ELISA reagents were from R&D Systems. All samples and standards were measured in 

duplicate. Values are expressed as means ±SE. 

 

Protein isolation and Western blot analysis.  

Western blot analysis was performed to measure NGF and the activation of ERK, p38 MAPK 

and NF-kB. Cells were collected in cold buffer containing 20 mM Tris (pH 7.5), 150 mM 

NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton X-100, 2.5 mM sodium pyrophosphate, 1 mM-

glycerophosphate, 1 mM Na3VO4, 1 µg/ml leupeptin, 1 mM PMSF, and centrifuged at 

12,000 rpm for 10 min. The protein extracts (10 µg/lane) were electrophoresed on a 4–12% 

Bis-Tris gel (Invitrogen, Carlsbad, CA) and transferred to a nitrocellulose membrane, which 

was stained by naphthol blue-black to confirm equal protein loading. The membranes 

were incubated in 5% dry milk for 1 h and then incubated with the following primary 

antibodies: NGF antibody, ERK antibody, phospho-ERK (Thr202/Tyr204) antibody, 

p38 MAPK antibody, phospho- p38 MAPK (Thr180/Tyr182) antibody, NF-κB p65 antibody 

and phospho-NF-κB p65 (Ser276) antibody (Cell Signaling Technology, Beverly, MA), 

followed by incubation with horseradish peroxidase-conjugated goat anti-rabbit IgG 

secondary antibody and detection using supersignal west pico stable peroxide solution (Pierce, 

Rockford, IL). The exposure time of the film was adjusted based on the intensity of the signal.  

Band densities were compared using NIH Image-J software. Equal loading was corrected by 

β-actin immunoreactivity or of a relative non-phosphorylation antibody.  

http://www.skypdf.com


11 

 

siRNA transfection 

RSK1 siRNA and MSK1 siRNA for silencing of BMSC were purchased from Cell Signaling 

Technology ( Beverly, MA) and Santacruz Inc. (CA, USA) respectively. A double-stranded 

non-specific siRNA was used as a negative control. The siRNA transfection was conducted 

with Lipofectamine 2000 reagent (Invitrogen) according to the manufacturer's instructions. 

Cells plated for 24 hours were transfected with 150 nM of siRNA. At 24 hours after 

transfection, the cells were treated with TNG-alpha, t hen the expression of NGF was 

analyzed.  

 

Statistical analysis 

Data are presented as means ± SE and were analyzed using one-way ANOVA and Student's 

t-test. P < 0.05 was considered significant.  
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Table 1. Sequences of primers used for RT-PCR 

Gene Primer sequences(5’ to 3’) 
 

length(bp) TM(oC) 

 
NGF 

 
Forward : GCC CAC TGG ACT AAA 
CTT CAG C 
Reverse : CCG TGG CTG TGG TCT 
TAT CTC 
 

 
364 

 
60.0 
60.0 

 
BDNF 

 
Forward : CGA CGT CCC TGG CTG 
ACA CTT TT 
Reverse : AGT AAG GGC CCG AAC 
ATA CGA TTG G 
 

 
450 

 
62.0 
62.2 

 
GAPDH 

 
Forward : TCC CAT TCT TCC ACC 
TTT GAT GCT 
Reverse : ACC CTG TTG CTG TAG 
CCA TAT TCA T 
 

 
102 

 
58.7 
58.9 
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Results 

 

Pro-inflammatory cytokine TNF-α, but not IL-1β, enhanced NGF secretion from BMSC 

First, we examined whether pro-inflammatory cytokines enhance NGF or BDNF secretion 

from BMSC. BMSC constitutively secreted a low amount of NGF and BDNF without any 

stimulation. NGF secretion was at a concetration-dependently increased by TNF-α; the 

stimulatory effect of TNF-α peaked at 10 ng/ml and maintained up to 20 ng/ml, which is 3-

fold the secretion of basal level. However BDNF was not stimulated by TNF-α (Fig. 1).  

Maximal induction was seen after 24 h of exposure to 10 ng/ml TNF- α. When the level of 

NGF mRNA in the induced cultures was analyzed by RT-PCR (Fig. 2 A), the increase 

protein (Fig.2. B) secretion correlated with the accumulation of NGF mRNA. In contrast to 

TNF-α, IL-1β did not enhance NGF or BDNF secretion (Fig. 3).  
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Fig. 1. Effects of TNF-α on NGF mRNA expression from BMSC. RT-PCR (A) and semi-

quantitative analysis of NGF and BDNF mRNA (B). Results are means ± SE; n= 3, *P< 

0.05 vs. control. 

