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Abstract
The Effect of Recombinant Human Bone Morphogenetic
Protein-4 Dose on Bone Formation

in Rat Calvarial Defects

Bone morphogenetic proteins (BMPs) are being evaluated as potential
candidates for periodontal and bone regenerative therapy. The objective of this
study was to evaluate the effect of recombinant human bone morphogenetic
protein-4 (thBMP-4) dose on local bone formation in the rat calvarial defect model.

Calvarial, 8-mm g, critical-size osteotomy defects were created in 140 male
Sprague-Dawley rats. Seven groups of 20 animals each received either rhBMP-
4(2.5 pg) in an absorbable collagen sponge (ACS) carrier, hBMP-4(5 ng)/ACS,
rhBMP-4(2.5 ng) in a B-tricalcium phosphate (B-TCP) carrier, rhBMP-4(5 ng)/B-
TCP, ACS and B-TCP carrier controls, or a sham surgery control and were
evaluated by histologic and histometric parameters following a 2- and 8-week
healing interval (10 animals/group/healing interval).

Surgical implantation of rhBMP-4/ACS and rhBMP-4/B-TCP resulted in
enhanced local bone formation at both 2 and 8 weeks. Within the dose range
examined, rhBMP-4 did not exhibit an appreciable dose dependent response. New
bone area and defect closure were not significant different in hBMP-4/ACS and

rhBMP-4/B-TCP group. However, the bone densities of hBMP-4/ACS group were

iii



a significantly greater than those of the thBMP-4/B-TCP group (P<0.01). The
augmented areas of the rhBMP-4/63-TCP group were significantly greater than those
of the thBMP-4/ACS group at 8 weeks(P<0.01).

In conclusion, thBMP-4 combined with ACS or B-TCP has a significant
potential to induce bone formation in the rat calvarial defect model. Within the
selected thBMP-4 dose range and observation interval, there appeared to be no

meaningful differences in bone formation.

Key Words: bone induction, recombinant human bone morphogenetic protein-4,
dose response, absorbable collagen sponge, B-tricalcium phosphate, rat calvarial

defect model
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(Directed by Prof. Kyoo-Sung Cho, D.D.S., M.S.D., PhD.)

I. Introduction

Reconstruction of bone is often required in conjunction with dental and oral
surgery procedures. Among the various procedures available to reconstruct bone,
bone morphogenetic proteins (BMPs) are thought to constitute a promising
technology. Since Urist first discovered BMPs(Urist, 1965), more than 20 BMPs
have been identified, and several of these including BMP-2, -4, -5, -6, and -7
have been shown to be osteoinductive(Ahn et al., 2003; Choi et al.,, 2002;
Gitelman et al., 1994; Kim et al., 2002; Sampath et al., 1992; Wikesjo et al.,
1999). BMP-4 has been implicated as a coupling factor in bone turnover and
appears to be involved in cellular events that precede callus formation during
fracture repair. Moreover, BMP-4 exhibits a bone formation potential similar to

that of BMP-2 in vitro(Kim et al., 2002) and in vivo(Ahn et al., 2003).



Previous studies have shown that the use of an appropriate carrier is critical for
successful reconstruction of localized bone defects using BMPs(Kenley et al., 1994;
Marden et al., 1994; Urist et al., 1984; Urist et al., 1987). An absorbable collagen
sponge (ACS) has commonly been used as a carrier for BMPs(Choi et al., 2002;
King et al., 1998). Although the ACS appeared an effective carrier in space-
providing skeletal defects, it became victim to compressive forces when used for non-
space-providing onlay indications(Barboza et al., 2000; Sigurdsson et al., 1997). -
tricalcium phospate (B-TCP) has been considered as an osteoconductive bone
substitute and recently a biodegradable delivery system for BMPs(Ahn et al., 2003;
Alam et al., 2001a; Alam et al., 2001b; Gao et al., 1996; Laffargue et al., 1999).
Porous by nature, B-TCP has been shown to entrap rhBMP-4 within its micropores
that the intrinsically diffusible rhBMP-4 may be retained and its action apparently
prolonged(Urist et al., 1984). The porous structure of B-TCP allows cells to migrate
into it, and, in addition, the biomaterial provides resistance against compressive
forces.

