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ABSTRACT

Regulation of natural cytotoxicity receptor (NCR) pression on NK cells

Hyung-Ran Kim

Department of Medical Science

The Graduate School, Yonsei University

(Directed by Professor Jongsun Kim)

A number of surface receptors expressed on NK aeflgelated to the regulation
of NK cell activity and characterized by either ilvitory or activating properties.
Activating receptors usually have short cytoplasmaits and transduce signals by
associating with molecules containing Immunorecefigrosine-based Activating
Motifs (ITAM). Natural cytotoxicity receptors (NCRsare one major family of
activating receptors involved in NK cytotoxicitypéhare found only on NK cells. The
three family members are NKp46 (NCR1), NKp44 (NCR2d NKp30 (NCR3).

Their surface density might vary with the activatgiate of NK cells, and the density



may directly correlate with their natural cytotagyc

In this study, we investigated the regulation ofRNExpression on NK cells and

the factors which affect it. We produced stablé logts expressing full-length NCRs

and investigated the change in expression after BbBtment using flow cytometry,

RT-PCR and immunoblotting methods. Expression opB&and NKp46 on Jurkat T

cell transfectants appeared to increase by PMAmmat until 8 hr after PMA

treatment, but gradually decreased afterward ®tlen pre-treatment levels. Parallel

to surface expression of NCRs, total NCR proteipression also appeared to

fluctuate after PMA treatment, but expression of NMRtranscripts was not

significantly affected. Experiments with mutant N@Rpressing stable cell lines

demonstrated that 288Ser might be critical for N&p#pression.

In primary NK cells, most cytokines such as IL428, IL-12, IL-15, IL-18, IFN-

al and IFNe2b did not appear to significantly alter NCR expies. PD98059,

PD150606 and Lactacystin also did not induce artgbte changes, suggesting that

the MAP kinase and proteosome pathways might natvmgved in the regulation of

NCR expression. Interestingly, however, PMA slightlown-regulated NKp46



expression on primary NK cells. PMA is a well-knoRKC activator. Furthermore,

although other PKC inhibitors did not induce or prgss NCR expression, G66983,

an inhibitor of PKCu, 8, v, 8 and{, induced a remarkable increase of NCR expression

on NK cells. Finally, we show that up-regulation MER on NK cells by G66983

caused an increase in NK cytotoxicity against hegelular carcinoma cell lines

(HCCs) and HelLa presumably by increasing granléase.

In conclusion, NCR expression is down-regulatedPMA, a PKC activator, and

upregulated by G66983, a PKC inhibitor. As a consege, NK cytotoxicity against

HCCs and Hela appeared to greatly increase aft&9&3) treatment, but slightly

decrease after PMA treatment. This suggests tlsgieaific PKC inhibitor, such as

G066983, could be utilized to enhance NK cytotoyieihd consequently increase host

tumor immunity by upregulation of NCR expression.

Key words: Natural killer cell, Natural cytotoxigiteceptors, PKC, PMA, G66983
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[. INTRODUCTION

Natural killer (NK) cells are a distinct subsetlafge granular lymphocytes which
possess the ability to lyse certain primary tumalis¢ tumor cell lines, transplanted
allogenic cells and virus-infected céifs NK cells were originally described on the
functional basis of their ability to lyse certaimntor cells in the absence of prior
antigen stimulatich This lymphocyte subpopulation is characterizedh®y absence

of conventional receptors for antigen, such asaserfimmunoglobulin or T cell



receptor (TCR), and usually displays a QB®16", CD56 phenotypé

It is well known that target cell lysis by NK cells primarily mediated by
secretory granules which contain perforin and graves. Perforin can induce
necrosis of target cells and granzymes can indpoptasis of target ceffS. The
nonsecretory/apoptotic pathway which is mediated thg FasL/Fas, TNF/TNF
receptor and TRAIL/TRAIL receptor interactions ajslay an important role in NK
cell cytotoxicity” "™ NK cells recognize their targets through receptpressed on
the NK surface. Recognition and target cell killidigectly induce not only effector
mechanisms of the innate immune system but alsgtizdammune responsgs

NK cells express a number of surface receptorstlaadiiscovery of an array of
the receptors has occurred over the last ten yeaparticular, two distinct families
of receptors regulate of NK cell activity by bindito ligands which are MHC class |
molecules or to still unidentified ligands: the imnoglobulin-like (Ig-like) NK
receptors (KIR, NCRs, p75/AIRM1, IRp60, 2B4/CD22MTB-A, DNAM1/CD226
and LAIR) and the C-type lectin-like NK receptof@094/NKG2, NKG2D, NKp80,

NKRP1 and the rodent Ly49 receptors). These receptors are characterized by



either inhibitory or activating properties and areolved in the fine regulation of NK
cell function. Activating receptors usually transdusignals through association with
molecules, such as CD3¥cRIly and DAP-12, containing Immunoreceptor Tyrosine-
based Activating Motifs (ITAM) that upon phosphaiibn transduce an activation
signal via cytoplasmic PTR$*8 such as p7% and ZAP70, in their cytoplasmic tail.
Other receptors such as NKG2D associate DAP-10ppplyde to signal via the PI-3
kinase pathwaly.

