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Abstract  
 

The Electrophysiological Effect of Subthalamic  

Lesion and Dopamine D1 and D2 Receptor Agonists in   

Basal Ganglia Nuclei in Parkinsonian Rat Model  

 
 
 

The loss of dopamine from the striatal dopamine receptor causes 

subthalamic nucleus (STN) neuron hyperactivity, and leads to the 

hyperactivity of the output nuclei of the basal ganglia. Ways of reducing 

STN hyperactivity have been studied since they this was found to reverse the 

Parkinsonian motor symptoms. Subthalamic nucleus lesions decrease the 

output of the STN, and normalize the temporary disorder in the motor 

controlling system in basal ganglia. Another approach taken to reduce the 

activity of the STN involves the stimulation of striatal dopamine D1 and D2 

receptor using dopaminergic agonists, which leads indirectly to a decrease in 

STN neuronal activity.  

 In this study, SKF38393 (a D1 receptor agonist) and Quinpirole (a D2 

receptor agonist), reported to decrease the activity of the inhibitory pallido-

subthalamic pathway, were consecutively injected intrastriatally. The 

substantia nigra pars reticula (SNpr) and the ventrolateral thalamic nucleus 

(VL) were microrecorded to ascertain the activity of the basal ganglia output  
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structure. The effects of STN lesioning by using kainic acid (1 mg/0.5 ml, 

total 1 µl) on the neuronal activities of SNpr and VL were investigated by 

monitoring firing rates and firing patterns. Firing patterns was treated as a 

combination of a regular pattern and a bursting pattern. In the SNc lesioned 

rats, an SKF38393 injection decreased the firing rate of SNpr (26 ± 2.3 

spikes/s → 19 ± 2.9 spikes/s), but increased the firing rate of VL (4 ± 

2.2 spikes/s → 7 ± 0.8 spikes/s). The firing rate of SNpr was decreased 

(29 ± 1.9 spikes/s → 16 ± 0.4 spikes/s), but the firing rate of VL (5 ± 

0.7 spikes/s → 13 ± 3.3 spikes/s) increased, by injecting Quinpirole. The 

proportion of burst neurons, however, was unaffected. On the other hand, 

STN lesioning decreased both the firing rate and the proportion of burst 

neurons. 

The effect of SKF38393 or Quinpirole injection on the firing rate of SNpr 

and VL was investigated in SNc + STN lesioned rats. Compared to the result 

in SNc lesioned rats, the firing rate of SNpr decreased to a lesser extent and 

the firing rate of VL was increased to a lesser extent. These results 

demonstrate that lesioning of the STN decreases the hyperactivity of the 

SNpr and the proportion of burst neurons on total neurons, but dopamine 

receptor agonists such as SKF38393 and Quinpirole did not change the firing 

pattern. It was also found that STN could mediate the action of SKF38393 
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and Quinpirole. 

-------------------------------------------------------------------------------------------- 

Key Words: 6-Hydroxydopamine, Parkinson’s disease, subthalamic nucleus, 

basal ganglia, kainic acid, dopamine agonist 
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Ⅰ. Introduction 

 

Parkinson’s disease (PD) is a neurodegenerative movement disorder 

induced by a progressing deficit of dopamine cells in the pars compacta of the 

substantia nigra (SNc), leading to dopamine depletion in the striatum.1 This 

dopamine reduction is responsible for the imbalance in the activities of the 

direct and indirect pathways relating the striatum to the basal ganglia output 

structures, the pars reticulata of the subtantia nigra (SNpr) and the internal 

part of globus pallidus (Gpi).2,3 According to current models of basal ganglia 

circuitry, changes in the activity of both direct and indirect inputs from the 

striatum to the internal pallidum and the substantia nigra pars reticulata are  
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significant in hypokinetic movement disorders, such as akinesia in 

Parkinson’s disease.4 The direct pathway comprises the GABAergic 

striatopallidal projection, the GABAergic pallido-subthalamic projection, and 

the glutamatergic subthalamo-nigral/endopeduncular projections. In the 

indirect pathway, the subthalamic nucleus (STN) exerts excitatory 

(glutamergic) control on the output structures of the basal ganglia.5 According 

to this model, the STN acts primarily as a relay between the external pallidum 

and the internal pallidum/substantia nigra in the indirect pathway.4 In accord 

with this hypothesis, events thought to decrease subthalamic neuronal output 

have been found to reverse the behavioral effects of dopamine reduction in 

rats,6,7 primates,8,9,10 and humans.8,9,11 Dopamine plays a critical role in 

regulating the striatal neuronal activity via the D1 and D2 subtypes of the 

dopamine receptors. The D1 receptors are present on the striatal output 

neurons projecting to the SNpr and the entopeduncular nucleus (EPN), while 

the D2 receptors are present on the neurons projecting to the globus pallidus 

(GP) in rats.12 According to recent pathophysiological models of PD, the 

reduced stimulation of the striatal dopamine receptors that follows 

degeneration of dopaminergic neurons results in hyperactivity of the basal 

ganglia output nuclei.13 Therefore, dopaminergic agonists are predicted to 

exert a therapeutic effect at the level of the subthalamus by indirect reducing  

 