 

 

 

 

 

 

 

 

http://www.skypdf.com


15 

 

 

Fig. 2. Expression of NGF mRNA (A) and protein (B) in BMSC induced by TNF-α. The 

production increased in a time dependent manner. Results are means ± SE; n= 3, *P< 0.05 

vs. control. 
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Fig. 3. Effects of IL-1β on NGF mRNA expression from BMSC. RT-PCR (A) and semi-

quantitative analysis of NGF and BDNF mRNA (B). There was no statistical significance. 

Results are means ± SE; n= 3. 
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Activation of MAPK and NF-kB pathways by TNF-α in BMSC 

TNF-α is known to be a potent stimulus for activation of ERK, p38MAPK, and NF-kB. As 

shown by the results in Fig. 4, TNF-α activated ERKs phosphorylation at 15 min, and 

increased sharpely and remained for the following 2 h. TNF markedly activated p38 MAPK 

phosphorylation and NF-kB at 10min and 20 min respectively. Concentration of 10 ng/ml 

TNF-α induced increase in ERK, p38MAPK and NF-kB activities. 
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Fig. 4. Effect of TNF-α on phosphorylation of p38, ERK and NF-kB in BMSCs. The cells 

were treated with TNF-a (10 ng/ml). Cell lysates were analyzed by Western blot. This similar 

data were obtained in three independent experiments. 
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MEK-ERK and NF-kB pathway are involved in the TNF-α–enhanced NGF secretion 

To identify the signal transduction pathway of the TNF-α–enhanced NGF secretion, we 

examined the effect of typical MAPK inhibitors, PD98059, SB203580, and NF-kB inhibitor, 

PDTC. PD98059, which selectively blocks ERK activity through the inhibition of ERK1/2 

phosphorylation by MEK1/2, reduced the TNF-α–enhanced NGF secretion to the basal level 

at the concentration from 1.0 μM and completely inhibited it at 10 μM (Fig. 5). On the other 

hand, SB203580, a specific inhibitor of p38 MAPK, did not inhibit the TNF-α–enhanced 

NGF secretion (Fig. 6). PDTC, a specific inhibitor of NF-kB, inhibited NGF secretion (Fig. 

7).  
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Fig. 5. The effects of ERK inhibitor on NGF secretion. BMSCs were pre-incubated with the 

indicated concentrations of PD98059 for 15 min and then cultured with TNF-α (10 ng/ml) for 

24 h in the presence of the inhibitor. Inhibition of the phosphorylation was analyzed by 

Western blot. NGF mRNA was analyzed by the RT-PCR (A). Semi- quantification of 

Western blot result for NGF production by NIH image software (B). Values are each the 

mean ± S.E.M. of triplicate cultures of three independent experiments. *P<0.05 vs. control 

cultures without inhibitor. 

 

 

 

 

 

http://www.skypdf.com


21 

 

 

Fig. 6. The effects of p38 MAPK inhibitor on NGF secretion. BMSCs were pre-incubated 

with the indicated concentrations of SB203580 for 15 min and then cultured with TNF-α (10 

ng/ml) for 24 h in the presence of the inhibitor. Inhibition of the phosphorylation was 

analyzed by Western blot. NGF mRNA was analyzed by the RT-PCR (A). Semi-

quantification of Western blot result for NGF production by NIH image software (B). There 

were no statistical significances. Values are each the mean ± S.E.M. of triplicate cultures of 

three independent experiments.  
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Fig. 7. The effects of NF-kB inhibitor on NGF secretion. BMSCs were pre-incubated with the 

indicated concentrations of PDTC for 15 min and then cultured with TNF-α (10 ng/ml) for 24 

h in the presence of the inhibitor. Inhibition of the phosphorylation was analyzed by Western 

blot. NGF mRNA was analyzed by the RT-PCR (A). Semi-quantification of Western blot 

result for NGF production by NIH image software (B). Values are each the mean ± S.E.M. of 

triplicate cultures of three independent experiments. *P<0.05 vs. control cultures without 

inhibitor. 
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RSK is involved in the TNF-α–enhanced NGF production 

It is well known that RSK and MSK are involved in the downstream portion of the MEK-