NK cells express three different receptors, caledural Cytotoxicity Receptors
(NCRs), which are directly involved in natural dgteicity”. These include NKp46,
NKp44 and NKp30 (also called NCR1, 2 and 3, respelgf). A putative NCR should
satisfy some of the following requirements and dthmas: its expression should be
mostly restricted to NK cells; its mAb-mediated sslinking in a redirected killing
assay should trigger NK-cell cytotoxicity; and mAiediated masking of the NCR
should inhibit the NK-cell-mediated cytotoxicify Both resting and activated NK
cells express NKp46 and NKp30™ while NKp44 is induced only after in vitro

culture with IL-Z3. NKp46 has an extracellular portion characterizgdwo C2-type



Ig-like domain$" %> NKp30* and NKp44® ?" have an extracellular region containing
a single Ig-like domain of type V, and NKp44 digfgaa membrane-proximal region
with an extended open conformation typical of hitige sequences. NCR
transmembrane portions contain positively chargatha acids that are thought to be
crucial for their association with CQ®r DAP-17>%

NCRs® and NKG2D° are the major receptors involved in NK cytotoxicit
Human NKG2D has been shown to recognize differigiainds, such as MICA and
MICB and the family of UL16-binding proteins (ULBRY' ?® ?° Recent studies
suggest that membrane-associated heparan sulfatgoglycans are involved in the
recognition of cellular targets by NKp30 and NK@4@ut other cellular ligands
recognized by NCRs have not yet been characteridég46 and NKp44 have also
been reported to recognize viral proteins suchmthseinza virus haemagglutinin and
parainfluenza virus haemagglutinin-neuraminidade

Disruption of NCR-ligand interactions by mAb-medidtmasking inhibits NK-
cell-mediated cytotoxicity. The surface densityNEERs might differ among NK cells

and NCR density directly correlates with naturalotyxicity'®. Low NCR surface



density is also related to some diseases. For dramp cells purified from HIV-1-
infected patients express significantly decreaseel$ of NCRs, and this defective
NCR expression is associated with a parallel deeréa NCR-mediated killing of
different tumor target ceft$

In contrast to the fundamental structure and fonctf NCRs, the mechanisms of
NCR expression and regulation have been poorlyrsimted. The CD3chain which
is associated with NKp30 and NKp46 is not requitgdNKp46 surface expression in
transfected celf§ and does not appear to be necessary for the sueigaression of
NKp30¥. Corticosteroids are known to inhibit NK cell fuiom and reduce the
surface expression of activating receptors, pdeituNKp46 and NKp3®, whereas
prolactin induces up-regulation of NCR surface espion.

As described above, NK cell activity is primarilygulated by NCR expressitn
This suggests that NK cytotoxicity could be enhanbg increasing NCR surface
expression. For this purpose, it is necessary ttergtand how NCR expression is
regulated in NK cells. In this study, we first irptigated which factors affect NCR

expression on primary NK cells. We also investigatow NCR expression is



regulated by such factors in NCR-transfected Jufkeglls and in primary NK cells.

Finally we investigated how NK cytotoxicity is cetated with NCR expression.



Il. MATERIALS AND METHODS

1. NK cell preparation  NK cells were purified from the whole blood ofdithy
volunteers by negative selection using the Roseft®S NK enrichment antibody
cocktail (StemCell Technologies Inc, Vancouver, &a) as previously describ&d
Briefly, 1 m{ of whole blood was mixed with 5Q/ of RosetteSep™ NK
enrichment cocktail, and incubated for 20 min amdemperature. The blood sample
was then diluted with an equal volume of phosphmattfered saline (PBS, pH7.4)
containing 2% fetal bovine serum (FBS; Gibco BRIra@ Island, NY, USA). The
diluted sample was layered on to Ficoll-paque ardrfuged at 1600 rpm for 20 min
at room temperature. The NK cell layer was collected the enriched NK cells were
washed three times with PBS containing 2% FBS.fiedriNK cells were >80%
CD56'CD16/CD3 (Beckman Coulter, Fullerton, USA) and were maimgdi in
RPMI 1640 media containing 10% FBS and 100 wmhitbf recombinant IL-2
(Endogen, Woburn, MA, USA).

2. Cell lines and cell culture Hepatocellular carcinoma cell lines HepG2 (ATCC

HB 8065) and Hep3B (ATCC HB 8064) were used asetacglls and maintained in

10



MEM containing 10% FBS (Gibco BRL). Jurkat T lympha cell line (ATCC TIB

152) was cultured in RPMI1640 containing 10% FB®L& (ATCC CCL 13) was

cultured in DMEM containing 10% FBS.

