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Fig.2. Experimental design of study e e e 5
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Fig.5. Figure of stress distribution e e e e e e 9
Fig.6. Figure of stress distribution e e e e e 9
Fig.7. A path along which calculated von Mises

equivalant stress were compared. 10
Fig.8. Graph of calculated von Mises equivalant stress-1 =~ « « « « « « -« 11
Fig.9. Graph of calculated von Mises equivalant stress-2 ~ « « « « « « - 11

Fig.10.Graph of calculated von Mises equivalant stress-3 ~ + + + + - - - 12
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whether pulpel
pulp v | nopulp |~—>| structure was
induded
i . property of
aniso Vs iso PSR %
. enamel
boundary ’ t i fixation level as a
condition 1 | | condition2 ||  Pounda
on
: condition

Fig.1. Preliminary study plot for selecting a model. As a result, anisotropic, boundary
condition 1, and no pulp model was selected

thickness of
original bone add bone |---—-—-> | cortical bone

density of
cancellous bone

Dibone | | homogeneous || base 10% 20% © 30%

Fig.2. Experimental design of study. All 12 model were simulated



Fig.3. Original bone were changed to 6 models. A was D1 model which cortical

bone was applied to all bone. B was homogeneous model which was
cancellous bone was applied to all bone. C was base model which was
applied no change. D,EF was models which randomly extracted

10%,20%,30% of cancellous bone area compared to base model respectively.

Fig.4. Add bone were changed into 6 models. Added cortical bone was shown in

circle compare to Fig.3. A was DI model which cortical bone was applied
to all bone. B was homogeneous model which was cancellous bone was
appliedto all bone. C was base model which was applied no change. D,E,F
was models which randomly extracted 10%,20%,30% of cancellous bone

area compared to base model respectively.



Table.1. Model index

Condition Code explanation
Isotropic Iso model which enamel is isotropic. E = 80 GPa
Anisotronic Aniso model which enamel is anisotropic.
P Ex = 80 GPa, Ey = 20 GPa.
Original model ori  model which modeled with micro CT
Add bone model add model Wthh' add cortl'cal' bone regulary for intention
because cortical bone is irregular
Boundary cond. 1 bcl model which contition that lower bone is fixed fully
Boundary cond. 2 bc2 model which contition that middle bone is fixed fully
model which property of cortical bone is applied to all
DI bone DI bone. E = 13.8 GPa
model which property of cancellous bone is applied to
Homogeneous dU .l bone, E = 0345 GPa
Base model base Basic model which made with micro CT
o o, model which randomly extracted 10% of cancellous
1096 1096
bone area compared to base model
1 O,
209 209 model which randomly extracted 20% of cancellous
bone area compared to base model
3 O,
309 309 model which randomly extracted 30% of cancellous

bone area compared to base model

(2) e 82 B

7Sl 7k 100N 3 100N 3] o3 FHIAS
MSC.Nastran FEM Package® #2413l 3th B4=S #2442 7M1 2d & dx=a
o7 sto] TUE Wt G Lol B At =2 10%, 20%,30% S B T
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Table.2. Physical properties of the materials used in the analysis.”**'

Material E(MPa) v(poissons’s ratio)
Enamel(Ex) 80000 0.30
Enamel(Ey) 20000 0.30
Dentin 15000 0.31
Cortical bone 13800 0.26
Cancellous bone 345 0.31
Periodontal lig. 50 0.49

axial force 100N +lateral force T00N

Load condition distributed force 25N* 4= 100N
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Fig.5. Figure of stress distribution of anisotropic base model (boundary condition 1, no pulp)




Fig.6. Figure of stress distribution of anisotropic cortical bone added model
(boundary condition 1, no pulp)
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Fig.7. A Path along which calculated von mises equivalant stress were compared.
number 1 in figure indicates labial CE], number2 indicates root surface at
buccal bone crest level. And number 3 indecates root surface at lingual bone

crest level
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Fig.9. Graph of calculated von Mises equivalant stress along the path in Fig.3 for anisotropic

original bone model.
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Fig.10. Graph of calculated von Mises equivalant stress along the path in Fig.3 for
Anisotropic and isotropic original bone model.
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ABSTRACT

The effect of varying peripheral bone structure and bone
density on the occlusal stress distribution of human premolar
regions

Suh, Ye Joon
Dept. of Dentistry
The Graduate School

Yonsei University

This study used FEM(Finite Element method) based on micro-CT images to see
the effects of occlusal force distribution with varying bone density and structure. the
mandibular premolar region from human cadaver, thickness of 10mm was imaged
using micro-CT. the cross sectional images were taken every 10um. these were
reconstructed and the longitudinal image at the mid point of mesiodistal of the
speciman was obtained for the specimen for the FEM. The stress disribution
produced by a vertical force at 100N and 100N horizontal were analyzed by MSC
Nastran FEM Package. according to the result of this study the occlusal force
distribution depends on the structure of cancellus bone and for further information
on the occlusal force distribution on the tooth and the surrounding structure requires
further studies on cancellus bone structure.

1. CEJ of all model show the highest peak and region whice meet teeth and bone
show second high peak

2. Original model and cortical bone add model show different stress distribution

3. Stress distribution changed according to bone structures and densities.

Key words : Occlusion, stress distribution, microCT, Cervical abfraction, FEM
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