It is likely that a critical minimal dose is required to support bone formation by
BMPs. High doses may potentially produce adverse pharmacological effects, in
addition to desired physiological effects. Increasing dosage may lead to increased
vascularity, which in turn may cause excessive tissue edema(Marukawa et al., 2001).
Therefore, it appears desirable to identify the lowest effective dose for the various

BMP technologies and their potential indications. In our previous study using the



calvarial osteotomy model in the rat, Sug thBMP-4 in an ACS or B-TCP carrier
proved sufficient to induce de novo bone formation(Ahn et al., 2003). In this study,
we evaluated a thBMP-4 dose of 2.5 pg in addition to the 5pg dose in this defect

model in the rat.



II. Materials & methods

A. Materials

1. Animals

A total of 140 male Sprague-Dawley rats (weight 200 - 300 g) were used. The
animals were maintained in plastic cages in a room with 12 h-day/night cycles, an
ambient temperature of 21°C, and ad Iibitum access to water and a standard
laboratory pellet diet. Animal selection and management, surgical protocol, and
preparation followed routines approved by the Institutional Animal Care and Use

Committee, Yonsei Medical Center, Seoul, Korea.

2. rhBMP-4 Implants

rhBMP-4" was reconstituted and diluted in buffer to produce a concentration of
0.025 or 0.05 mg/ml. A sterile 8-mm diameter ACS™ or B-TCP* particles were then
loaded with 0.1 ml of the rhBMP-4 solutions to produce an implanted dose/defect of
2.5 and 5 pg, respectively. For the control experiments, the buffer was used alone.
The thBMP-4 and control implants were fitted the calvarial defect following a 5-

minute binding period.

" R&D Systems Inc., Minneapolis, MN, U.S.A
T Collatape®, Calcitek, Carlsbad, CA, U.S.A

t Cerasorb®, 150-500 gm, Curasan, Kleinotheim, Germany



B. Research Procedures

1. Surgical procedures

The animals were anaesthetized by an intramuscular injection (5 mg/kg body wt.)
of a 4:1 solution of ketamine hydrochloride’: Xylazine'. Routine infiltration
anaesthesia’ was used at the surgical site. An incision was made in the sagittal plane
across the cranium and a full thickness flap reflected, exposing the calvarial bone. A
standardized, circular, transosseous defect, 8 mm in diameter, was created on the
cranium with the use of a saline cooled trephine drill*. After removal of the trephined
calvarial disk, thBMP-4 and control treatments were applied to the defects. Seven
groups of 20 animals each either received rhBMP-4(2.5 ng)/ACS, rhBMP-4(5
ng)/ACS, thBMP-4(2.5 pg)/B-TCP, thBMP-4(5 pg)/B-TCP, ACS or B-TCP carrier
controls, or sham surgery control. The periosteum and skin were then closed and

sutured with 4-0 coated Vicryl violet .

§ Ketalar®, Yuhan Co., Seoul, Korea
‘ Rompun®, Bayer Korea, Seoul, Korea
129% lidocaine, 1:100,000 epinephrine, Kwangmyung Pharm., Seoul, Korea

*3i, FL, USA

” Polyglactin 910, braided absorbable suture, Ethicon, Johnson & Johnson Int., Edinburgh,UK



2. Histologic and histometric procedures

The animals were sacrificed by CO, asphyxiation at 2 and 8 weeks postsurgery.
Block sections including the surgical sites were removed. Samples were placed
immediately into vials and were fixed in 10% neutral buffered formalin solution for
10 days. All samples were decalcified in EDTA-HCI for 7 days, and embedded in
paraffin. Three um thick coronal sections through the center of the circular defects
were stained with hematoxylin-eosin. After conventional microscopic examination,
computer-assisted histometric measurements of the newly formed bone were obtained
using an automated image analysis system'" coupled with a video camera on a light
microscope*t. Sections were examined at 20x magnification. Defect closure was
determined by measuring the distance between the defect margin and ingrowing bone
margin. And it was expressed in mm and as a percentage of the total defect width.
Augmented area (mm”) was measured including new bone, the residual biomaterials.
New bone area (mm”) was determined by newly formed bone area within the
augmented area, excluding biomaterials, marrow and fibrovascular tissues within the
newly formed bone. Bone density was calculated as follows: Bone density (%) = New

bone area / Augmented area x 100 (Figure 1).