3. Construction of expression vectors for NCRs A series of NCR constructs

were generated by PCR amplification of the NCR gesité specific primer sets

described below. The NKp46 coding region was aneglitising the upper: 5'- TATA

CGGAATTCATGTCTTCCACACTCCCTGCC-3' and lower: 5-GACACCAAGCTT

TCAAAGAGTCTGTGTGTTCAGCCTTCT-3' primers, containinghe underlined

EcoRI and Hindlll sites, respectively. The NKp3@lecw region was amplified using

upper: 5'-ATCAATGAATTCATGGCCTGGATGCTGTTGCTCATC-3' and lower: 5'-

GCCTTTAAGCTTCTAGGGACATCTGGGCTCTGGAATCAC-3' primers containing

the underlined EcoRI and Hindlll sites, respectivedmplified DNAs were gel

purified, digested with the appropriate enzymes, lagated into the pcDNA3. finyc-

His (-) A mammalian expression vector (Invitrog&arisbad, CA, USA) that had

been digested with the appropriate restriction Breg; A series of NCR point mutant

constructs were generated by quick change sitetdulemutagenesis with specific

11



primer sets described below. NKp46 S279A upper: GAAGACTGGCTCGCCAG

GAAGAGGACTAGA and lower: TCTAGTCCTCTTCCTGGCGAGCCAETTCA

AC; NKp46 T283A upper: CTCAGCAGGAAGAGGGCCAGAGAGCGAIEAGC

and lower: GCTGGCTCGCTCTCTGGCCCTCTTCCTGCTGAG; NKp&288A

upper: ACTAGAGAGCGAGCCGCCAGAGCTTCCACTTGG and lowseCAAGT

GGAAGCTCTGGCGGCTCGCTCTCTAGT; NKp46 S291A upper: CGBCAGC

AGAGCTGCCACTTGGGAAGGCAGG and lower: CCTGCCTTCCCAAGGCA

GCTCTGCTGGCTCG; NKp46 T292A upper: GCCAGCAGAGCTTCCGIGGG

AAGGCAGGAGA and lower: TCTCCTGCCTTCCCAGGCGGAAGCTCDEGG

C; NKp30 S176A upper: GGAACACACTGCCACGCCTCAGATGGGCCGA and

lower: TCGGGGCCCATCTGAGGCGTGGCAGTGTGTTCC; and NKp8@osine

motif deletion mutant upper: GCCGTGGGCAGCACCGTCAABRTCACTGTCAC

ATG and lower: CATGTGACAGTGGCATTTGACGGTGCTGCCCACGGAIl constructs

were confirmed by DNA sequencing.

4. Stable cell lines Constructed wild-type and mutant NCR expressientors

were transfected into Jurkat T cells by electropiona Cells were harvested and

12



resuspended in ice-cold PBS and Ou@ aliquots were transferred into

electroporation cuvettes (Bio-Rad Laboratories,cdias, CA, USA). DNA (10ug)

was added to the aliquots, cuvettes were placethenholder of a MicroPulser

electroporation apparatus (Bio-Rad) and shockddl2g kV initial voltage and 960

uF capacitance. Cells were diluted 20-fold into costglmedia without antibiotics

and cultured for 48 hr. After 2 days, the cellsndied to complete selection media

with antibiotics containing Ing/m{ G418 (Duchefa, Haarlem, Netherland). NCR and

mutant NCR expression were confirmed by flow cytogne

5. Flow cytometric analysis of NCRs Cell surface NCRs were quantified by flow

cytometric analysis. NK cells were washed twicdwidge-cold PBS containing 0.05%

BSA. Cells were incubated with PE labeled anti-NBp® anti-NKp46 antibody

(Beckman Coulter) for 30 min at@. After two washes with 0.05% BSA-PBS, cells

were analyzed using a FACScalibur flow cytometeeq®n Dickinson Bioscience,

Lincoln Park, NJ, USA).

6. RT-PCR analysis of NCRs Total RNAs was extracted from NK cells and tumor

cell lines using an RNAeasy Kit (Qiagen, Santa &l&A, USA). The integrity of

13



isolated total RNA was confirmed by 1.5% agarode=tgetrophoresis. To synthesize

cDNA, 1 g of each RNA sample was mixed with 100 ng randoraheer, 6 ;0 of

5X first strand buffer, 1240 of 2.5 mM dNTPs (TaKaRa, Shiga, Japan) and 200

units of murine Molony leukemia virus reverse t@nsase (MMLV-RT)

(Invitrogen) and incubated at 42 for 80 min. The reaction mixture was boiled at

95T for 5 min, quickly chilled on ice, then used folCR without further

manipulation. The PCR reaction mixture was prepavid 2.5 10 of cDNA, 2 ul

of 2.5 mM dNTPs, 20 pmol primer, 2.2 of 10X PCR buffer, 13.8. of distilled

water and 1 unit offaq polymerase (TaKaRa). PCR reactions were performigd w

the appropriate primers (used in the constructibMi¥p30 and NKp46 expression

vectors).

