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ABSTRACT 

 

The effects of diacylglycerol oil on bone metabolism of C57BL/6J mice 

 

Han Seok Choi 

 

Department of Medicine 

The Graduate School, Yonsei University 

 

(Directed by Professor Sung-Kil Lim) 

 

In epidemiologic and animal studies, high fat diets (HFD) are associated 

with lower bone mineral density (BMD) and higher risk of osteoporotic 

fractures. Meanwhile, consuming HFD containing diacylglycerol (DAG) 

instead of triacylglycerol (TAG) has metabolically beneficial effects such as 

reduction in body weight and abdominal fat. This study investigated the 

effects of a HFD containing DAG on oxidative stress and bone metabolism in 

mice. 

Four-week-old male C57BL/6J mice (n = 39) were divided into three 

weight-matched groups based on diet type: a chow diet group, a HFD 

containing TAG (HFD-TAG) group, and a HFD containing DAG (HFD-DAG) 
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group. After 20 weeks of treatment, body composition and bone 

microstructure were analyzed using dual energy X-ray absorptiometry and 

micro-computed tomography. Oxidative stress in bone marrow cells was 

measured using dihydroethidium staining. RT-PCR and quantitative real-time 

PCR of bone marrow cells were performed to investigate the expression of 

transcription factors for osteogenesis or adipogenesis.  

It was found that the HFD-DAG group had lower body weight, higher 

BMD, and superior microstructural parameters of bone when compared to the 

HFD-TAG group. Oxidative stress in bone marrow cells was lower in the 

HFD-DAG group than in the HFD-TAG group. The HFD-DAG group also 

showed increased expression of Runx2 and decreased expression of PPARγ in 

bone marrow cells compared to the HFD-TAG group. Osteocalcin levels 

measured in plasma were higher in the HFD-DAG group than in the HFD-

TAG group. 

In conclusion, when compared to HFD-TAG, HFD-DAG induces less 

oxidative stress in bone marrow and has beneficial effects on bone and bone 

metabolism of C57BL/6J mice. 

 

 

 

Key words: high fat diet, diacylglycerol oil, oxidative stress, bone 

metabolism 
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The effects of diacylglycerol oil on bone metabolism of C57BL/6J mice 

 

Han Seok Choi 

 

Department of Medicine 

The Graduate School, Yonsei University 

 

(Directed by Professor Sung-Kil Lim) 

 

I. INTRODUCTION 

 

It is well known that high levels of dietary fat are metabolically deleterious to 

health. Several cardiometabolic disorders such as obesity, hyperlipidemia, 

diabetes, and cardiovascular disease have been associated with high fat diets 

(HFD)
1
. Recently, epidemiologic studies have shown that HFD are also 

associated with lower bone mineral density (BMD) and higher risk of 

osteoporotic fractures
2,3

. Animal studies have demonstrated that HFD also have 

deleterious effects on bone and bone metabolism
4-7

. Although the mechanism of 

this deleterious effect is unclear, metabolic derangements such as dyslipidemia 

or oxidative stress resulting from excess fat intake may mediate the deleterious 
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effects of dietary fat on bone
8-12

. 

The majority of dietary fat consists of triacylglycerol (TAG), a glyceride 

composed of three fatty acid chains covalently bonded to a glycerol molecule 

through ester linkages. Diacylglycerol (DAG) is a glyceride consisting of two 

fatty acid chains esterified to a glycerol molecule. DAG oil is similar in taste, 

appearance, and fatty acid composition to conventional edible oils that 

predominantly consist of TAG. In fact, various edible oils contain small 

quantities of DAG, ranging from 0.8% in rapeseed oil to 9.5% in cottonseed 

oil
13

. DAG can exist in two isoforms, 1,2 (or 2,3)-DAG and 1,3-DAG. The 

majority of DAG in edible oils consists of 1,3-isoform DAG due to the 

migration of the acyl group in an equilibrium reaction. This 1,3-DAG is 

believed to have metabolically beneficial effects compared to TAG due to 

differences in absorption and metabolism
14,15

. As demonstrated in both animal 

and human studies, DAG oil appears to be more effective than TAG oil for 

preventing hyperlipidemia and excess body fat accumulation
16-25

. 