" Image-Pro Plus”, Media Cybernetics, Silver Spring, MD, U.S.A

¥ Olympus BX50, Olympus Optical Co., Tokyo, Japan



] original bone Defect closure (%) =(a-b)/ax 100
| A | new bone =n New bone area =n
L ]

biomaterials = m Augmented area =n + m

Bone density (%) =n/(n+ m) x 100

Figure 1. Schematic drawings of calvarial osteotomy defect showing histometric

analysis

3. Statistical Analysis

Histomorphometric recordings from the samples were used to calculate group
means (£SD). A two-way analysis of variance was used to analyze the effect of time
and experimental conditions. The post hoc Scheffe’s test was used to analyze the

difference between the groups (P<0.05).



I11. Results
A. Clinical observations
Wound healing was generally uneventful and appeared similar for all rhBMP-4

doses and the controls.

B. Histologic observations
Sham surgery control: At 2 and 8 weeks postsurgery, defects filled with thin loose
connective tissue with a minimal amount of new bone formation originating from the

defect margins were observed. The defect center had collapsed (Figure 1a).

Carrier control groups: In both the ACS and B-TCP group, the defects were filled
with dense, fibrous connective tissue and limited new bone formation was observed at
the defect margins at 8 weeks. The ACS appeared to be completely resorbed (Figure

1b) whereas residual B-TCP particles were still observed (Figure 1c¢).

rhBMP-4/ACS groups: Irrespective of dose, all defect sites exhibited marked bone
formation, and were almost completely bridged with the new bone at 8 weeks. The
consolidation of lamellar bone along the dural aspect was observed at 2 weeks
postsurgery and at 8 weeks the appearance of the new bone was more lamellar than
that observed at 2 weeks. At 2 weeks postsurgery, ACS fragments were observed

embedded within the new bone without connective tissue intervention. No residual



ACS could be detected at 8 weeks. There was no apparent relationship between the

degree of bone maturity, presence of residual ACS, and thBMP-4 dose (Figure 2).

rhBMP-4/3-TCP groups: Regardless of dose, extensive bone regeneration was
apparent in all defect sites. A large number of residual B-TCP particles were observed
within the new bone at 2 weeks and appeared to be less at 8 weeks without apparent
differences between rhBMP-4 doses. The appearance of the new bone at 8 weeks was
more lamellar than that at 2 weeks, and did not appear to be correlated with the

rhBMP-4 dose (Figure 3).

C. Histometric analysis

Tables 1-4 show the results of the histometric analysis. Only limited new bone
formation was observed in the sham surgery controls. New bone growth and defect
closure in the ACS and B-TCP controls was not different from that in the sham
surgery controls.

Irrespective of dose, there was a significant bone growth and the defects were
almost completely closed in the thBMP-4/ACS and thBMP-4/3-TCP groups. New
bone area and defect closure were not significant different between these two groups.
In the bone density, thBMP-4/ACS group had a significantly greater value than
rhBMP-4/B-TCP group (P<0.01) and, there were no differences between the different

dose level. The augmented areas of the thBMP-4/B-TCP group were significantly



greater than those of the rhBMP-4/ACS group at 8 weeks(P<0.01).

The two-way ANOVA revealed that both time and treatment conditions
significantly affected the formation of new bone within the defects (P<0.01). There
were statistically significant differences between the results obtained at 2 and 8 weeks

in all groups (P<0.01).
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Table 1. Defect closure (group means = SD; n=10, mm (%))

2 weeks 8 weeks
sham surgery control 0.9+£0.3(13.9+3.6) 1.2+£0.5(15.6+7.3)

ACS control 1.4+0.5(22.6+9.3) 1.5+0.5(26.9+10.4)

B-TCP control 1.1+£0.4(20.8+7.2) 1.3+0.6 (25.3 = 10.8)

thBMP-4(2.5 ug)/ACS 6.7+0.9(96.9+7.1)" 6.8+0.7(99.6+1.2)"
thBMP-4(5 pg)/ACS 6.5+0.5 (100.0 + 0.0)" 6.5+0.7 (100.0 + 0.0)""
thBMP-4(2.5 ug)/8-TCP 6.7+0.7 (98.4+5.0)% 6.9+0.7 (95.1+10.1)"*
thBMP-4(5 pg)/B-TCP 58+1.0(93.2+12.6)" 6.5+0.7 (100.0 + 0.0)*

*: Statistically significant difference compared to sham surgery control group (P<0.01)
T Statistically significant difference compared to ACS control group (P<0.01)

* Statistically significant difference compared to 3-TCP control group (P<0.01)

Table 2. New bone area (group means + SD; n=10, mm?)