7. Western Blot analysis of NCRs Target cells were lysed with lysis buffer (10

mM Tris-HCL, pH7,4 150 mM NaCl, 2 mM EDTA, 1% TritaX-100, 1mM PMSF,

15 pg/nl leupeptin, 2 mM NaF, 2 mM NaV{) Lysates were separated on SDS-

polyacrylamide gels and transferred to PVDF memisafAmersham Pharmacia

Biotech, Uppsala, Sweden). Membranes were blocké&ti &% BSA in PBS

14



containing 0.1% Tween-20 (PBST) for 2 hr, incubatgth anti-NKp30, anti-NKp46
(R&D Systems, Minneapolis, MN, USA) andtubulin (Sigma Chemical Co., St.
Louis, MO, USA) antibodies for 4 hr and washed WMBST. The membranes were
then incubated with peroxidase-conjugated affirepdonkey anti-goat IgG (H+L)
(Jackson ImmunoResearch Laboratories, West GravdJ8A) for 2 hr, and washed
with PBST. Blots were visualized with SupersignakdafDico chemiluminescent
substrate (Pierce, Rockford, IL, USA).

8. NK cytotoxicity assay: The JAM test NK cell-mediated apoptotic target cell
death was measured using the JAM test. For lahefingl0" cells were incubated
with 20 uCi of fH]-thymidine (37 MBg/ml, NEN, Boston, MA, USA) fa20 hr at
37T in 96-well microtiter plates, then washed threees with culture media without
10% FBS. {H]-thymidine labeled target cells and NK cells wearéxed at the
indicated ratios. After a 2 hr incubation, cellddanedia were aspirated onto glass
fiber filters (size 9& 120 mm) using a semiautomated 96 well harvesteMTEC,
Hamden, CT). The filters (Wallac Oy, Turkr, Finlarwdere washed, dried, and sealed

with melt-on scintillator sheets (Wallac), and iditivity was measured with a beta

15



counter (Wallac). Percentage of apoptotic cell ldeeds calculated by the following
formula: % DNA fragmentation = [1-(experimental wal/ control value)]*100. The
control value was determined by incubating targdsdn culture medium alone. Data
are presented as the mean of at least three indepeexperiments.

9. NK cytotoxicity assay:>'Cromium release assay NK cell-mediated target cell
killing was assessed using a standd@f release assay. For labelings 30° cells were
incubated with 10uCi of ®'Cr (NEN, Boston, MA) for 60 min at 37 in 96-well
microtiter plates, then washed three times withucal media without 10% FBS'Cr-
labeled target cells and NK cells were mixed atitickcated effector to target (E:T) ratio.
After 4 hr of coculture with NK cells, cell-free pernatant was collected and radioactivity
was measured with a gamma counter. Percentageecifisp'Cr release was calculated
by the following formula: % cytotoxicity = [(expenental®'Cr release - spontaneot€r
release) / (maximun?’Cr release - spontaneolsCr release)k 100. For control
experimentstarget cells were incubated either in culture medalone to determine
spontaneous release or in a mixture of 2% TritoMO®-to define maximum'Cr

release. Data are presented as the mean of atHesstindependent experiments.

16



10. Fixation of NK cells For blocking granule release, NK cells were incabat
with RPMI 1640 containing 0.5% paraformaldehyde 26r min and washed twice
with PBS. The concentration of paraformaldedypad incubation time was minimized

to avoid adverse effects as much as possible.

17



lll. RESULTS
1. NCR constructs and stable cell lines

To investigate how NCR expression is regulated,resgion vectors were
constructed and transfected into the Jurkat T Iynpdh cell line. Since NCR
expression is restricted to NK cells, we chose aluik cells for transfection and
expression. Full-length NKp46 (NCR1) and NKp30 (NBJRyenes containing the
extracellular domain, transmembrane domain andp&gsmic tail portion were
inserted into the pcDNA3.4lc-His (-) A expression vector (Invitrogen) (Fig. 1A)
Expression vectors were transfected using an ejsmtation apparatus, and the
transfected cells were selected in G418 media. kg8 NKp46 expression clones
(4 clones each) are shown in Fig. 1B. Of theseedpNKp30 1F7 and NKp46 4E4
were used for the following experiments.
2. Regulation of NCR expression by PMA in stable tldines

Using the stably transfected cell lines above, ingt fnvestigated the effect of

PMA treatment on NCR expression. PMA is a PKC attiv’. PMA increased the

18
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Fig. 1 NCR constructs and stable cell linegA) Schematic diagram of NCR
constructs. NKp30 and NKp46 full length PCR produutere inserted between
EcoRI and Hindlll enzyme sites of pcDNA3myc-His (-) vector. (B) NKp30 and
NKp46 stable cell lines. Some clones expressing l@iktheir surface were selected

through determining by flow cytometry analysis.d&k lines: isotype control, Filled:
NCR expressions)
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expression of NKp30 on the 1F7 stable cell lineg(R2A). Interestingly, NKp30

expression on 1F7 slightly increased until 8 hr dedreased gradually after that.

NKp46 expression on the 4E4 clone showed a sinplanomenon after PMA

treatment and maximum expression occurred arouBdcbafter PMA treatment (Fig.

2B). Both NKp30 and NKp46 expression levels wemgdothan pre-treatment levels

after 24 hr. NCR expression levels as a functiotiroé are shown using a relative

MFI ratio which represents the ratio ofean experimental value to mean base

expression value (Fig. 2C). The relative MFI radlmows the same results as the

histogram: NCR expression on stable cell lines galigl increases to a maximum

level, then decrease to levels lower than theainvialues (Fig. 2C).