6

 

STN neuronal activity via stimulating striatal dopamine D2 receptors.14  

The motor nuclei of the thalamus [ventromedial nucleus (VM) and VL in 

the rat] function between the basal ganglia motor circuit and the cortex.2,3 The 

ventrolateral nucleus (VL) is known to receive direct GABAergic projections 

from the output structures of the basal ganglia.2 According to the widely 

accepted functional organization of the basal ganglia, the change in the firing 

activity of output structures of the system is supposed to induce an increase in 

the tonic inhibitory change exerted by these structures on the activity of motor 

thalamic nuclei, resulting in the deactivation of motor cortical areas.1,2  

The effects of STN lesioning, SKF38393 (a D1 agonist) and Quinpirole (a 

D2 agonist) were compared in a Parkinsonian rat model in this study. To 

investigate these effects the firing rates and firing patterns of SNpr neurons 

were analyzed. The firing rates and patterns of VL neurons were also analyzed, 

since SNpr neurons are supposed to affect VL neurons.1,2,3 To investigate 

Parkinsonism pathophysiology the effects of SKF38393 and Quinpirole were 

also determined on the STN lesioned Parkinsonian rat model.  
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Ⅱ. Materials and Methods 

 

1. Surgical procedures for the medial forebrain bundle (MFB) and for the 

STN lesion 

Male adult Sprague-Dawley rats at weighting 200-250 g were used for the 

first surgical procedure. Rats were divided into 5 groups: (i) control group, 7 

rats without lesions (including both non-lesioned and sham-lesioned animals); 

(ii) a 6-OHDA lesioned group (n = 7) that had a lesion of the dopaminergic 

mesencephalic neurons induced by a toxin 6-OHDA; (ⅲ) a 6-OHDA + STN 

lesioned group, 7 rats with a 6-OHDA lesion of mesencephalic dopaminergic 

neurons plus a STN lesion, induced by kainic acid; and (ⅳ) a 6-OHDA + 

STN sham group, 7 rats treated with saline instead of kainic acid in the STN. 

Five animals per group were housed in a temperature-controlled room on a 

12hr.-light/12hr.-dark schedule with free access to food and water. Rats were 

anesthetized with a mixture of ketamine (75 mg/kg), acepromazine (0.75 

mg/kg) and rompun (4 mg/kg) and mounted in a stereotaxic apparatus. A 

neurotoxin 6-OHDA hydrobromide (Sigma, St Louis, MO, 8 μg free base in 

4 µl of 0.2% ascorbic acid) was injected into the medial forebrain bundle 

according to the following stereotaxic coordinates: AP -4.4 mm, ML 1.2 mm 

relative to bregma, and DV -7.5 mm from the dura. The injection was made at  
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a rate of 0.5 µl/min using a cannula, and was controlled using a Hamilton 

microsyringe. The connection between the cannula and the microsyringe was 

composed of polyethylene tubing. To prevent the noradrenergic neurons being 

destroyed, desipramine (12.5 mg/kg, i.p.) was administered 30 min prior to 

the 6-OHDA infusion.  

STN lesioning was achieved by injecting 1 µg of kainic acid (Sigma, St 

Louis, MO) dissolved in 0.5 µl of saline into the right STN (coordinates: AP 

-3.8 mm, ML 2.5 mm relative to bregma, and DV -8.0 mm from the dura) at 

the rate of 0.25 µl/min. In the group of rats with paired lesions (6-OHDA + 

STN lesion), STN lesioning was performed 3 weeks after 6-OHDA lesioning. 

Sham lesioning was performed by using the same protocols as used for the 

paired lesions, but saline was injected instead of kainic acid. 

 

2. Extracellular microrecordings 

Extracellular, single unit recordings were produced from rats anesthetized 

with urethane (1.3 mg/kg i.p.). A glass microelectrode (impedance 7-10 

Mohm) filled with 2.5% Pontamine Sky Blue in 0.5 M sodium acetate buffer 

(pH 7.6) was used to produce the single recordings. Microelectrodes were 

stereotaxically guided through a drilled skull burr hole to the target  
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coordinates (SNpr: AP -5.3 mm, ML 2.4 mm relative to bregma, and DV 7.5-