Despite previous animal studies that demonstrated the effects of HFD on 

bone and bone metabolism
4-7

, no studies have investigated the effects of HFD 

containing DAG (HFD-DAG) on bone. I hypothesized that a HFD-DAG may 

affect bone and bone metabolism differently than a HFD containing TAG (HFD-

TAG), due to the beneficial effects of DAG on fat mass, lipid metabolism and/or 

oxidative stress. To test this hypothesis, body composition, bone microstructure, 

biochemical parameters, and bone turnover markers were measured in mice fed 

http://en.wikipedia.org/wiki/Glyceride
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three different types of diet including a chow diet, a HFD-TAG, and a HFD-

DAG for 20 weeks. Intracellular oxidative stress of bone marrow cells was also 

investigated, as was gene expression for osteogenic or adipogenic 

differentiation of bone marrow cells. 
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II. MATERIALS AND METHODS 

 

1. Animals 

Four-week-old male C57BL/6J mice were purchased from Central 

Laboratory Animal Inc. (Seoul, Korea). During the study the mice were 

housed in standard cages placed in a room at 21 ± 2°C, 50 ± 5% relative 

humidity, with a 12-hour light-dark cycle. The animals used in this study were 

treated in accordance with the Guide for the Care and Use of Laboratory 

Animals (Institute of Laboratory Animal Resources, Commission on Life 

Sciences, National Research Council, 1996), as approved by the Institutional 

Animal Care and Use Committee of Yonsei University. 

 

2. Experimental protocol 

Mice were fed a standard laboratory diet for one week in order to 

acclimatize them. They were then divided into three weight-matched groups 

(n = 13 per group) of three different diet types, the chow diet group, the HFD-

TAG group, and the HFD-DAG group. The chow diet was a purified diet 

based on the AIN-93G rodent diet, which contains 7 gm% (16 kcal%) of fat
26

. 

The chow diet had 4.0 kcal per gm. Both the HFD-TAG and HFD-DAG 

contained 24 gm% (45 kcal%) of fat. Although the amount of fat in the HFD-

DAG was identical to that of the HFD-TAG, the fat content was different. 

Seventy grams of soybean oil and 130 gm of lard were used for the HFD-TAG, 
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while 150 gm of DAG oil and 50 gm of lard were used for the same amount 

of HFD-DAG. Both diets were 4.8 kcal per gm. Detailed ingredients of each 

diet are listed in Table 1. All mice were allowed free access to food and water 

throughout the 20 week test period. The mice were weighed every week from 

the beginning of the study. Every four weeks, mice were anesthetized using a 

mixture of Zoletil and Rompun, and body composition was measured. At the 

end of the experimental period, mice were sacrificed following 12-h fasts. 

Blood was drawn by cardiac puncture from mice into EDTA-coated tubes. 

Plasma was obtained by centrifuging the blood at 2000 x g for 15 min at 4°C. 

The plasma was then frozen and stored at -20°C until analysis. Femora and 

tibiae from the hind legs were dissected out and bone marrow cells were 

immediately isolated from the tibiae. The Yonsei University Institutional 

Animal Care and Use Committee approved all animal experiment protocols. 
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Table 1. Composition of experimental diets 

Formula 

Chow  

(AIN-93G) 

HFD-TAG HFD-DAG 

gm kcal gm kcal gm kcal 

Casein, lactic 200.0 800 200.0 800 200.0 800 

L-Cystine 3.0 12 3.0 12 3.0 12 

Corn starch 397.486 1590 165.9 664 165.9 664 

Sucrose 100.0 400 73.5 294 73.5 294 

Dextrose 132.0 528 97.6 390 97.6 390 

Cellulose 50.0 0 50.0 0 50.0 0 

Soybean Oil 70.0 630 70.0 630 0 0 

Lard 0 0 130.0 1170 50.0 450 

DAG 0 0 0 0 150.0 1350 

t-Butylhydroquinone 0.014 0 0.014 0 0.014 0 

AIN-93 Mineral Mix 35.0 0 35.0 0 35.0 0 

AIN-93 Vitamin Mix 10.0 40 10.0 40 10.0 40 

Choline Bitartrate 2.5 0 2.5 0 2.5 0 

Total 1000.0 4000 837.514 4000 837.514 4000 

HFD-TAG, high fat diet containing triacylglycerol; HFD-DAG, high fat diet containing 

diacylglycerol. 
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3. Body composition and bone microstructure 