NCR mRNA expression was measured by RT-PCR andyuSiiPDH as the

internal control. Unlike the surface expression, gSR and NKp46 transcript

expression were not significantly changed after PBtinulation (Fig. 3). This

suggests that NCR expression in Jurkat transfectamegulated by PMA at the post-

transcriptional level.

20
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Fig. 2 Regulation of NCR expression by PMAA) NKp30 and (B) NKp46 surface
expression on stable cell lines were determinedfldmy cytometry. (Black line:
Isotype control, Gray line: None, Filled: NCR exgs®mn after PMA (100 ng/)
treatment) (C) The NCR expressions were presentedlative MFI ratio.

Total NCR protein expression in stable cell linesswinvestigated using

immunoblotting. Although mRNA expression of NKp3®da NKp46 were not

changed after PMA stimulation, total protein leviigtuated as a function of time

(Fig. 4). In general, the blotting results were iamto those of flow cytometry

analysis (Fig. 2). Total NCR protein expressioe@RMA stimulation also increased

until 6~8 hr and then gradually decreased (Fig. 4).
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3. Identification of the sequence motif which affeis NCR expression

To identify the sequence motif which affects NCRhmession, we constructed

expression vectors of NCR point mutants. We alteegthe and threonine sites which

are expected to be PKC binding sites to alaninelein the cytoplasmic tail of

NKp30, Ser279, Thr283, Ser288, Ser291 and Thr292hén cytoplasmic tail of

NKp46 (Fig. 5A). Mutant NCR expression vectors wesnsfected to Jurkat T cells

by electroporation and the transfected cells wewduced in complete media

containing G418 neomycin. Mutant clones were setebly flow cytometric analysis,

and NKp30 S176A 3F2, NKp46 S279A 3A8, NKp46 T283AV4NKp46 S288A 4C5,

NKp46 S291A 5D7and NKp46 T292A 4C1 clones were used in the foliawi

experiments (Fig. 5). These mutant proteins weeé expressed on the surface of

Jurkat T cells, although NKp46 S288A was much lesgressed than wild type

NKp46 (Fig. 5B). Regulation of mutant NCR expressaiter PMA stimulation was

assessed by flow cytometry and the histogram repteghe change in NCR surface

expression on mutant clones cultured with PMA farht and 24 hr (Fig. 5C). Like

wild type NKp30 and NKp46, expression of NKp30 SA76IKp46 S279A, NKp46

23
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Fig. 3 Transcription of NCR mRNAs in stable cell Ines Expression of the NCR
MRNAs in NCR stable cell lines after PMA (100 m@)/treatment for indicated times
were determined by RT-PCR.
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NKp30
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Fig. 4 NCR total protein expressions in stable celines Expressions of the NCR
total proteins in stable cell lines after PMA (1@m{) treatment were determined by
Immunoblotting. Internal control was set &oyubulin.
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Fig. 5 NCR mutant constructs and stable cell linegxpressing them(A) NCR

mutant constructs were shown by schematic diagré@)sNCR mutant constructs

were transfected to Jurkat cell lines and somelestelbnes were selected by flow

cytometry. (C) The histograms showed the expressidrNCR mutants after PMA
(100 ngff) treatment.

T283A, NKp46 S291A and NKp46 T292A mutant protdimseased 12 hr after PMA

stimulation, but decreased after 24 hr. Howevepression of the NKp46 S288A

mutant was not affected by PMA stimulation (Fig.)5This suggests that Ser288 of

NKp46 is important for the regulation of surfacg@eession of NKp46 by PMA.
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4. Effect of cytokines on primary NK cell NCR expresion

Since NCR expression in stable cell lines was aggdl by PMA at the post

transcriptional level, we next investigated how NE@Rpression is regulated in

primary NK cells. As a first step, we screened masifactors that are known to affect

the expression of NCR on primary NK cells. To dismofactors which increase NCR

expression on NK cells, we tested several cytokimegh are known activators of

immune cells. IL-2, IL-8, IL-12, IL15, IL-18, IFN-«1 and IFNe2b did not

significantly change NKp30 and NKp46 expressionpsimary NK cells (Fig. 6).

Histograms and relative MFI ratios showed only wargded or slightly altered NCR

expression (Fig. 6A, B).