2 weeks 8 weeks

sham surgery control 0.3+0.1 0.5+0.2

ACS control 0.7+£0.2 09+04

B-TCP control 09+03 1.2+£0.3
thBMP-4(2.5 pg)/ACS 3.8+0.7" 49+08"
rhBMP-4(5 pg)/ACS 3.8+0.77 47+0.8""
thBMP-4(2.5 pg)/B-TCP 43+1.6" 47+1.7"
thBMP-4(5 pg)/B-TCP 3.9+£0.9% 45+0.7"%

*: Statistically significant difference compared to sham surgery control group (P<0.01)
T Statistically significant difference compared to ACS control group (P<0.01)

% Statistically significant difference compared to B-TCP control group (P<0.01)

11



Table 3. Bone density (group means + SD; n=10, %)

2 weeks 8 weeks
thBMP-4(2.5 ug)/ACS 62.4+11.4 90.2 +5.4"
thBMP-4(5 ug)/ACS 68.7+2.9" 91.1+2.5"
thBMP-4(2.5 ug)/8-TCP 64.4+4.6 69.7+11.8
thBMP-4(5 pg)/B-TCP 61.8+2.0 723428

*: Statistically significant difference compared to 2.5 pg thBMP-4/B—TCP group at 8 weeks (P<0.05)
T Statistically significant difference compared to 5 pg thBMP-4 /3—TCP group (P<0.01)

Table 4. Augmented area at 8 weeks postsurgery (group means = SD; n=10, mm®)

8 weeks
thBMP-4(2.5 pg)/ACS 53409
rhBMP-4(5 pg)/ACS 53+08
thBMP-4(2.5 pug)/8-TCP 7.0+2.0"
rhBMP-4(5 pg)/B8-TCP 6.2+0.8

*: Statistically significant difference compared to 5 ug thBMP-4/ACS group (P<0.05)

12



IV. Discussion

The objective of this study was to evaluate the effect of rhBMP-4 dose in an ACS
or B-TCP carrier on bone regeneration in a critical size rat calvarial defect model. The
experimental defects receiving rhBMP-4 at 2.5 and 5 ug underwent extensive bone
formation following a 2- and 8-week healing interval. The carrier and sham surgery
controls exhibited limited, if any, evidence of new bone formation. Within the
selected thBMP-4 dose and observation interval, there appeared to be no significant
differences in bone formation.

The experimental model used in this study was based on that described by Takagi
and Urist(Takagi et al., 1982). This model has been shown effective to evaluate the
potential for bone formation in many studies(Ahn et al., 2003). We selected this
model for the following reasons: 1) rats were readily available; 2) the surgical
procedures on the rat calvarial bone are relatively simple to perform; 3) spontaneous
healing would not occur at the control site (critical size defect(Schmitz et al., 1986));
4) the observations can be focused on the healing process of the bone, since there are
no major nerves or blood vessels around the rat calvaria; 5) the calvarial defect model
has many similarities to the maxillofacial region, as anatomically the calvaria consists
of two cortical plates with a region of intervening cancellous bone similar to the
mandible(Frame, 1980), and physiologically, the cortical bone in the calvaria

resembles an atrophic mandible(Bays, 1983); 6) the preparation of the tissue

13



specimens is easy; and 7) the parameters can be simply and accurately measured in
each specimen(Higuchi et al., 1999)