Body composition (lean soft tissue mass, fat mass, bone mineral content, 

and bone mineral density) of the mice was measured using dual X-ray 

absorptiometry (DXA) (QDR-4500A, Hologic, Waltham, MA, USA). The 

instrument was calibrated before scanning sessions using a phantom with 

known BMD, according to the manufacturer’s guidelines. Body composition 

excluding the skull was assessed every four weeks from the fourth week of 

experimental period. All scans were performed with the animals positioned 

prone and spread, with tape attached to each limb on the platform. At the end 

of the study, the microarchitectures of the femora and the fifth lumbar 

vertebrae from sacrificed mice were analyzed using micro-computed 

tomography (micro-CT) scanning (SMX-90CT, Shimadzu, Kyoto, Japan). The 

cortical bone and trabecular bone were separated manually on each slice by a 

cursor line. The three dimensional structure was analyzed using the TRI 3D-

BON (RACTOC System Engineering Co., Tokyo, Japan) program. In this 

study, the morphometric parameters calculated for both skeletal sites included 

bone volume fraction (BV/TV, %), trabecular thickness (Tb.Th, μm), 

trabecular number (Tb.N, mm
­
1), and trabecular separation (Tb.Sp, μm). 

Femoral images were also evaluated for cortical thickness (Ct.Th) and cortical 

cross-sectional area (CSa). 
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4. Total RNA isolation, RT-PCR, and quantitative real-time RT-PCR 

The total RNA of tibial bone marrow cells (n = 5 for each group) was 

extracted using Trizol reagent (Invitrogen, Carlsbad, CA, USA), and then 

reverse transcribed into cDNA using M-MuLV reverse transcriptase (Promega, 

Madison, WI, USA) according to the manufacturer’s recommendations. For 

reverse transcription-polymerase chain reaction (RT-PCR) analysis, one 

microliter of the RT product was used as a template for PCR amplification of 

Runx2, osterix, PPARγ, and β-actin using the following cycling conditions: 40 

sec at 94°C, 40 sec at the respective annealing temperature and 1 min at 72°C 

over the respective number of cycles presented in Table 2. The measured 

mRNA levels were normalized to the β-actin mRNA levels. The sequence 

information of oligonucleotide primers for RT-PCR is also presented in Table 

2. PCR products were separated by electrophoresis on a 1.5% agarose gel and 

visualized by ethidium bromide staining. Real-time RT-PCR quantitation of 

Runx2 and PPARγ mRNA was performed in an iCycler IQ detection system 

using SYBR
®
 Green I as a double-strand DNA-specific binding dye. GAPDH 

primers were included in the reaction as internal controls. PCR runs consisted 

of an initial denaturation step at 94°C for 5 min, 40 cycles consisting of 15 sec 

at 94°C, 30 sec at the respective annealing temperature (Table 2) and 30 sec at 

72°C. The sequence information of oligonucleotide primers for quantitative 

real time RT-PCR is also presented in Table 2.  
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Table 2. Sequences of primers and PCR reaction parameters used in RT-PCR 

and quantitative real-time RT-PCR 

RT-PCR 

Target gene Primer sequence AT (°C) Cycles 

β-actin 

(F) 5’-GATAGCGATATCGCTGCGCT-3’ 

55 20 

(R) 5’-GCTCATTGCCGATAGTGATGACCT-3’  

Runx2 

(F) 5’-CCGCACGACAACCGCACCAT-3’ 

55 28 

(R) 5’-CGCTCCGGCCCACAAATCTC-3’ 

Osterix 

(F) 5’-CACATCCCTGGTGCGGCAA-3’ 

55 30 

(R) 5’-CCGGGTGTGAGTGCGCACAT-3’ 

PPARγ 

(F) 5’-CACTTCACAAGAAATTACCAT-3’ 

58 30 

(R) 5’-GAAGGACTTTATGTATGAGTC-3’  

Quantitative real-time RT-PCR 

Target gene Primer sequence AT (°C) Cycles 

GAPDH 

(F) 5’-AATGTGTCCGTCGTGGATCTG-3’ 

55 40 

(R) 5’-CAACCTGGTCCTCAGTGTAGC-3’  

Runx2 

(F) 5’-CAGATGACATCCCCATCCATCC-3’ 

55 40 

(R) 5’-AAGTCAGAGGTGGCAGTGTC-3’  

PPARγ 

(F) 5’-GCCCTGGCAAAGCATTTGTATG-3’ 

