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nifedipine, H-7, calphostin C,
gadolinium cremophor EL western blot

USA)

Sigma (Columbia, Missouri,
, Fura-2/AM  Molecular Probe (Portland, Oregon, USA) ,
PKC primary antibody  PKCe Rho primary antibody Rho A  Santa Cruz (Santa
: PKC primary antibody PKCa , PKCB @ and B u), PKC

[ Transduction Laboratory (San Diego, California, USA) . Y-27632

Cruz, California, USA)

Uehata (Yoshitomi Pharmacedutical Industries, Osaka, Japan)

2.

basilar artery 15 - 2.0kg

(ear vein)  pentobarbital sodium (60Mg/ kg) heparin (2,000 1U/ kg)
basilar artery

%% 0. + 5% CO: Krebs-Henseleit (mM: NaCl 119, KCI 4.6, CaCl. 2.5,

KH:PO. 1.2, MgSO. 1.5 NaHCOs 25, glucose 11) preparation chamber

strip 37
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Caz +
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indicator  Fura-2/ AM

fluorescent Ca’”
: ca’’
10uM  Fura-2/ AM  (acetoxymethyl eser) Krebs-
Henseleit (room tempertature) 3-4 incubation Fura-2/ AM



: Fura-2/ AM noncytotoxic detergent
cremophor B (0.01%) Krebs-Henseleit 30
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deesterification
@ ca’* : 30
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CAF 110) Ozaki 2 . Fura-2
3rc organ bath ,
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uv light
force transducer computer , UV light
fluorescence computer (Fg.
1).
ca’’
excitation light emission light
(fluorescence) fluorescence intensity  ratio {R(Fso/ Fsso)}
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Hg. 1. Bock diagram of the apparatus of fluorescence spectrometer specially
designed for smooth muscle strip.




interface filter : excitation light emission

light @luorescence) 500nm filter 340nm excitation light
fluorescence 380nm  excitation light fluorescence  ratio
600mg  sretch ca’
ca* cat
nifedipine, gadolinium, H-7, calphostin C Y-27632 ca’

. Western Blot

liquid Ne.-cooled liquid chlorodifluoromethane 50mM
Tris (pH 74), 10% glycerol, 5mM EGTA, 140mM NaCl, 1.0% Nonidet P40, 55mM leupeptin, 5.5mM
pepgatin, 20 KIU aprotinin, ImM NasVO., 10mM NaF, 025% (wt/vol) sodium deoxycholate, 100u

M ZnCk, 20mM [3 -glycerophosphate, 20u M phenylmethylsulfonyl fluoride buffer
homogenization . Protein-matched sample (30u g protein/lane) 10% SDSpolyacrylamide
gel Millipore Immobilon-P membrane  trandfer . Membrane 5%
dried milk PBSTween buffer 1 (room temperature) incubation

primary antibody, PKCa (1:500; Transduction Laboratory), PKCB (B  and (3 » 1:1,000; Transduction

Laboratory), PKCe (L:500; Santa Cruz), PKQ  (1:250; Transduction laboratory), 4°C
overnight incubation . membrane horseradish
peroxidase-conjugated secondary antibody (1:10,000; Calbiochem) 1 room temperature
incubation . Immunoreactive band  enhanced chemiluminescence (ECL; Amersham)
. ECL film  scan PKC isoform National
Ingitute of Health (NIH) Image X-ray film  denstometry
gretch PKCa PKCe Rho A protein  translocation

liquid Ne-cooled liquid chlorodifluoromethane
homogenization {200mM TrissHCl (pH 74), 0.3M sucrose, 5mM EDTA, 5mM
DTT, 10mM ESTA, 03mM phenylmethylsulfonyl fluoride, 0.3% 2-mercaptoethanol}
homogenization . Homogenates homogenates
100,000 @°C) 60 centrifuge :
0.1% Triton X-100 homogenization centrifuge
protein-matched sample  western blot

immunoblot : Rho A primary antibody FRho A (1:200; Santa Cruz)
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MLCzo glycerol-urea minigel
liquid N:-cooled liquid chlorodifluoromethane
200u | urea sample buffer {8.0M urea, 20mM Tris base, 23mM glycine (pH 86), 10mM DTT, 10%
glycerol, 0.04% bromphenol blue} glycerol-urea minigel (10%
acrylamide/ 0.8% bisacrylamide, 40% glycerol, 20mM Tris base, 23mM glycine) loading 400V

congant voltage . Gel Millipore Immobilon-P  membrane
protein  electrophoretic transfer . Membrane 5% dried milk PBS Tween
buffer 60 incubation blocking specific MLCG: monoclonal antibody (1:1000,
Sgma) 4C overnight . blot horseradish
peroxidase-conjugated anti-mouse IgG (1,000, Calbiochem) ECL
MLGCo band NIH Image densitometry , MLGo
MLGCso MLCxo
1.
1. Stretch Ca’"
Myogenic tone ca’ Fura-2/ AM
1.0
f ,."' R(F350/F3a0)
0.5
2.5 Ca 2.5 Ca
0Ca* -_—
I - Tension{g)
— i E— ]
A A 5 min
Stretch Stratch