8.0 mm from the dura; VL: AP -2.12. mm, ML 1.6 mm relative to bregma, and 

DV 5.5-6.5 mm from the dura). Electrical signals were amplified using a 

DAM80 preamplifier (WPI, UK) in bridge mode, displayed on a storage 

oscilloscope and monitored with an audio amplifier. Single unit activity was 

isolated with a window discriminator, and firing rate data were collected on a 

computer equipped with Spike 2 software (version 2.18, Cambridge 

Electronic Design, UK). Visual inspection of digital neuronal activity and 

raster displays were useful complements to the computer based analysis of the 

discharge patterns of these units. The isolated units were monitored for at least 

10 min to ensure the stability of, their firing rate, firing pattern and spike 

morphology, and then 5-10 min of spontaneous activity was recorded. The 

selective D1-class dopamine agonist SKF38393 (Sigma, St Louis, MO, 10 

nmol/0.5 µl), or of the selective D2-class agonist Quinpirole (Sigma, St 

Louis, MO, 10 µmol/0.5 µl) was injected in the striatum [coordinates AP -0.8 

mm, ML 3.0 mm relative to bregma, and DV 1.3 mm from the dura]. This 

dose was selected in order to allow comparisons with previous work. The 

drugs were dissolved in PBS, and administered through a stainless steel 

needle (0.3 mm O.D.) connected to a Hamilton microsyringe (10 µl). This 

procedure required less than 2 min, and the needle was left in place until the  
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end of the recording. At the end of the experiment the positions of the 

electrode tips were marked by an iontophoretic deposit of Pontamine Sky 

Blue, and the rat was transcardially perfused with cold saline followed by 4% 

paraformaldehyde in PBS. At the end of the recording, the location of the tip 

of the recording microelectrode was marked, at -15 µA for 20-30 min, by an 

iontophoretic deposit of Pontamine Sky Blue. After the recordings had been 

made animals were deeply anaesthetized, brains were perfused and removed, 

and later sectioned for histological confirmation of the recording site. The 

stored signal was converted to square wave pulses with the aid of a window 

discriminator (WPI, UK) and a personal computer. The mean firing rate, the 

mean interspike interval (ISI), autocorrelogram and discharge pattern were 

investigated for each neuron. The ISIs allowed an evaluation of the neurons 

degree of burst frequency, following an algorithm described by Hutchison et 

al (1997, 1998).5,16 Bursting cells had a degree of burstiness score of more 

than 10, and were calculated from the reciprocal of the modal interval divided 

by the mean firing rate.  

 

3. Histology and immunohistochemistry 

After the extracellular single unit recording, neurons were identified by 

their stereotaxic location and by the histological location of the electrode tip  
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after iontophoresis with Pontamine Sky Blue from the recording electrode (-

18 µA for 20 min). Rats were anesthetized and transcardially perfused with 

125 ml of normal saline followed by 250 ml of ice-cold 4% paraformaldehyde. 

Brains were removed, postfixed for 10 hours, and transferred to 30% sucrose 

until equilibrated. 20 µm sections were cut frozen and then immunoreacted 

with a primary, polyclonal antibody against rat TH (Pel-freeze, Rogers, AK) at 

a dilution of 1:750, and then with a biotinylated goat anti-rabbit IgG (Vector 

Labs, Burlingame, CA) secondary antibody. The signal was amplified using 

avidin and biotinylated horseradish peroxidase using the Elite ABC Vectastain 

Kit (Vector, Burlingame, CA). 3,3'-Diaminobenzidine tetrachloride dehydrate 

was used as a chromogen and cobalt chloride/nickel ammonium was used to 

intensify color changes. This immunostaining allowed us to determine the 

extent of dopaminergic cell degeneration. Only rats with a total loss of TH 

immunoreactivity were used for the electrophysiological analysis. 

The STN lesions and the localization of the recorded basal ganglia nuclei 

were studied in 20 µm sections stained with cresyl violet. 

 

4. Data analysis 

Statistical analysis was performed with the SPSS version 9.0 statistical  
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software package (SPSS Inc., Chicago, IL). Comparisons of the firing rates 

from different rats in each group were performed using analysis of variance 

(ANOVA). Results showing significant differences between groups were 

compared using Kruskal-Wallis one-way ANOVA and then the Mann-

Whitney U-test. Statistical significance was accepted when p was < 0.05.  
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Ⅲ. Results 

 

1. Histological findings of rat PD models 

The extent and location of the lesions induced by the 6-OHDA were 

confirmed by assessing the loss of TH-immunoreactive cells and fibers in the 

substantia nigra pars compacta (SNc) and striatum in a rat Parkinsonian model 

with 6-OHDA (Fig. 1A). In addition, the ventral tegmental area (VTA) was 

also lesioned on the same side in most of the rats. The STN lesions were also 

evaluated after conducting the experiments and they revealed local gliosis at 

the level of the STN (Fig. 1B). Those rats in which the STN lesion extended 

to the nearby basal ganglia nuclei or missed the STN altogether were excluded 

from the data analysis. The localizations of the recorded SNpr and VL sites 

were confirmed by cresyl violet staining (Fig. 1C)  

  

2. Effects of STN lesions on firing rate and firing patterns  

In each group, the mean firing rates, and the total number of cells recorded 

are shown in table 1. The number of cells recorded per track was similar for 

each group. The firing patterns in the SNpr were classified into a regular non-

bursting pattern and a bursting pattern (Fig. 2). In normal unlesioned rats 
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A.  