58 40 

(R) 5’-CCCATCATTAAGGAATTCATGTCGTAG-3’ 

RT-PCR, reverse transcription-polymerase chain reaction; AT, annealing temperature. 
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5. Intracellular oxidative stress of bone marrow cells 

Intracellular oxidative stress of marrow cells was measured with the 

dihydroethidium (DHE) (Sigma, St Louis, MO, USA). DHE is rapidly 

oxidized by reactive oxygen species (ROS) to yield red fluorescent ethidium 

which intercalates with the cell’s DNA so that bright red nuclei can be 

visualized in the fluorescence microscope. Bone marrow cells were isolated 

from the tibiae and pooled for each group of mice (n = 5 per each group). 

Pooled marrow cells resuspended in phosphate buffered saline (PBS) were 

stained with 10 μM DHE for 30 min at 37°C. The cells were then centrifuged 

for 10 min at 1500 rpm, and washed twice with PBS in order to remove the 

extracellular fluorescent indicators. Finally, they were resuspended in PBS. 

DHE fluorescence was visualized by confocal microscopy (LSM 510, Zeiss, 

Gottingen, Germany). Flow cytometric analysis was used to quantify DHE 

fluorescence. Fluorescence intensity resulting from DHE oxidation was 

measured using a FACS Calibur (Becton Dickinson, San Jose, CA, USA). 

Signals were obtained using a 575 ± 13 nm band pass filter (FL-2 channel) for 

ethidium. 

 

6. Biochemical analyses 

Plasma concentrations of glucose, total cholesterol, triglyceride, and HDL-

cholesterol were measured using an ADVIA 1650 Chemistry system (Siemens, 

Tarrytown, NY, USA). Plasma insulin levels were measured with an enzyme-
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linked immunosorbent assay (ELISA) kit (Mercodia, Uppsala, Sweden), and 

the inter-assay and intra-assay variations were 4.8 ± 1.3% and 2.6 ± 0.6%, 

respectively. Mouse cross-linked N-telopeptide of type I collagen (NTX) 

(Cusabio Biotech Co., Wuhan, China) and mouse osteocalcin (Biomedical 

Technologies Inc., Stoughton, MA, USA) levels were also measured using a 

commercially available ELISA kit. 

 

7. Statistical analyses 

Statistical analyses were performed using SPSS 15 (SPSS, Inc., Chicago, IL, 

USA). Data were reported as mean ± standard error (S.E.). Comparisons 

across groups were performed by a one-way analysis of variance (ANOVA) 

with a post-hoc Duncan’s test. A repeated measures ANOVA was performed to 

test for significant differences in the means of body weight, percent fat mass, 

and BMD over time between groups. P <0.05 was considered statistically 

significant.  
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III. RESULTS 

 

1. Body weight and composition 

The body weights and compositions measured at each time point for the 

three diet groups are shown in Figure 1. The body weight and percent fat mass 

of mice fed the HFD containing either TAG or DAG were greater than those 

of mice fed the chow diet at each time point. Among mice that were fed the 

HFD, the HFD-TAG group had greater body weight and percent fat mass than 

the HFD-DAG group. The difference between the groups increased from the 

beginning of the experimental period. At the end of the 20-week study, mice 

in the HFD-TAG group had significantly higher body weight and fat mass 

than those in the HFD-DAG (P < 0.0001). 

 

2. BMD and bone microstructure 

BMD measured by DXA at each time point is presented in Figure 1. BMD 

was higher in mice fed the HFD containing either TAG or DAG than in those 

fed the chow diet, which is probably due to the greater body weight of mice 

fed the HFD. Among mice fed the HFD, however, mice fed the HFD-DAG 

had a greater BMD than those fed the HFD-TAG despite having lower body 

weight. Micro-CT was conducted after sacrificing the animals to analyze the 

microstructures of cortical and trabecular bone. The femur of the posterior 

limb and the fifth lumbar vertebra were used for micro-CT analysis. 
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Compared to mice fed the HFD-TAG, mice fed the HFD-DAG had increased 

cortical thickness and cross-sectional area in their femoral bone (Figure 2A 

and Figure 3), and increased trabecular thickness in their vertebrae (Figure 2B 

and Figure 4) despite having lower body weight. 
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Figure 1. Changes in body weight, percent fat mass, and BMD in mice. HFD-