5. Regulation of NCR expression by PMA in primary X cells

We next investigated the effects of PMA, which i@teof NCR expression in

stable cell lines, and IL-2, which is necessarygddmary NK cell growth, in more

detail. NKp30 expression on primary NK cells isregented by histogram appeared

to increase a little after addition of PMA to theltare (Fig. 7A). IL-2 treatment,

however, did not appeared to increase NKp30 exjpresempared to untreated cells
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Fig. 6 Effects of cytokines upon NCR expression diK cells (A) NKp30 and (B)
NKp46 expressions on primary NK cells after cytektreatment were determined by
flow cytometry and presented by relative MFI rat{Black line: Isotype control,

Filled: NCR expression)
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(Fig. 7A). Plots of Relative MFI values show thaKpBO expression is slightly

increased by PMA, but not affected by IL-2 (Fig.)7RJnlike NKp30, NKp46

expression on NK celisicreased in untreated cultures, but IL-2 did r@tnge of

expressionMoreover, PMA appeared to reduce the expresdidikKp46 on primary

NK cells compared to untreated control group ogéllg. 7C). By relative MFI value,

PMA diminished the expression of NKp46, while ILd®I not significantly affect it

(Fig. 7D). NCR mRNA expression in PMA-treated prisn&dlK cells was measured

by RT-PCR, with GAPDH as internal control. Unlikeststable cell lines, NKp30 and

NKp46 transcript expression in primary NK cellsgdbeled surface expressions (Fig.

7E).

We next tested inhibitors of MAP kinase kinase (MEkcalpain and

proteosomes (PD98059, PD150606 and Lactacystimectisely). None of the

selected inhibitors induced any particular chamgBICR expression on primary NK

cells (Fig. 8).

6. Regulation of NCR expression by PKC inhibitorsn primary NK cells

Since PMA (a PKC activator) appeared to be morecéffe in regulating NCR
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Fig. 7 Regulation of NCR expression upon NK cell éiwation by IL-2, PMA, and
LPS (A) NKp30 and (C) NKp46 surface expression on prynNK cells after
indicated treatment for 24 hr. The histogram daémewrepresented by relative MFI
ratio (B, D). (E) Expression of the NCR mRNAs irinpary NK cell after PMA (100
ng/imf) treatment for indicated times were determined Ry¢PCR. (Black line:
Isotype control, Gray line: none, Filled: indicateglatment)

expression than any other cytokine or inhibitorteéds we next investigated the

effects of PKC inhibitors G66976, G66983, Rottlesind Bisindolylmaleimide IlI

(Bislll) on NCR expression. Interestingly, G6698®luced a dramatic increase in

NKp30 expression on primary NK cells, while theesthdid not (Fig. 9A). The relative

MFI ratio of G66983 treated NK cells was about a@@fhigher than that of the

controls, while NK cells treated with the other PKxBibitors had ratios similar to
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Fig. 8 Effects of other inhibitors upon NCR expressn (A) NKp30 and (B) NKp46
expressions on primary NK cells were determinedidny cytometry and presented
by relative MFI ratio. The inhibitors were treated5 uM for 24 hr. (Black line:
Isotype control, Filled: NCR expression by indichteeatment)
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Fig. 10 Effects of PKC inhibitors upon NCR mRNA expession in primary NK
cellsThe NCR mRNA expressions &) 12 hr cultured primary NK cells with PMA
and indicated inhibitors and (B) G66983 treatednarly NK cells for indicated time
were determined by RT-PCR. The internal control setsby GAPDH.

untreated NK cells. G66983 also increased expnessioNKp46 four-fold (Fig.

9B). Even though the relative MFI ratio of NKp4&ieased only about fodold

after G66983 treatment, the mean value is quitd lignsidering that substantial

amount of NKp46 is constitutively expressed on eaied cultured NK cells (Fig. 9B).

Next, we measured NCR mRNA expression in primary ¢élls after G66983

treatment. As shown in Fig. 10A, only G066983 indugerominent expression of



NKp30 and NKp46 mRNA transcripts. Consistent wilie tsurface expression of
NCR, mRNA induction gradually increased until 12(Rig. 10B). In addition, the
MRNA levels of NKp30 and NKp46 kept increasing urg#4 hr after G66983
treatment (data not shown).
7. Effects of G66983 on NK cytotoxicity against tuior cell lines

Finally, we investigated whether PMA and G06983ldanfluence target cell
lysis through regulation of NCR. The JAM test at@r release assay were performed
using PMA and G66983 treated NK cells. As anti@dalG66983 increasddK cell
cytotoxicity while PMA slightly decreased it. Altbgh HepG2 targets were
resistant to apoptotic cell death induced by umgitdNK cells, G66983 treated NK
cells induced apoptosis in HepG2. In particular698B treated NK cells caused a
significant amount of apoptosis on Hep3B and Hekllscwhile PMA reduced NK
activity against the target cells (Fig. 11A). InMAests (Fig. 11B) and'Cr release
assay (Fig. 11C), G66983 appeared to enhance NXooytity in all target cell lines
to a similar degree as IL-2. When NK cells grantgkease was blocked by mild

fixation, apoptotic target cell death measured Alldest (Fig. 12A) and necrotic
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Fig. 11 Effects of a PKC inhibitor (G66983) upon NKcytotoxicity The NK activity
of target cell lysis were determined by (A, B) JABSt and (CY'Cr release assay.
Primary NK cells were incubated with indicated mias for 24 hr and added to
target cells at an E:T ratio of 3:1. NK cells aadyet cells were cocultured for 2 hr
(JAM test) or 4 hr¥Cr release assay). The data are presented as aohatfeast
three independent experiments (mean+SD) using NIK ftem one donor.

target cell death measured B¢r release (Fig. 12B) were not affected by eitHdAP
or G66983 treatment. This suggests that G66983Pa modulate NK cytotoxicity
by regulation of cytotoxic granule release.