 

 

 

B.  

 

  

 

C.  

 

 

 

 
 

Figure 1. (A) Immunohistochemistry of tyrosine hydroxylase (TH) showing 
the total degeneration of dopamine fibers in the striatum, and dopamine cell 
bodies in the SNc on the 6-OHDA injected side (right) compared to the 
normal side (left). (B) Cresyl violet-stained sections illustrating a unilateral 
kainic acid lesion in the subthalamic nucleus. Arrow indicates the location of 
the lesion. (C) Photomicrograph showing the Pontamine Sky Blue mark 
corresponding to a neuron recorded at the end of a track in the ventrolateral 

nucleus (left) and pars reticula of substantia nigra (right). Magnification, ×40 
SNpc: substantia nigra pars reticula, STN: subthalamic nucleus, VTA: ventral 

tegmental area, VL: ventrolateral thalamic nucleus, SNpr: substantia nigra pars 

reticula 

SNc  SNc
VTA

VTA

VL SNpr 

STN
STN 
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(n = 35), the mean firing rates of neurons in the SNpr were 20 ± 9 spikes/s 

(table 1). Compared with the normal control rats, PD rat models with 6- 

OHDA exhibited significantly increased mean firing rates in the SNpr (28 ± 

1.5 spikes/s) (p < 0.05). Following STN lesioning in the PD rats, the mean 

firing rate in the SNpr was reduced versus that of PD rats (21 ± 1.8 vs. 28 ± 

1.5 spikes/s, respectively) (p < 0.05). No statistically significant difference 

was observed between the mean firing rates of sham STN lesioned and STN 

lesioned PD rats (28 ± 2.0 spikes/s) (p > 0.05). Regular neurons represent  

 

 

 

 

 

 

 

 

   

 
Figure 2. SNpr discharge pattern recorded in 6-OHDA-lesioned rats. Left: 
Neuronal activity, each dot corresponds to a spike (Scale bar 1.4 s) raster 
display Middle: ISI histograms Right: autocorrelogram  
A. regular non-bursting pattern  B. Bursting pattern  
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76% of the neurons in normal rats, and burst neurons 24% (Fig. 3). In 6- 

OHDA lesioned rats, the number of burst neurons increased (24% → 35%). 

STN lesions in the 6-OHDA lesioned rats increased the percentage of regular 

neurons to 87% in the group of STN lesioned rats versus the 76% of normal 

rats. In intact rats, VL unit basal firing rates ranged from 4 to 15 spikes/s, with 

a mean ± SEM of 8 ± 1.5 spikes/s. In rats with 6-OHDA lesions, the firing 

rates ranged from 8 ± 1.5 spikes/s to 5 ± 0.6 spikes/s (Table 2), and the 

proportion of burst neurons decreased from 91% to 82% (Fig. 4). 
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Figure 3. The effects of STN lesioning, D1 agonists SKF38393 and D2 agonist 
Quinpirole on the firing pattern of SNpr neurons. The proportion of burst 
neurons in the SNpr of 6-OHDA lesioned rats was significantly reduced by 
STN lesions. SKF38393 and Quinpirole induced a slight reduction in the 
proportion of burst neurons. 
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Table 1. Spontaneous activity of SNpr single units recorded from 6-OHDA 
lesioned rats with a kainic acid lesion of the STN and intrastriatal selective 
D1, D2 agonist microinjection.   

 

 
The values means ± SEM. * p < 0.05  in comparison with values from normal animals 

 

 

 

 

 



 18

 

3. Effects of SKF38393 on firing rates and firing patterns  

Effects of the D1 agonist, SKF38393 applied by intrastriatal injection, on 

firing rate of SNpr units is showed in table 1. The administration of 

SKF38393 decreased SNpr neuronal firing rates in lesioned rats (from 28 ± 

1.5 to 21 ± 2.7 spikes/s, n = 25), whereas the SKF38393 did not 

significantly alter the mean firing rate of SNpr neurons in the intact rat (21 ± 

1.6 vs. the control at 20 ± 1.9 spikes/s, n = 16). However, SKF38393 did not 

alter the mean neuronal firing rate in the SNpr neurons of SNc + STN 

lesioned rats (20 ± 2.3 vs. 21 ± 1.8 spikes/s, respectively, n = 18).  