TAG, high fat diet containing triacylglycerol; HFD-DAG, high fat diet 

containing diacylglycerol; BMD, bone mineral density. Repeated measures 

ANOVA, P <0.0001 for body weight (A), percent fat mass (B), and BMD (C).  
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A 

 

B  

 

Figure 2. Microstructure images of femoral bones (A) and fifth lumbar 

vertebrae (B) in mice. HFD-TAG, high fat diet containing triacylglycerol; 

HFD-DAG, high fat diet containing diacylglycerol. 
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Figure 3. Microstructure parameters of femoral bones in mice. HFD-TAG, 

high fat diet containing triacylglycerol; HFD-DAG, high fat diet containing 

diacylglycerol; BV, bone volume; TV, tissue volume; Tb.Th, trabecular 
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thickness; Tb.N, trabecular number; Tb.Sp, trabecular separation; Ct, cortical 

thickness; CSa, cross-sectional area. Bars labeled with different letters are 

significantly different (P <0.05) (“a” versus “b” indicates a statistically 

significant difference, “a” versus “a” or “b” versus “b” means no significant 

difference). 
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Figure 4. Microstructure parameters of the trabecular bone of the vertebrae in 

mice. HFD-TAG, high fat diet containing triacylglycerol; HFD-DAG, high fat 

diet containing diacylglycerol; BV, bone volume; TV, tissue volume; Tb.Th, 

trabecular thickness; Tb.N, trabecular number; Tb.Sp, trabecular separation. 

Bars labeled with different letters are significantly different (P <0.05) (“a” 

versus “b” indicates a statistically significant difference, “a” versus “a” means 

no significant difference). 
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3. Expression of differentiation marker genes 

Bone marrow cells were isolated from mice tibiae (n = 5) to determine the 

effect of diet on the cell differentiation. The gene expression levels of 

transcription factors for osteogenic and adipogenic lineage in bone marrow 

cells are presented in Figure 5. RT-PCR and quantitative real time RT-PCR 

results show that Runx2 and osterix, the transcription factors for osteoblastic 

differentiation, were significantly up-regulated in mice fed the HFD-DAG 

compared with those fed the HFD-TAG. In contrast, the adipocyte-specific 

transcription factor, PPARγ, was up-regulated in mice fed the HFD-TAG.  
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Figure 5. Gene expression levels in bone marrow cells isolated from mice 

tibiae. HFD-TAG, high fat diet containing triacylglycerol; HFD-DAG, high fat 

diet containing diacylglycerol; RT-PCR, reverse transcription-polymerase 

chain reaction. Bars labeled with different letters are significantly different (P 

<0.05) (“a” versus “b” indicates a statistically significant difference, “a” 

versus “a” means no significant difference). 
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4. Biochemical markers of bone turnover 

Bone turnover markers measured in plasma are presented in Figure 6. Mice 

fed the HFD-DAG had significantly higher plasma concentrations of 

osteocalcin, a marker of bone formation, than mice fed the HFD-TAG. The 

plasma concentration of NTX, a marker of bone resorption, was not 

significantly different between the groups. 
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Figure 6. Bone turnover markers measured in the plasma of mice. HFD-TAG, 

high fat diet containing triacylglycerol; HFD-DAG, high fat diet containing 

diacylglycerol; NTX, N-telopeptide. Bars labeled with different letters are 

significantly different (P <0.05) (“a” versus “b” indicates a statistically 

significant difference, “b” versus “b” means no significant difference). 
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5. Intracellular oxidative stress of bone marrow cells 

Intracellular oxidative stress in bone marrow cells isolated from mice tibiae 

was measured using DHE. As shown in the confocal microscopic findings 

(Figure 7), more cells stained with DHE were found in bone marrow cells 

from mice fed the HFD-TAG than in mice fed the HFD-DAG or chow diet. 