In summary, G66983 treatment of primary NK cellgmented NCR expression
and resulted in an increase of NK cytotoxicity aghicancer cells, apparently as a

consequence of increased granule release.
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Fig. 12 Cytotoxicity of fixed NK cells against targt cells The fixed NK activity

of target cell lysis were determined by (A) JAMttesid (B)°'Cr release assay.
Primary NK cells were incubated with indicated miaie for 24 hr and mildly fixed
by 0.5% paraformaldehyde for 20 min and then addedrget cells at an E:T ratio of
3:1. NK cells and target cells were coculturedZdm (JAM test) or 4 hP{Cr release
assay). The data are presented as a mean of atHezes independent experiments

(meanzSD) using NK cells from one donor.
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IV. DISCUSSION

NK cells express two types of receptors that firrelgulate their activity and are
characterized by opposite functions. Signalingnibitory receptors, one of the two
distinct families, is mediated by Immunoreceptordgine-based Inhibitory Motifs
(ITIM) present in their cytoplasmic tail Some of these receptors recognize MHC
class | molecules and they are expressed by allchlks in a clonally distributed
fashion; their interaction with different groupseEA class | alleles protects normal
cells from NK lysi§ ™ * The other type is activating receptors which Ugua
associate with small transmembrane-anchored adaptoteins that possess
Immunoreceptor Tyrosine-based Activation Motifs AMS) in their cytoplasmic
domaing’. Among the NK activating receptors, three novel -bil-specific
triggering surface molecules (NKp46, NKp44 and NBpBave been conspicuous for

some timét2* 40

although a possible co-receptor role has beemoged for CD2 and
the activating forms of the HLA-C-specific recep{@50) and the CD94-NKG2C

heterodimer play a role the NK cytotoxic¢ity*. Subsequent studies have shown that

NKp46, NKp44 and NKp30 appear to play a criticdérim the induction of NK-cell-
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mediated cytotoxicity and they are now called raltaytotoxicity receptors (NCRS)
NCR expression is directly correlated with NK cytat activity, and low NCR
surface density and NK cytotoxicity have been iggtied in some diseases, including
HIV-1 infection®®, M. tuberculosis infectiorf®, myeloid leukemi® and some other
tumors. However, the regulatory mechanism of NCRression on NK cells are not
yet well understood. Therefore, this study attemptedetermine the factors affecting
NCR surface expression on NK cells. We first cargegd an artificial NCR
expression system for this purpose (Fig. 1). SiN€Rs are almost exclusively
expressed on NK celfs a similar cell line which does not express NCRasw
required, and Jurkat was used for transfection raxgats. Jurkat expresses the CD3
chain which is an adaptor protein for NKp46 and SBpbut does not express
DAP12 for NKp44'. Thus, we transfected NKp30 and NKp46 expressamiors to
Jurkat cell lines. PMA was used to stimulate NC&nsfectants, and the surface
expression of wild type NKp30 and NKp46 were obedras a function of time using
flow cytometry (Fig. 2). The regular increase amtréase of NCR expression was

also monitored by immunoblotting (Fig. 4). Theseutts clearly demonstrate that
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total protein and surface expression levels of NKpBd NKp46 were altered after
PMA stimulation.

While diacylglycerol, the physiologic activator pfotein kinase C, is present
only transiently in cells, PMA degrades very litd&d remains for comparatively
longer period€. Therefore, over time, protein kinase C presumadis in both
positive and negative ways depending on the funatiaits target proteifd In early
cellular responses protein kinase C appears teyaergistically, but sometimes there
is a negative feedback control, such as downregulaf some receptots®. Thus, it
is quite possible that NCR expression on Jurkatell lmes were influenced by
continuous PMA stimulation. However, NCR transcegpression in stable cell lines
did not show any significant change. This suggdéisés NCR expression may be
regulated at a post-transcriptional level.

We predicted that PKC activation by PMA would cauwdteration in protein
expression level and the conformation of PKC bigdsites that might result in post-
transcriptional regulation of NCR expression inkdairT cells. To investigate which

regions of NCRs are critical for this phenomenor,made a series of point mutants
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in NKp30 and NKp46. In particular, we substitutddnéne for serine and threonine
residues in the cytoplasmic tail region which werpected to be PKC binding sites
(Fig. 5). Interestingly, most of the NCR mutanthideed similarly to the wild type.

However, the expression pattern of the NKp46 S288fke was very different.

Unlike the other mutant proteins, NKp46 S288A stefeexpression was almost
undetectable. Furthermore, NKp46 S288A expressias wot affected by PMA

treatment. These results suggest that Ser288 o#BlKpight play an important role

in NKp46 expression and its regulation by PMA (F@.).