ERK pathway. We thus examined whether RSK1 or MSK1 are also involved in the TNF-α– 

induced enhancement of NGF secretion. RSK1 siRNA inhibited the TNF-α–enhanced 

NGF production, but not the basal level (Fig. 8). However, MSK1 siRNA did not affect the 

NGF production . These results indicate that RSK1 is involved in the signaling pathway of 

the TNF-α–enhanced NGF secretion.. 
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Fig. 8.  Inhibition of NGF production by siRNA transfection. TNF-a stimulated NGF 

mRNA production was inhibited by RSK1 siRNA transfection. However, MSK1 si RNA 

transfection did not affect (A). Semi-quantification of Western blot result for NGF production 

by NIH image software (B). Values are each the mean ± S.E.M. of triplicate cultures of three 

independent experiments. *P<0.05 vs. control. 
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Discussion 

While stem cell therapy has the potential to be a key component of regeneration therapies for 

neurologic disorder, the efficacy is not so high. If we can make neurotrophic factors secreting 

bone marrow stromal cells, the stem cell therapy for injured nervous system would be more 

effective. Recently some pioneer studies to make a neurotrophins producing stem cells are 

tried. Major portion of those studies includes neurotrophins encoding gene transfections(36). 

However, so far, the gene transfer technique is not safe and problem of toxicity of the vector 

is not overcome. 

Cytokines likely affect the function of BMSCs and represent one possible explanation for 

the variable results seen in the literature. Therefore, increasing our understanding of the 

cytokines that affect BMSC function and the methods available to clinicians to modify 

BMSCs ex vivo to capitalize on the positive effects of cytokines may lead to future 

therapeutic gains. 

The results of present study represent the first demonstration that: 1) TNF- α stimulates 

BMSC production of NGF 2) NF kB is involved in production of NGF in BMSCs 3) 

MEK/ERK/RSK pathway is also involved in production of NGF. Stem cells transplanted into 

injured nerve tissue express several paracrine signaling factors, including cytokines, 

chemokines, and growth factors, which are involved in stem cell-mediated repair. A critically 

important part of this process may be their chronically inflammed tissue. Although the 

particular local signaling molecules contributing to this regenerating effect remain to be 

defined, the list most likely includes neurotrophic factors in neuronal lesion. NGF is a strong 

promoter of neurogenesis, has been shown to be intimately involved with nerve cell 

proliferation and may be a more potent neurogenic factor than BDNF. The results of present 

study demonstrate that BMSC in cell culture exposed to specific stimuli such as TNF-α 
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significantly increase release of NFG but not BDNF. Crisostomo et al demonstrated that 

TNF- α stimulates VEGF, FGF, HGF, IGF-1 production in BMSC (37). This increase in 

growth factors may improve regional nerve regeneration as well as promote autocrine self 

survival (38). Increased perfusion due to the stem cell angiogenic growth factor production 

has also been associated with improved end organ function (39). Furthermore, VEGF over 

expressing bone marrow stem cells demonstrate greater protection of injured tissue than 

controls (40). Thus NGF as well as other growth factors may be important paracrine signaling 

molecules in stem cell-mediated angiogenesis, protection, and nerve survival. Further 

understanding of the mechanisms by which these paracrine growth factors are released may 

enable us to maximize stem cell paracrine effects when transplanted into injured tissue. It 

remains unknown by what mechanisms injury stimuli induce BMSCs to release growth 

factors.  

NF kB is an important rapid acting transcription factor found in all cell types and is involved 

in cellular responses to stimuli such as stress, cytokines, free radicals, ultraviolet irradiation, 

and bacterial or viral antigens. In stem cells, recent data suggest that NF kB plays a role in 

proliferation, migration, and differentiation (41). NGF has been implicated in as an important 

upstream component of the NF kB proliferation process in neural and hepatic stem cells (42). 

NF kB inhibition (PDTC) significantly decreased the production of NGF. The results of 

present study shed further light on the role of NF kB in stem cell-mediated protection. 

Interestingly, umbilical cord blood, which has a higher proliferation rate than adult stem cells, 

was recently found to have higher expression of NF kB compared with that of adults (43). 