 

 

Figure 4. The effects of STN lesioning, D1 agonists SKF38393 and D2 agonist 
Quinpirole on the firing pattern in VL neurons. The proportion of burst 
neurons in the SNpr of 6-OHDA lesioned rats was reduced. The SKF38393 
reduced the proportion of burst neurons. 

9
18

6

41

10
0

20

40

60

80

100

normal SNc SNc+STN SNc+SKF38393 SNc+Quinpirole

Regular Burst
P
e
rc
e
n
ta
g
e
(%
)



 19

 

 

Table 2. Spontaneous activity of VL units recorded from 6-OHDA lesioned 
rats with a kainic acid lesion of the STN and intrastriatal selective D1, D2 

agonist microinjection of the striatum 

The values means ± SEM. * p < 0.05  in comparison with values from normal animals 
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In normal rats, SKF38393 did not induce a change in the firing pattern. In rats  

with 6-OHDA lesions of the SNc, SKF38393 induced a slight decrease in the 

percentage of burst neurons (35% → 31%). 

The effects of D1 agonist injection on VL neurons are showed in table 2. In 

normal rats, the firing rates of the VL neurons in these treatment groups were 

not significantly different. In 6-OHDA lesioned rats, the administration of 

SKF38393 increased the firing rates of VL neurons (5 ± 0.6 spikes/s → 7 

± 0.8 spikes/s). In terms of the firing pattern, SKF38393 caused a reduction 

in the percentage of burst neurons in 6-OHDA lesioned rats (94% → 59%). 

 

4. Effects of Quinpirole on the firing rate and firing patterns  

The excitatory effect of dopamine on STN neuronal activity appeared to be 

largely mimicked by the dopamine D2-like receptor agonist. Quinpirole 

increased the mean firing rate of SNpr neurons in normal rats from 20 ± 1.9 

to 28 ± 2.4 spikes/s (p < 0.01). However, in neurons prepared from 6-OHDA 

lesioned rats, Quinpirole decreased the spontaneous firing rate from 28 ± 

1.5 to 16 ± 1.3 spikes/s (p < 0.01). The administration of Quinpirole did not 

alter the proportion of burst neurons in the SNpr, as shown in figure 3. 

(whereas STN lesioning significantly altered proportion of burst neurons in 

the lesioned rats). 
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The dopamine D2 receptor agonist Quinpirole increased the neuronal firing 

rates (from 11 ± 2.1 to 5 ± 0.6 spikes/s), in the VL of lesioned rats, as 

shown table 2. However, in terms of the firing pattern no proportional change 

in burst neurons was observed (Fig. 4).  
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Ⅳ. Discussion 

1. Firing rate 

We observed hyperactivity in the SNpr of 6-OHDA lesioned rats, as 

previously reported.17,18 In Parkinson’s disease, progressive deficit of 

dopamine cells in the substantia nigra pars compacta leads to impaired 

information processing in the basal ganglia.2,4,8 In particular, it is thought that 

Parkinsinian pathophysiology results from the over-inhibition of the 

thalamocortical pathway resulting from the increased activity of basal ganglia 

output structures, the internal globus pallidus and the substantia nigra pars 

reticulata. The improved activity of these output structures in the dopamine-

depleted state may be due, partly, to an increase in excitatory drive from the 

STN.21 The hyperactivity of the STN is based on the hypothesis that the loss 

of dopamine in the striatum causes a reduction in the activity of the inhibitory 

GABAergic pallidosubthalamic pathway.2,19 In fact, we found a decrease in 

the SNpr firing rate after a unilateral STN lesion. Lesions8,10 or high 

frequency stimulation of the STN9,13,20,21 have been shown to improve 

Parkinsonian motor systems, presumably by reducing the activity of the basal 

ganglia output structures.17,22 The STN in an important component of the basal 

ganglia and is considered to play a key role in the control of the output 

structures of the system. According to the concept of motor circuit functional  
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organization, the motor nuclei of the thalamus [ventromedial nucleus (VM) 

and VL in the rat] are the last relay before the signals from the basal ganglia 

motor-regulating circuit enter the cortex.2 Inhibition of the two output 

structures in the system would induce a decrease in the inhibitory action on 

the motor thalamus and consequently would induce an increase in the 

excitatory input to the cortex. According to the widely accepted functional 

organization of the basal ganglia, a change in the firing activity of the output 

structures of the system is believed to induce an increase in the tonic 

inhibitory influence exerted by these structures on the activity of motor 

thalamic nuclei, resulting in the deactivation of motor cortical areas.2,3 In 6-

OHDA induced rats, a decrease in the firing rate of VL neurons was found. 

This result supports the notion that motor nuclei of the thalamus [VM and VL 

in the rat] work between the basal ganglia motor circuit and the cortex. 