Fg. 2 Increase of the Fura-2 Ca’" signal (op) and the tension (bottom) evoked by
dretch in isolated rabbit basilar artery. Both the stretch-induced increase in Fura-2 Ca’*
signal [RF«o/ Feo)] and tension are exhibited in the presence of extracellular Ca®" (25
Ca’") but not in the absence of extracellular Ca’* (0 C&™").



600mg  sretch ca’
Fg. 2 ca”
ca” passive tension
ca
passive tension ca’

(myogenic tone)

dretch : ca”
passive tension myogenic tone
ca” ca”
dretch ca’
+ 122% (n=16) , tension 702+ 134% (nh=16)
2. Nifedipine  gadolinium  stretch Ca’"
Sretch ca”
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Ca2+
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40mM K’ 438
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Fg. 3. Changes in the sretch-induced increase in Fura-2 Ca’" signal [RlFo/ Feo);
top] and tension (bottom) by treatment of nifedipine and gadolinium. Tracings
showing effects of elimination of extracellular Ca’* (lft), nifedipine (middle) and
gadolinium (right) on sretch-induced Fura-2 Ca" signal and tension. Himination
of extracellular C&* and nifedipine are decreased stretch-induced Fura-2 Ca’”

signal and tension, respectively, but not gadolinium.




voltage-dependent Ca’* channel nifedipine”®  sretch activated cation ¢

hannel gadolinium® Fg. 3. 600mg  sretch
ca’ ca’
ca
ca’ dretch
, dretch
ca’ ca”
myogenic tone (100%) :
, sretch ca’ voltage-dependent Ca’" channel ca’
voltage-dependent Ca’*  channel 10'M
nifedipine dretch ca” 727+ 11.9% (n=7),
tension 737 77% (h=7) (Fg. 4. dretch activated cation channel
stretch-activated cation channel 10°M
gadolinium ca’ 62+ 21%, n=7) (58t 34, n=7)
3. PKC Rho-kinase stretch ca’’
Sretch ca” PKC Ro A ca”
100 -
- W R(FuoFa)
E—;E 80 1 [0 Tension
ST 60-
5w
§a 40
= “ 2.
E
0 | m
Nifedipine Gadolinium

Fg. 4. Satigical analysis of effects of nifedipine (left) and gadolinium (right) on
dretch-induced Fura-2 Ca* signal [RFuo/ Fo); filled bar] and tension (open bar).
Results are expressed as percentage of a elimination of extracellular Ca’*-evoked
response and are the meanst SE of 7 different vessels.



sensitization PKC H-7° calphogin C*
Rho-kinase Y-27632° (Fg. 5). PKC
10°M H-7  5x 10'M calphogtin C dretch

- ~ R m—— e | 1.0
\ ’ R{F a0/ Faaal

0.5
0 Ca2+ H-7 Calphostin C ¥-276312
_,] a.5
| : Tension{g)
o
5 min

Fg. 5. Changes in the sretch-induced increase in Fura-2 C& signal [RFuo/ Feo);
top] and tension (bottom) by treatment of PKC and Rho-kinase inhibitors. Tracings
showing effects of elimination of extracellular Ca’*, H-7 (10°M), calphogtin C (5x
10'M) and Y-27632 (10°M) on dretch-induced Fura-2 Ca’* signal and tension.
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Fg. 6. Satigical analysis of effects of PKC and Rho-inhibitors on
dretch-induced Fura-2 Ca’" signal [RFuo/ Feo), filled bar] and tension (open
bar). Results are expressed as percentage of a elimination of extracellular
Ca’"-evoked response and are the meanst SE of 8 different vessels.
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Ca2+
Ca2+ Ca2+
(H-7= 357t 12%; calphogin C=92+ 42%, n=8, Hg. 6)
(H-7=76.27+ 16.2%; calphogtin C=764+ 189%, n=8, Hg. 6)

, myogenic tone  small G-protein Rho A Ca’" senstization
Rho-kinase 10°M Y-27632 (Fg. 5. Y-27632

stretch ca” 20+ 20%, n=8)
myogenic tone 894+ 7.3%, n=8).