Thus pharmacological activation of NF kB to enhance growth factor production and 

proliferation may be a strategy to improve their paracrine effects before cell transplant; 

however, this remains to be determined. 
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Wang et al have previously shown that the increase in BMSCs production of VEGF, HGF, 

and IGF-1 was associated with the increase of p38 MAPK activation exposure to TNF-α (44). 

p38 MAPK inhibitor administration also resulted in a decreased release of growth factors in 

hMSCs response to TNF-α. MAPKs are critically involved in regulatory signaling pathways 

that ultimately leads to inflammation (45-47). Activation of p38 MAPK and JNK is a critical 

step in the generation of deleterious inflammatory cytokines after tissue injury, whereas ERK 

activation has been found to improve functional recovery after ischemia (48-50). However, 

the results of present study demonstrate that although TNF-α exposure increases ERK and 

p38 activation, inhibition of p38 MAPK does not significantly affect stem cell production of 

NGF. Thus it appears that TNF-α induced stem cell production of NGF depends on ERK 

activation but does not depend on increased p38 MAPK phosphorylation. 

To know further downstream pathway, we used the siRNA specific for RSK1 and MSK1, 

the results showed that RSK1 knockdown NGF production. Besides MSK1, the RSK1 was 

another downstream kinase for ERK1/2.  
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Conclusions 

Taken together, TNF-alpha activates human BMSC to increase NGF expression, which 

depends on an NF kB and MEK/Erk/RSK pathway mechanism. This study highlights the 

effect of TNF-a as an important local factor, on BMSC release of NGF. The enhancing of 

NGF production in BMSC may be an alternative strategy to stem cell therapy for the 

treatment of neurologic disorder.   
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Abstract in Korean (국문 요약) 

 

전염증성 싸이토카인이 중간엽줄기세포에서 뉴로트로핀 생성에 

미치는 영향 

 

정 장 균 

연세대학교 대학원 의학과 

지도교수 박동준 

 

목적 ; 병변에 이식된 줄기세포가 새로운 세포로 분화되어 조직을 재생 한다기 

보단, 조직의 치유나 재생에 유익한 물질을 줄기세포가 분비 함으로서 회복을 

유도한다는 설이 최근에 학자들 사이에서 공감을 받고 있다. 대부분의 창상이나 

병변에는 염증반응이 수반된다. 이에 공통적으로 기능을 하고 있는 물질이 TNF-a 

나 IL-1B 같은 전염증성 싸이토카인 (proinflammatory cytokine) 이다. 이에 본 

연구는 이러한 전염증성 싸이토카인이 과연 줄기세포를 자극해 신경재생에 

유익한 물질인 neurotorphic factor (neurotrophin) 를 생산할수 있는지 알아보고 과연 

그렇다면 이의 signal transduction pathway 를 추정하여 효과적인 신경재생 

세포치료에 도움을 주고자 하였다.  

방법 ; 사람 중간엽 줄기세포를 구입하여 계대 배양 후 TNF-a 나 IL-1B 를 

농도별, 시간별로 자극하여 nerve growth factor(NGF), brain derived neurotrophic 

factor(BDNF)의 생성을 RT-PCR, Western blot, ELISA 로 분석하였다. 또한 이 
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싸이토카인에 의한 Erk, p38MAPK, NFkB 의 phosphorylation 을 측정하고 각각의 

억제제 및 si RNA 를 사용하여 신호전달체계를 추측하였다.  

결과 ; TNF-a 는 사람 중간엽 줄기세포에서 농도에 비례하여 NGF 의 생성을 자극 

하였으나 IL-1B 는 별 영향을 주지 않았다. 또한 TNF-a 는 Erk, p38MAPK, NFkB 를 

모두 활성화 시켰으나, Erk, NFkB 억제제에 의해서만 NGF 의 생성이 감소 되었다. 

Erk 의 하위 전달체계인 RSK1 siRNA 에 의해 NGF 의 생성이 감소 되었으나, 

MSK1 siRNA 에는 영향을 받지 않았다. 

결론 ; TNF-a 는 사람 중간엽 줄기세포를 자극하여 NGF 의 생성을 촉진 시키며, 

이는 NFkB, MEK/Erk/RSK pathway 에 의한 것임을 알 수 있었으며 향후 연구를 

통해 정확한 transcription factor 를 확인하면 효과적인 신경재생 세포치료에 응용 

할 수 있을 것이라 생각된다.    

      

핵심단어 ; 신경성장 인자, 뇌유래 신경인자, 중배엽성줄기세포, 세포치료 
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