Another study showed that STN HFS increased the firing rate of VL 

neurons.23 Our results show that the intrastriatal D1 receptor agonist 

SKF38393 decreased the mean firing rate in the SNpr of rats with 6-OHDA 

lesions. This result shows that D1 receptor stimulation directly controls the 

pathway. However, this D1 agonist had no significant effect in the other 

experimental groups. Concerning the possible role for D1 receptors in the STN, 

it is interesting to note that we found that the D1 agonist SKF38393  
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significantly increased the firing rate of STN neurons in 6-OHDA lesioned 

rats.24 Augmentation of responses to D1 receptor agonists in the STN of 

lesioned rats has been reported previously in studies measuring biochemical 

indexes of neuronal activation, such as, c-fos expression and glucose 

metabolism.25 This results suggests that D1 agonists can modify the expression 

of molecules and the electrophysiological activity of neurons of the indirect 

pathway.24,26 In fact, the systemic administration of D1 agonist has more 

dramatic effects on STN neuronal activity than the administration of D2 

agonists.24,26 D1 receptors are present on the striatal output neurons projecting 

to the substantia nigra pars reticulata and the entopeduncular nucleus.27 It 

could be possible that the increased activity observed in STN neurons after 

dopamine application is mediated by the D1 receptor subtype. Thus, it seems 

unlikely that the D1 receptor plays an important role in regulating STN 

neuronal activity, but we cannot rule out this possibility. Consequently, it 

appears that the role of D1 receptors in regulating STN neuronal activity has 

not been well substantiated. Several studies have demonstrated that the STN 

receives direct dopamine input from the SNc and that both D1 and D2 

receptors are found in the STN.6 Thus, the activity of STN neurons can be 

influenced directly by dopamine and its agonist/antagonists. Therefore, we 

suppose that SKF38393 induces decreased SNpr output via STN and the  

 



 

direct pathway in the 6-OHDA lesioned rat. The effects of SKF38393 on the 

firing rate of SNpr was not investigated in SNc + STN lesioned rats. 

We investigated the effects of SKF38393 on the activity of the VL in the 

thalamus, which is supposed to receive direct GABAergic projections from 

the SNpr output. SKF38393 induced a decrease of hyperactivity in SNpr 

neurons resulting in an increase in the hypoactivity in VL neurons. In SNc + 

STN lesioned rats, SKF38393 induce an increase in firing rate in VL neurons, 

which contrasted with an unchanged firing rate in SNpr neurons. In fact, 

Kreiss et al. (1996) suggested that the excitatory effects of dopamine might be 

due to glutamate release caused by the stimulation of D1 receptors located on 

nerve terminals of the corticosubthalamic pathway.28,29 

The administration of the D2 receptor agonist Quinpirole increased the 

mean firing rate of neurons in the SNpr of intact rats. Zhu et al. (2002) 

reported that Quinpirole (10 µM) increased the mean firing rate of STN 

neurons in normal slices.30 These results suggest that dopamine exerts an 

excitatory influence on STN neuronal activity, most likely via the stimulation 

of D2-like receptors.30 In the 6-OHDA lesioned rat, Quinpirole reduced the 

GABAergic increase in SNpr neurons by D2 receptor stimulation, which 

resulted in the increased output of VL neurons. By acting on striatal D2 

receptors, Quinpirole would reduce the GABAergic input to the globus  
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pallidus, thus inducing increased inhibitory input to the STN, which would 

result in the reduction of STN neuron activity. The ventrolateral nucleus (VL) 

is known to receive direct GABAergic projections from the output structures 

of the basal ganglia.2,3 The present study shows that STN lesions induced an 

increased firing rate in VL neurons. This result demonstrates that denervation 

of dopaminergic neurons induces a decreased firing rate in VL neurons, 

consequently STN lesioning reversed this reduction of firing rate in VL 

neurons. This result supports the effect of STN lesioning on the activity of the 

ventrolateral nucleus of the thalamus (VL), which is known to receive direct 

GABAergic projections from the output structures of the basal ganglia. 

Therefore, the effects of lesioning on STN neurons demonstrate that 

GABAergic output from the SNpr projects to the VL directly. This hypothesis 

is confirmed by a positron emission tomography study, using regional cerebral 

blood flow measurements in Parkinsonian patients. Limousin et al. (1997), 

showed that STN HFS, which produces a significant improvement in 

movement performance, was accompanied by an increase in cortical activity 

of, the supplementary motor area and the dorsolateral prefrontal cortex.13 

Boraud et al. (2001)’s study found Gpi rate inhibitions in MPTP-treated 

monkeys caused by the D1 agonist SKF38393.31 Moreover, there is some 

evidence that robust inhibition of Gpi in MPTP-treated primates is associated  
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with dopamine agonist-induced dyskinesias,31 suggesting that, in primates or 

rodents, doses of dopamine agonists, which produce such inhibitions of the 

basal ganglia output nuclei are not optimal for reversing the behavioral effects 

of midbrain dopamine depletion. In vitro studies have shown that D1 class 

agonists generally inhibit evoked discharge of the neostriatal medium spiny 

neurons.32 Further evidence for the excitatory action of D1 agonists comes 

from their ability to induce immediate early gene expression.27 Thus, it could 

be possible that the increased activity observed in STN neurons after 

dopamine application is mediated by the D1 receptor subtype. 