Dose-dependency may vary as a function of the carrier technology(Uludag et al.,
1999; Winn et al, 1999), the species, the experimental site/application, the
evolutionary status of the recipient(Winn et al.,, 1999), and the observation
interval(Boden et al., 1998; Winn et al., 1999). In this study, we used 2.5 and 5 pg
rhBMP-4 for each defect in a rat calvarial defect model and a 2- and 8-week
observation interval. Within this dose and observation interval in this model, it was
apparent that rhBMP-4 did not produce an appreciable dose dependent response. In
addition, there was no apparent relationship between the degree of remodeling or the
presence of residual carrier biomaterial and thBMP-4 dose. These findings are not
unusual and corroborate data from several other studies. For example, Wikesjo et
al.(1999) reported that canine supraalveolar periodontal defects treated with rhBMP-2
in ACS at 0.05, 0.10 or 0.20 mg/ml all exhibited extensive and similar alveolar bone
formation(Wikesjo et al., 1999). Moreover, Tatakis et al.(2002) using the same
rhBMP-2 concentrations also reported no meaningful differences in bone induction
using supraalveolar peri-implant defects in dogs(Tatakis et al., 2002). Lastly, Zellin
et al.(1999) placed dome-shaped barrier membranes made of expanded
polytetrafluoroethylene on the parietal surface of rats and filled the domes with 5, 15
pg of thBMP-2 in ACS. They also reported that there was no correlation between

bone formation within the domes and hBMP-2 dose(Zellin et al., 1999).

14



Nevertheless some studies have shown a distinct dose dependent response(Alam
et al.,, 2001a; Alam et al.,, 2001b; Kanatani et al., 1995; Kenley et al., 1994;
Laffargue et al., 1999; Ohura et al., 1999; Wang et al., 1990), while still others have
failed to demonstrate dose-dependency, even when wide dose ranges were used. The
absence of a dose dependent response has been reported in both ectopic(Aspenberg et
al., 1996; Winn et al., 1999; Zellin et al., 1999) and orthotopic (Cook et al., 1994;
Sandhu et al., 1996; Tatakis et al., 2002; Wikesjo et al., 1999) applications in
various species. In these in vivo studies, the lack of dose dependent response might be
expected once a minimum dose threshold has been exceeded (Cook et al., 1994;
Sandhu et al., 1996; Tatakis et al., 2002; Winn et al., 1999). Bone formation may
not vary with an increasing thBMP-4 dose above a minimum dose threshold. This
suggestion is supported by data in previous study of ours(Kim et al., 2002). In an in
vitro study, the expression of alkaline phosphotase(ALP) mRNA of mouse calvarial
cells was increased in a dose-dependent fashion by rhBMP-4. However, at
concentrations greater than 50 ng/ml, the expression of ALP mRNA did not increase
but reached a plateau with increasing thBMP-4 concentrations. Similar observations
were reported in an in vivo study(Winn et al., 1999). A dose dependent response in
bone formation was observed at 0, 10, or 50 pg thBMP-2 using a poly(D,L-lactide)
disk carrier technology in the rat ectopic model, however, at a dose of 100 ug
rhBMP-2 bone formation did not further increase. In the present study, the 2.5 ug

rhBMP-4 dose appears greater than the minimum dose threshold. To determine the

15



lowest effective thBMP-4 dose in the rat calvarial model, additional studies using
smaller doses appear necessary.

The regenerative potential of thBMP-4 is known to depend upon the carrier
technology. Many materials, such as collagen(Choi et al., 2002; Sigurdsson et al.,
1996), demineralized bone matrix(Sigurdsson et al., 1996), hydroxyapatite(Mao et al.,
1998), TCP(Gao et al., 1996; Urist et al., 1984; Urist et al., 1987; Wu et al., 1992),
polylactic acid polymer(Heckman et al, 1991), polylactic-polyglycolic
polymer(Miyamoto et al., 1993; Sigurdsson et al., 1996), gelatin(Isaksson et al.,
1993), fibrin sealant(Kawamura et al., 1988), and composites of these
materials(Ohura et al., 1999) have been used and evaluated as a carriers of BMPs. In
this study, we used ACS and B-TCP technologies as carriers for thBMP-4. Animals
receiving rhBMP-4/B3-TCP exhibited greater total bone formation (area) compared to
animals receiving thBMP-4/ACS at 8 weeks. These results may be explained by the
observation that ACS resorbed early and may have collapsed from soft tissue pressure
imposed during the early healing events. In contrast, the B-TCP particles apparently
exhibited sufficient firmness against the soft tissue compression to maintain the defect
space. Also the slowly resorbing B-TCP biomaterial occupying the defect space may
have displaced thBMP-4 induced bone formation outside the defect area thus
resulting in the more extensive bone formation. We used a B-TCP particle size of 150-
500 pum. It is not known whether the resorption rate of the B-TCP particles would

increase with decreasing B-TCP particle size. Additional studies using B-TCP with

16



smaller particle sizes may be needed.