Quantitative analysis by flow cytometry also showed that mice fed the HFD-

TAG had more bone marrow cells with oxidative stress than those fed the 

HFD-DAG or chow diet (Figure 8). 
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Figure 7. Confocal microscope images of bone marrow cells stained with 

dihydroethidium. HFD-TAG, high fat diet containing triacylglycerol; HFD-

DAG, high fat diet containing diacylglycerol. 
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Figure 8. Quantitative analyses by flow cytometry in bone marrow cells 

stained with dihydroethidium. HFD-TAG, high fat diet containing 

triacylglycerol; HFD-DAG, high fat diet containing diacylglycerol. Numbers 

labeled with asterisk indicate percentage of gated cells. 
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6. Metabolic parameters 

Biochemical parameters including fasting plasma glucose, insulin, and lipid 

profiles are presented in Table 3. The homeostatic model assessment of insulin 

resistance (HOMA-IR) was calculated from fasting plasma glucose and 

insulin concentrations. Mice fed the HFD containing either TAG or DAG had 

higher fasting glucose, HOMA-IR, total cholesterol, and triglyceride than 

mice fed the chow diet. Among mice fed the HFD, however, metabolic 

derangement was more severe in the mice fed the HFD-TAG than in those fed 

the HFD-DAG. 
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Table 3. Comparison of metabolic parameters measured in the plasma of mice 

 Chow diet HFD-TAG HFD-DAG P value 

Glucose (mg/dL) 81.5 ± 2.0
a
 169.7 ± 4.7

c
 106.2 ± 4.3

b
 <0.001 

Insulin (ng/mL) 0.6 ± 0.1
a
 1.4 ± 0.2

b
  0.9 ± 0.1

a
 <0.001 

HOMA-IR  2.8 ± 0.5
a
 13.8 ± 2.0

b
 5.4 ± 0.6

a
 <0.001 

Triglyceride 

(mg/dL) 

77.3 ± 2.5
a
 102.2 ± 4.0

c
  91.1 ± 2.7

b
 <0.001 

Cholesterol 

(mg/dL) 

113.5 ± 4.3
a
 168.9 ± 5.3

c
 130.0 ± 6.3

b
 <0.001 

HDL-cholesterol 

(mg/dL) 

67.6 ± 2.5 61.9 ± 1.7 65.3 ± 1.7 0.149 

HFD-TAG, high fat diet containing triacylglycerol; HFD-DAG, high fat diet containing 

diacylglycerol; HOMA-IR, homeostatic model assessment of insulin resistance. Means with 

different superscript letters within a row are significantly different (P <0.05) (“a” versus “b” or 

“a” versus “c” or “b” versus “c” indicates a statistically significant difference, “a” versus “a” 

means no significant difference). 
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IV. DISCUSSION 

 

The results of this study show that mice fed a HFD-DAG had lower body 

weight, lower fat mass, and higher lean mass than mice fed a HFD-TAG, 

which is consistent with previous studies evaluating the metabolic effects of 

DAG. Biochemical tests from this study indicate that the HFD-DAG group 

had lower levels of plasma glucose, insulin, HOMA-IR, total cholesterol, and 

triglyceride than the HFD-TAG group. This study revealed that mice fed the 

HFD-DAG had greater BMD and superior bone microstructure compared to 

those fed the HFD-TAG. These findings suggest that the beneficial effects of 

DAG on bone might result from increased differentiation of bone marrow 

cells into an osteogenic rather than adipogenic lineage. The results also 

suggest that the difference between DAG and TAG on bone metabolism might 

be due to less oxidative stress and lipotoxicity in mice fed the HFD-DAG 

compared to those fed the HFD-TAG. However, mice fed the HFD-DAG also 

had greater BMD and superior bone microstructure compared to those fed the 

chow diet despite higher oxidative stress and lipotoxicity. Although there is no 

clear explanation for it, I speculate that higher body weight might have a 

positive effect on the bone metabolism in mice fed the HFD-DAG compared 

to those fed the chow diet. 

Dietary fat intake can affect bone metabolism in several ways. Excess body 

fat accumulation resulting from a HFD has both positive and negative effects 
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on bone. The mechanical loading of accumulated fat mass can stimulate 

osteogenesis and estrogen produced in adipose tissue can also inhibit bone 

resorption by osteoclasts
27

. In contrast, adipocytes may have lipotoxic effects 

on osteoblasts, as shown in an experiment where adipocytes induced an 

inhibition of osteoblast proliferation in cocultures in vitro
28

. Adipocytokines 

secreted by adipose tissue can also affect bone metabolism in both positive 

and negative ways. For example, leptin inhibits bone formation through a 

central mechanism that involves the sympathetic nervous system
29,30

. 

However, peripheral administration of leptin increases cortical bone growth 

and differentiation of mesenchymal stem cell into osteoblasts rather than 

adipocytes
31,32

, and reduces ovariectomy-induced bone loss in rats
33

. 