 

2. Firing pattern 

Recent reports have suggested that the neuronal firing pattern is modified in 

Parkinsonism rather than the mean firing rate of the output nuclei neurons.18,33 

Our results shows that 35% of the SNpr neurons recorded from lesioned rats 

discharged action potential bursts, whereas burst neurons account for 24% in 

normal rats. The proportion of burst neurons in the SNpr of 6-OHDA lesioned 

rats was significantly reduced by STN lesions. These results suggest that the 

interruption of the indirect pathway by a STN lesion regularizes the SNpr 

neuron discharge pattern in normal, and in particular, in SNc-lesioned rats. 

Many studies have shown that STN neurons fire irregularly or in a bursting  
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pattern after dopamine depletion.34,35,36 Other studies have provided evidence 

that an irregular or burst firing pattern might correlate better than firing rate 

with signs of Parkinsonism.11,35 The administration of SKF38393 or 

Quinpirole slightly decreased the proportion of burst neurons in the SNpr in 6-

OHDA lesioned rats. This results supports a hypothesis about bursting activity, 

namely, that change in the firing pattern of SNpr units is a consequence of 

striatal denervation and is mediated by the indirect pathway via the STN.18,34 

In rats with 6-OHDA lesions of the nigrostriatal pathway, burst-firing patterns 

have been previously reported in the STN, SNpr, and GP neurons.18,35,38,39 

From recent evidence, it appears that the STN participates in the genesis of 

the burst pattern activity of GP and SNpr neurons in rats with 6-OHDA 

lesions, and that STN lesions can reverse this abnormal spontaneous 

pattern.17,18,36 More recent data40 from an in vitro model in which STN and GP 

were co-cultured without dopamine inputs (a model resembling a dopamine-

deficient basal ganglia system) supported the finding that dopamine depletion 

increases burst activity in the STN. In the SNc + STN lesioned rats, 

SKF38393 or Quinpirole induced an increased proportion of burst neurons in 

SNpr neurons. This result suggests that the bursting pattern may originate in 

parts other than the STN. The persistence of relatively irregular SNpr activity 

after the administration of an STN lesion may be partially due to direct  
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pallidal and/or striatal inputs to the SNpr. Indeed, neurons firing in bursts have 

been reported in the globus pallidus of 6-OHDA-lesioned rats35 and direct 

projections from the globus pallidus to the SNpr have also been described. On 

the other hand, burst activity may reflect an imbalance between the two 

striatal efferent pathways, which normally act in synergy to control locomotor 

activity.41 Alternatively, bursting activity could originate in other structures 

projecting to the subthalamic nucleus, such as, the sensorimotor cortex or the 

intralaminar thalamic nuclei.33 In animal experiments, the activities of both 

the non-bursting unitary and burst cells were described in the VL.42 We found 

reduced proportions of burst neurons in 6-OHDA lesioned rats. These results 

showed that the increased burst neurons in the SNpr did not induce burst VL 

neurons. In normal rats, the percentage of burst neuron among the VL neuron 

is higher than among SNpr neurons. Some researchers believe that the change 

in firing pattern, rather than the tonic firing rate might be of primary 

importance in mediating the functional effects of dopamine on forebrain 

activity and motor behavior,43 and the firing pattern has been related to limb 

tremor by some studies.10,16 However, the reduced proportion of burst neurons 

due to 6-OHDA lesioning does not support the notion that burst neurons are 

related to the Parkinsonian motor symtoms of PD. The mechanism of bursting 

genesis may be similar to that observed for dopaminergic cells in vitro, in  
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which glutamate generated bursts by means of NMDA receptors.44 In any case, 