We next investigated whether NCR expression islarigiregulated by PMA in
NK cells. In fact, NKp30 expression was not sigrafitly changed after PMA
stimulation (Fig. 6), and NKp46 expression slighttiecreased (Fig. 7B, D).
Compared to the Jurkat transfectants, a differespanse to PMA stimulation seems
to occur in primary NK cells. Actually, an acutédibitory effect has been observed in
primary NK cells after brief pretreatment with PREAFurthermore, NCR mRNA
expression after PMA stimulation paralleled thefaeer expression (Fig. 7E). These

results indicate that NCR expression is differemédgulated in NK cells compared
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with the artificial overexpression system of Jurlatells. Therefore, we screened
other candidate molecules which are expected tasaotgulators of NCR expression
in NK cells. First of all, cytokines such as ILi2;8, IL-12, IL-15, IL-18, IFN«1 and
IFN-a2b, which are known as NK activators or immuneeysstimulatot’™®, did not
appear to induce any notable change in NCR expressi primary NK cells (Fig. 6).

According to previous reports, more than 90% obsgtic PKC is translocated to
the membrane in NK cells exposed to PMA, and tauadion is followed by the
appearance of PKM. PKC is also activated by calpaiteolysis and this proteolytic
activation produces PKf1 Based on this information, we investigated tHeat$ of
inhibitors which are related to cytoplasmic sigttahsduction on NCR expression in
primary NK cells (Fig. 8). PD98059 blocks ERK1/Ziaation and inhibits cytolytic
activity of NK cells against some targ€tsPD150606 is a calpain inhibitor, and
lactacystin is a proteosome inhibRdbiThese inhibitors did not affect NCR expression
(Fig. 8), although they are known to influence Nfotysis™.

Since PMA, a PKC activator, appeared to affectNizR expression in primary

NK cells (Fig. 7), we focused on how PMA and PKGibition affect NCR
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expression. We selected typical inhibitors of PKGtypes: Rottlerin (novel PKC),
G66976 (conventional PKC), G66983 (broad PKC isesymnd Bislll (PKC/PKAY.
Of these inhibitors, G66983 induced an astonislmegease of NCR expression on
primary NK cells. NKp30 expression increased taeatgr extent than NKp46 (Fig.
9). Interestingly, NCR transcript expression impary NK cells paralleled the surface
expression patterns (Fig. 10). This suggests tli#98&3 treatment regulates NCR
expression in NK cells at the transcriptional level

Finally we investigated whether PMA and G66983uefice target cell lysis by
NK cells through the regulation of NCR expressidn.expected, G66983 treatment
of primary NK cells induced increased NCR exprassim NK cells, and their
cytolytic activity also increased (Fig. 11). JAMsteand>'Cr release assay data
demonstrated that G66983 significantly increased &#{l-induced apoptosis in
Hep3B and HelLa (Fig. 11A), and necrosis in all eargells (Fig. 11C). However,
PMA appeared to slightly decrease the cytolytidgvigtof NK cells. Furthermore,
JAM test and’'Cr release assay of mildly fixed NK cells showedt tihe increase of

NK cytotoxicity influenced by NCR expression wasluced via the granule release
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pathway (Fig. 12A, B).

The PKC isotypes inhibited by G66983 are PK, v,  and PKC.. PKCa, B, v

andd are also inhibited by G66976 and rottlerin. ThRKC ¢, is the only isotype

inhibited by G©66983 alone. This suggests that RK@&ight be involved in the

upregulation of NCR expression upon G06983 treatmbut this has not been

definitively demonstrated in this study. Althougloma elaborate studies are needed to

elucidate the molecular mechanism of NCR upreguiatby G66983, our data

demonstrate that G66983 could be used as a NK a#ictiv molecule. Most

importantly, NCR up-regulation by G66983 is dirgaksociated with an increase of

NK cytotoxicity against cancer cells.
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V. CONCLUSION

1. Expressions of NKp30 and NKp46 in Jurkat T cellpegred to increase by

PMA treatment until 8 hr, but gradually decreasédrahat time to lower

levels than initial state.

2. NKp30 and NKp46 mRNA expressions were not signifisachanged after

PMA stimulation in Jurkat transfectants.

3. NKp30 and NKp46 total protein expressions after P8fifulation increased

until 6~8 hr and then gradually decreased in Jurkells.

4. Mutation studies revealed that Ser288 of NKp46 miglay an important

role in NKp46 expression and in the regulation AP

5. In primary NK cells, most of cytokines such as ILH2-8, IL-12, IL-15, IL-

18, IFNwl and IFNe2b did not appear to significantly alter the NCR

expressions.

6. Inhibitors of MAP kinase, calpain and proteosonmsoalid not induce any

notable change of NCR expression in primary NKscell

7. PMA slightly down-regulated surface and mRNA expr@s of NKp46 on
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primary NK cells.

8. Although other PKC inhibitors did not induce or pugss the NCR

expression, G66983 induced remarkable incremeMi@R expression on

NK cells.

9. Up-regulation of NCR on NK cell surface by G669&®ised the increase of

NK cytotoxicity against hepatocellular carcinomédl tees and HelLa.

10. The enhancement of NK cytotoxicity by the increa$eNCR expressions

was attributed to the cytotoxic granule releaséway of NK cytotoxicity.
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Abstract (in Korean)
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