In conclusion, thBMP-4 using ACS or B-TCP carrier technologies has significant
potential to induce bone formation in rat calvarial critical size defects. Within the
selected hBMP-4 dose and observation interval, there appeared to be no meaningful
differences in de novo bone formation. Both ACS and B-TCP may be considered

effective carriers for hBMP-4.

17



V. Conclusion

The objective of this study was to evaluate the effect of recombinant human bone
morphogenetic protein-4 (rhBMP-4) dose on local bone formation in the rat calvarial
defect model.

Calvarial, 8-mm @, critical-size osteotomy defects were created in 140 male
Sprague-Dawley rats. Seven groups of 20 animals each received either thBMP-4(2.5
ug) in an absorbable collagen sponge (ACS) carrier, thBMP-4(5 ng)/ACS, rhBMP-
4(2.5 pg) in a B-tricalcium phosphate (B-TCP) carrier, thBMP-4(5 pg)/8-TCP, ACS
and B-TCP carrier controls, or a sham-surgery control and were evaluated by
histologic and histometric parameters following a 2- and 8-week healing interval (10
animals/group/healing interval).

Surgical implantation of rhBMP-4/ACS and rhBMP-4/B-TCP resulted in
enhanced local bone formation at both 2 and 8 weeks. Within the dose range
examined, thBMP-4 did not exhibit an appreciable dose dependent response. New
bone area and defect closure were not significant different in thBMP-4/ACS and
rhBMP-4/B-TCP group. However, the bone densities of thBMP-4/ACS group were a
significantly greater than those of the rhBMP-4/B-TCP group (P<0.01). The
augmented areas of the hBMP-4/3-TCP group were significantly greater than those
of the thBMP-4/ACS group at 8 weeks(P<0.01).

rhBMP-4 combined with ACS or 3-TCP has a significant potential to induce bone

formation in the rat calvarial defect model. Within the selected rhBMP-4 dose range

18



and observation interval, there appeared to be no meaningful differences in bone

formation.
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Legends

Figure 1. Schematic drawings of osteotomy calvarial defect showing histometric

analysis.

Figure 2. Representative photomicrographs of defect sites receiving the (a) sham-
surgery control (b) ACS carrier control, and (c) B-TCP carrier control at 8§ weeks
postsurgery. Thin, fibrous connective tissues may be observed between the defect
margins. The ACS biomaterial appears completely absorbed whereas residual 3-TCP
particles are still present within fibrous connective tissue at the defect site (asterisk =

B-TCP, arrow head = defect margin; H-E stain; original magnification X20).

Figure 3. Representative photomicrographs of defect sites receiving rhBMP-4(2.5
ug)/ACS at 2 and 8 weeks postsurgery. At 2 weeks (a, b), some degraded ACS
fragments were embedded within the new bone without connective tissue intervention,
and there was some consolidation of lamellar bone along the dural aspect. At 8 weeks
(c, d), the defect was almost completely filled with the new bone (arrow head = defect
margin; H-E stain; original magnification a, ¢ X20; b, d X 100). Similar observations

were made for defect sites receiving thBMP-4(5 pug)/ACS.

Figure 4. Representative photomicrographs of defect sites receiving rhBMP-
4(2.5pg)/B-TCP at 2 and 8 weeks postsurgery. At 2 weeks (a, b), the defect was

completely bridged with new bone, and a large number of residual B-TCP particles
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were evident within the new bone. At 8 weeks (c, d), the B-TCP particles appeared
smaller in numbers than at 2 weeks (asterisk = B-TCP, arrow head = defect margin; H-
E stain; original magnification a, ¢ X20; b, d X100). Similar observations were made

for defect sites receiving rhBMP-4(5 pg)/B-TCP.
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