Adiponectin also has both positive and negative impacts on bone 

metabolism
34

. The overall effect of adipocytokines on bone remains unclear. 

Recently, oxidative stress was suggested as an important mediator of HFD-

induced bone loss
7
. It was shown that excess fat intake increases oxidative 

stress by overproducing reactive oxygen species (ROS) and decreasing 

antioxidant enzyme activity
35,36

. Oxidative stress has been suggested as a 

responsible factor for the development of osteoporosis. In previous clinical 

studies, oxidative stress had an inverse association with bone mass in 

humans
11,12,37,38

. In vitro and animal studies showed that oxidative stress can 

inhibit the differentiation of osteoblasts
39,40

, while stimulating the formation 

and activation of osteoclasts
41,42

. Parhami et al. also suggested that oxidized 
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lipids play a role in bone metabolism
10,43-45

. They suggested that lipoproteins 

and lipids accumulate in bone and undergo oxidation, after which these 

oxidized lipids can inhibit the differentiation of preosteoblastic cells and 

marrow stromal cells (MSCs), as well as inducing the RANKL-dependent 

osteoclastic differentiation of marrow preosteoclasts. Parhami et al. speculated 

that the effects of oxidized lipids on bone cells may be mediated through 

direct interactions via receptor-mediated responses and/or through the 

generation of other inflammatory cytokines such as MCP-1, M-CSF and IL-6.  

Although DAG is almost identical to TAG in terms of digestibility and 

caloric value, this study and previous studies found that DAG may be 

metabolically beneficial in terms of preventing hyperlipidemia and excess 

body fat accumulation
16-25

. While not fully understood, the underlying 

mechanism for this physiological difference between TAG and DAG is likely 

due to the difference in absorption and metabolism
14,15

. It appears that the 

position of the fatty acid on the glycerol skeleton is responsible for the 

metabolic difference of DAG and TAG
14,15

. After TAG is ingested in the form 

of dietary oil, it is hydrolyzed by lipase to produce free fatty acids and 2-

monoacylglycerol in the small intestinal lumen, and these molecules are 

absorbed into intestinal cells. In intestinal cells, they are reconstituted to form 

TAG via the 2-monoacylglycerol pathway through the action of 

monoacylglycerol acyltransferase (MGAT) and diacylglycerol acyltransferase 

(DGAT). TAG is then incorporated into chylomicrons, which are released into 
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the intestinal lymph and poured into the bloodstream. The absorption pathway 

of 1,3-DAG in intestinal cells is different from that of TAG. In the small 

intestine, dietary DAG oil mainly in the form of 1,3-DAG is hydrolyzed to 1-

monoacylglycerol and free fatty acids, which may be less readily 

resynthesized to TAG via the 2-monoacylglycerol pathway in the intestinal 

cells because 1-monoacylglycerol cannot be the substrate for both MGAT and 

DGAT. Instead, TAG is synthesized by the glycerol-3-phosphate pathway, 

which is less active than the 2-monoacylglycerol pathway. Moreover, 

compared with TAG oils, larger amounts of fatty acids may be released from 

digested DAG into the portal circulation rather than being incorporated into 

chylomicrons, and this hepatic exposure to fatty acids leads to greater β-

oxidation by the liver. This metabolic difference of DAG from TAG likely 

leads to improvement in glucose and lipid metabolism, as shown in this study. 

Furthermore, the metabolically positive effect of DAG results in less 

lipotoxicity and/or oxidative stress in the body, which is probably beneficial 

for skeletal health. 

This study has some limitations. First, bone histomorphometry was not 

conducted. Although bone formation and resorption markers were measured 

in the plasma, it is not clear how a HFD-DAG affects bone remodeling 

differently than a HFD-TAG or chow diet. Dynamic histomorphometry study 

might have provided a more definitive explanation. In addition, plasma 

concentrations of adipocytokines such as leptin and adiponectin were not 
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measured, and these adipocytokines might play a role in mediating a HFD and 

bone metabolism. 

In summary, this study demonstrated that compared to TAG, DAG has a 

positive effect on bone metabolism in mice. The results of this study suggest 

that the beneficial effect of DAG on bone is probably due to less oxidative 

stress and lipotoxicity, which might increase the differentiation of bone 

marrow mesenchymal cells into osteogenic rather than adipogenic lineage. 