bursting patterns would seem to be associated with an increase in 

neurotransmitter release.35 Moreover, this may further increase the action of 

SNpr neurons on thalamic target cells. In addition, more recent study37 

showed that the selective degeneration of dopamine fibers in the STN induced 

a significant change in the firing pattern of its neurons, and demonstrated that 

the loss of dopamine in the STN can, at least in part, be at the origin of the 

bursting activity of STN neurons. In vivo and in vitro physiological studies 

have shown that the firing patterns of the thalamic projection neurons are 

based on the two basic mode-transfers and on the oscillatory modes, 

depending on the intrinsic membrane properties.39 Results from others have 

suggested that membrane depolarization of a few mV may convert an STN 

neuron from the burst to the regular single-spike pattern type.45 The 

pathophysiological origin of bursting activity remains unclear. The 

modification of the membrane properties of the neurons, induced by the loss 

of dopamine, in the basal ganglia motor circuit, is supposed to result in the 

genesis of the bursting neurons. Therefore, the temporary stimulation of D1 

and D2 receptors by dopamine agonists does not seem to reduce the bursting 

neurons. 
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Ⅴ. Conclusions 

This study demonstrates that STN lesions and dopamine agonists decreased 

the hyperactivity of the firing rate of SNpr neurons, and resulted in an 

increased firing rate of VL neurons in 6-OHDA lesioned rats. Concerning the 

firing pattern, the STN lesion was found to have a dramatic effect on SNpr 

neurons, but SKF38393 and Quinpirole did not. This result suggests that STN 

lesions and dopamine agonists may have different roles in the 

pathophysiology of PD. 

The pathophysiological significance of bursting activity remains obscure, 

and the ability of dopamine agonist to regularize output nuclei firing patterns 

may explain why dopamine agonists lose efficacy as PD progress. 
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국문요약 

6-Hydroxydopamine에 의해 유도된 

흰쥐 파킨슨병 모델에서 시상밑핵 손상과 

도파민 수용체 작용물질의 효과 

 

<지도교수 장 진 우> 

연세대학교 대학원 의과학사업단 

 
 

전 미 파 
 

 

선조체의 도파민 수용체로 오는 도파민의 손실은 시상밑핵의 과도한 출

력을 유도하고 이것은 기저핵의 과도한 출력을 낳는다. 시상밑핵의 출력을 

줄이는 것은 파킨슨병으로 오는 운동장애 증상을 회복시키기 때문에 연구

되어져 왔다. 시상밑핵의 손상은 그것의 과도한 출력을 줄일 수 있고 기저

핵에서 일어나는 운동조절시스템의 일시적인 장애를 정상화 시킬 수 있다. 

또 다른 접근으로는 선조체에 있는 도파민 D1 수용체와 D2 수용체를 자극

하여 간접적인 시상밑핵의 출력을 감소시키는 것이있다. 이 연구에서 억제

성인 담창구를 거쳐 시상밑핵에서 나오는 출력을 감소시킨다고 생각되어 

지는 D1 수용체 작용물질인 SKF38393과 D2  수용체 작용물질인 

Quinpirole을 각각 선조체에 직접 주입하였다. 그런 후 기저핵의 출력을  
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보기위해 흑질그물부 (SNpr)와 복측외측의 시상 (VL)을 미세전극기록하

였다. 흑질그물부와 복측외측의 시상부위가 Kainic acid에 의한 시상밑핵

의 손상에 의해 어떻게 영향을 받는지 기록된 출력의 비율 (firing rate)과 

형태 (firing pattern)에 따라 분석하였고, 출력의 형태는 규칙적인 형태와 

(regular non bursting pattern) 불규칙한 형태 (bursting pattern) 로 분

리하여 분석하였다. 흰쥐 파킨슨모델 SKF38393는 흑질그물부의 출력을 

감소시켰고 (26 ± 2.3 spikes/s → 19 ± 2.9 spikes/s), 복측외측

의 시상의 출력비율은 (4 ± 2.2 spikes/s → 7 ± 0.8 spikes/s)증

가하였다. 전체 측정된 세포에서 불규칙한 형태의 비율은 변화가 없었다. 

Quinpirole에 의해서도 SNpr의 출력이 감소되었고 (29 ± 1.9 

spikes/s → 16 ± 0.4 spikes/s), VL의 출력은 증가되었다 (5 ±0.7 

spikes/s → 13 ± 3.3 spikes/s). 그러나 불규칙한 형태의 출력은 변

화가 없었다. 반면, 시상밑핵 손상은 출력의 비율과 불규칙한 형태를 증가

시켰다. SKF38393과 Quinpirole에 의한 효과를 또한 시상밑핵 손상을 가

진 흰쥐 파킨슨병 모델에서 관찰하였다. 시상밑핵이 손상되지 않은 흰쥐 

파킨슨병 모델에서 보인 결과와 비교하여 흑질그물부의 출력은 덜 감소되

었고, 복측외측의 시상의 출력은 덜 감소되었다. 이 결과는 시상밑핵 손상

은 흑질그물부의 과도한 출력을 감소시키고 출력의 불규칙한 형태를 정상

화시키지만, SKF38393이나 Quinpirole같은 도파민 수용체 작용물질은 출

력의 감소는 시키지만, 형태를 변화시키진 못한다는 것을 보여주었다. 그것 
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은 파킨슨병의 병리생리학적 소견으로 시상밑핵에 의한 변화와 도파민 수

용체 작용물질에 의한 작용이 다른 경로로 이뤄진다는 것을 예측할 수 있

다 . 

 

핵심되는 말: 6-OHDA, 파킨슨 병, 시상밑핵, 기저핵, kainic acid, 도파민 

작용물질 
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