4. Sretch  PKC Rho A translocation

Rabbit basilar artery PKC isoforms PKC isoform specific
antibody wegtern blot Hg. 7
rabbit basilar artery PKCa PKCe PKCa PKCe

. PKCB PKQ
Sretch PKC isoforms  translocation

PKCu PKCpg PKCe PKC

SOkDawy e
B2kDawy W .
70kDawme & '
PKCa PKCe
control stretch control stretch

o
venvre

FHg. 7. Top: Immunoblots of PKC-a, -B, -€ , -1 from isolated rabbit basilar
artery. Immunoblots are representative of immunoblots of five independent
preparations. Bottom: Translocation of PKCa and PKCe induced by dretch.
Results are representative of five to six experiments showing that PKCa s
translocated from the cytosol to the membrane fraction.



PKCa  PKCe Fg. 7). PKCal

stretch 206+ 82% (n=5H dretch 86.3t
114% (=15 . PKCe dretch 6.7+ 32%
(n=6), dretch 111+ 43% (n=6)
, dretch Rho A translocation
Fg. 8 dretch Rho A
( = 80.3+ 8.2%, =148+ 62%, n=23), dretch
Ro A ( =256+ 9.2%, =744+ 94%, n=3).

5. Stretch ~ myosin

Sretch AKC R A Cd" senstization downstream
effectors MLCzo (Fg. 8.

MLCeo sretch (Control = 31.7+ 7.3%,
Sretch=472+ 94%, n=5  p<0.05), 10°M  H7 (313t 6.7%,

Cyiiael  MambBrene

Croarviresl

Sirstch [ —

Fg. 8. Trandlocation of Rho A induced by stretch.
Results are representative of three experiments
showing that RhoA is translocated from the
cytosol to the membrane fraction by sretch.

Saratresl Sitreamtch H-r WeErEIR
il

ML - . ‘
ML - =2

Fg. 9. Changes in 20-KDa myosin light chain (MLC)
phosphorylation with sretch and effects of H-7 and Y-27632
on the MLC phosphorylation. Results are representative of
immunoblots of five independent preparations. Sretch increased
level of the MLC phophorylation (MLC-P but these increase
are inhibited by treatment of dretched tissue with H-7 and
Y-27632, respectively.
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n= 5, p<0.05)

10°M Y-27632 204+ 9.6%, n=>5, p<0.05)
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Y Rho A downstream effector ~ Rho-kinase
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A agonigt Ca’" sensttization
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sretch myogenic tone basilar artery
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Abstract

Role of protein kinase C- or Rho A proteins-induced Ca’" sensitization in
myogenic tone

Jung-Sup Kim

Brain Korea 21 Project for Medical Sciences
The Graduate School, Yonsei University

(Directed by Associate Professor Young-Ho Lee)

Myogenic tone refers to the ability of vascular smooth muscle to alter its date of
contractility in response to changes of intraluminal pressure; the vessel condricts in
oppostion to an increase in intravascular pressure and dilates when the pressure
decreases. The mechanisms by which vascular smooth muscle cells respond to changes
in intravascular pressure are gill not well undergood. In this sudy, we invegigated the
role of PKC- or Fho A proteins-induced Ca* sensitization in myogenic tone of the rabbit
baslar microcirculation by measuring Fura-2 Ca&" signals, contractile responses, PKC
immunoblots, trandocation of the PKC and Rho A proteins, and phosphorylation of
20kDa myosin light chains.

Sretch evoked myogenic tone with increase in [C&"} only in the presence of

extracellular Ca’". Sretch-induced increase in [C&'] & contractions were completely
abolished in the absence of extracellular Ca’*. Sretch-induced increase in [C&'} &
contractions were inhibited by treatment of tissue with nifedipine, blocker of
voltage-dependent Ca’* channel, but not in gadolinium, blocker of sretch-activated
cation channel. FAKC inhibitors, H7 & calphogin C, and Rho-kinase inhibitor, Y-27632,
inhibited a sretch-induced myogenic tone without changes in [Ca®*]. Imunoblotting using
isoenzyme-specific antibodies showed the presence of PKCa and PKCe in the rabbit
basilar artery. PKCa, but not IKCe, and Rho A proteins were translocated from cytosol
to the cell membrane by gretch. Fhosphorylation of MLGo was increased by dretch and
these increases were blocked by treatment of tissue with H7 & Y-27632.

These results suggest a link between the Ca’* senstization that occurs during the
myogenic contraction and activation of the PKCa and Rho A proteins.

Key Words: myogenic tone, [Ca’']i, PKC, Rho A protein
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