Further research is needed to elucidate the mechanism behind the beneficial 

effects of DAG on bone.  
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V. CONCLUSION 

 

 In this study, I have demonstrated that 

1. Mice fed the HFD-DAG had lower body weight, lower fat mass, and higher 

lean mass than mice fed the HFD-TAG. 

2. Mice fed the HFD-DAG had greater BMD and superior bone 

microstructure compared to those fed the HFD-TAG. 

3. Mice fed the HFD-DAG had less oxidative stress in bone marrow cells than 

the mice fed the HFD-TAG. 

4. Mice fed the HFD-DAG had increased expression of osteogenic 

differentiation marker genes in bone marrow cells compared to mice fed the 

HFD-TAG. 

5. Mice fed the HFD-DAG had higher osteocalcin levels in plasma than mice 

fed the HFD-TAG. 

6. Mice fed the HFD-DAG had lower levels of plasma glucose, insulin, 

HOMA-IR, total cholesterol, and triglyceride than mice fed the HFD-TAG 

group. 

 

The results of this study indicated that compared to TAG, DAG has a 

positive effect on bone and bone metabolism in mice. Therefore, consuming a 

diet rich in DAG instead of TAG may be beneficial for preventing bone loss 

and managing osteoporotics taking western style high fat diet. 
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ABSTRACT (IN KOREAN) 

 

Diacylglycerol oil이 C57BL/6J 쥐의  

골대사에 미치는 효과 

 

<지도교수 임승길> 

 

연세대학교 대학원 의학과 

 

최 한 석 

 

고지방식이의 섭취는 역학 연구 및 동물 실험에서 골밀도 감소 

및 골다공증성 골절의 증가와 관련이 있다고 보고되어 왔다. 한편 

고지방식이의 성분으로서 triacylglycerol (TAG) 대신 diacylglycerol 

(DAG)를 포함한 고지방식이의 섭취는 체중 및 복부 지방 감소 등 

대사적으로 유익한 효과가 있는 것으로 보고되고 있다. 본 

연구자는 DAG를 포함한 고지방식이의 섭취가 쥐에서 산화스트레스 

및 골대사에 미치는 효과에 대해서 연구하고자 하였다.  

생후 4주 된 수컷 C5BL/6J 쥐 39 마리를 식이의 차이에 따라서 
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세 군, 즉 정상 식이 군, TAG을 포함한 고지방식이 군 및 DAG을 

포함한 고지방식이 군으로 나누었다. 식이 처치 후 주기적으로 

이중 에너지 흡수법을 이용하여 체구성 및 골밀도를 측정하였고, 

20주 후 미세 컴퓨터 단층촬영을 이용하여 뼈의 미세구조를 

분석하였다. 쥐의 골수에서 채취한 세포를 대상으로 dihydroethidium 

염색을 하여 골수 세포의 산화스트레스를 측정하였다. 또한 reverse 

transcription-polymerase chain reaction (RT-PCR)과 quantitative real-time 

RT-PCR를 이용하여 골수 세포에서 골 세포 또는 지방 세포로의 

분화와 관련된 전사 인자의 표현을 분석하였다. 

본 연구 결과 TAG을 포함한 고지방식이에 비하여 DAG을 포함한 

고지방식이를 섭취한 쥐는 체중 감소뿐 아니라 골밀도 증가 및 골 

미세구조의 개선을 보여주었다. 또한 TAG을 포함한 고지방식이에 

비하여 DAG을 포함한 고지방식이를 섭취한 쥐의 골수 세포에서 

산화스트레스는 더 낮았으며, Runx2의 발현은 증가되어 있었고 

PPARγ의 발현은 감소되어 있었다. 혈청 osteocalcin의 농도는 TAG을 

포함한 고지방식이에 비하여 DAG을 포함한 고지방식이를 투여한 

쥐에서 더 높게 나타났다.  

결론적으로 C57BL/6J 쥐에 DAG을 포함한 고지방식이를 투여한 

경우 TAG을 포함한 고지방식이를 투여한 경우에 비하여 쥐 골수 

세포의 산화스트레스는 더 낮았으며 골밀도, 골의 미세 구조 및 골 
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대사에는 더 유익한 효과를 보여주었다. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

핵심되는 말: 고지방식이, diacylglycerol oil, 산화스트레스, 골대사 


