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Antibody to Langerin/CD207 localizes large numbers
of CD8a™ dendritic cells to the marginal zone

of mouse spleen
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Dendritic cells (DCs) are strategically positioned to take up antigens
and initiate adaptive immunity. One DC subset expresses CD8«a« in
mice and is specialized to capture dying cells and process antigens
for MHC class | “‘cross-presentation.” Because CD8* DCs also
express DEC205/CD205, which is localized to splenic T cell regions,
it is thought that CD8* DCs also are restricted to T zones. Here, we
used a new antibody to Langerin/CD207, which colabels isolated
CD8* CD205* DCs, to immunolabel spleen sections. The mAb
labeled discrete cells with high levels of CD11c and CD8. Surpris-
ingly most CD207+ profiles were in marginal zones surrounding
splenic white pulp nodules, and only smaller numbers were in T cell
areas, where CD205 colabeling was noted. Despite a marginal zone
location, CD207* DCs lacked identifying molecules for 3 different
types of macrophages, localized in proximity and, in contrast to
macrophages, marginal zone DCs were poor scavengers of soluble
and particulate substrates. After stimulation with microbial ago-
nists, Langerin expression disappeared from the marginal zone at
6-12 h, but was greatly expanded in the T cell areas, and by 24-48
h, Langerin expression disappeared. Therefore, anti-Langerin an-
tibodies localize a majority of CD8+ DCs to non-T cell regions of
mouse spleen, where they are distinct from adjacent macrophages.

To induce adaptive immunity, a critical event is the uptake and
presentation of antigen by dendritic cells (DCs) to naive T
cells. DCs initiate protective responses to infection and vacci-
nation, and they also maintain self-tolerance (1, 2). Several
subsets of DCs exist in the steady state, and these can have
distinct functions (3, 4). In spleen, the main immune organ used
for studies of immunity in mice, 2 main subsets of classical DCs
are distinguished. Although both express high CD11c integrin,
one subset expresses CD8aq, a marker of unknown function, and
the other lacks CDS8 but often expresses CD4 (5). CD8" DCs are
specialized to induce Thl helper T cell development and to
capture dying cells and cross-present antigens on MHC class 1,
whereas CD8~ DCs elicit IL-4 and more efficiently form peptide
MHC II complexes (6-11).

DC subsets differ in expression of antigen uptake receptors.
CD8* DCs express higher levels of DEC205/CD205 (5, 12), rec-
ognized by the mAb NLDC-145 (13, 14), whereas CD8~ DCs
express DCIR2, recognized by 33D1 mAb (10). The capacity of
DEC205 and DCIR? to efficiently mediate antigen presentation in
vivo can be demonstrated by injecting the corresponding anti-
receptor mAbs engineered to deliver antigenic proteins (10, 15).

The anatomy of mouse spleen is highly organized. The white
pulp (WP) contains T cells, located in periarterial lymphoid
sheaths (PALS), and B cells, found in discrete follicles. A
marginal zone (MZ) rich in marginal zone macrophages
(MZMs) and marginal metallophillic macrophages (MMMs)
surrounds each WP nodule. Surrounding the MZ is the red pulp
(RP), rich in red pulp macrophages (RPMs) (16, 17). CD11c-rich
DCs are prevalent in the MZ and PALS (18). The location of
both subsets of classic DCs (CD8* and CD8") is defined by using
mAbs against DEC205 and DCIR?2 in spleen sections. DEC205
staining in mouse spleen is restricted to PALS (13, 19), whereas
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DCIR?2 staining is restricted to the bridging region of the MZ
(10). Consequently, it is widely accepted that splenic CD8" DCs
are localized to DEC205-rich T cell areas (20-22).

We recently developed an IgG mAb to the extracellular
domain of mouse Langerin/CD207 (23). In the spleen, this mAb
identifies CD207 selectively in CD8" DCs, as also has been
found with other approaches (12, 24). When anti-Langerin is
engineered to deliver an antigen in vivo, it too mediates efficient
presentation, both in peripheral lymph nodes and spleen (15).
Here, we took advantage of the L31 anti-CD207 mAb to localize
CD8* DCs in spleen sections. Unexpectedly, CD207* CD8"
DCs were mainly localized to the MZ, with fewer cells in the RP
and PALS. Langerin* cells lacked the major markers of 3
different groups of adjacent phagocytes, and despite their loca-
tion, CD207" CD8" DCs only weakly cleared a variety of
substrates from the blood.

Results

CD207, CD205, and CD8 Antibodies Colabel a DC Subset in Spleen Cell
Suspensions. Previously, we reported that the L31 mAb against
the extracellular domain of mouse Langerin/CD207 is able to
label the CD8* DC subset in spleen cell suspensions from
BALB/c and BALB/c X C57BL/6 F; mice, but poorly labels this
subset in C57BL/6 mice (23). This labeling increases markedly
after fixation and permeabilization, suggesting that Langerin is
primarily intracellular in location. To simultaneously examine
CD207 and CD205 expression on different cell types in mouse
spleen, we used an 8-color flow cytometry strategy to distinguish
DCs, monocytes, RPMs, and granulocytes [supporting informa-
tion (SI) Fig. S1]. Classical DCs were identified by high CD11c
integrin expression and, as expected, consisted of CD11bhigh
CD8~ and CD11b"% CD8™" subsets (Fig. S1) (12). Most of the
CDS8™ cells expressed Langerin and DEC205 (Fig. 14), confirm-
ing that these 2 antigen uptake receptors are primarily expressed
on CD8"* DCs, as described previously (12, 24).

We next considered RPMs, the macrophage population most
easily identified by FACS. RPMs expressed high F4/80 and low
CD11cand CD11b (Fig. S1) (25). RPMs failed to label for either
CD207 or CD205 (Fig. 1B Upper), but stained strongly for
mannose receptor/CD206 and CD68 (Fig. 1B Lower).

We also looked for Langerin in other nonlymphocyte popu-
lations (Fig. S1): plasmacytoid DCs (PDCA-1*, B220*%,
CD11c™, CD11b!%), monocytes (CD11b*, CD115" Ly6G™),
and granulocytes (CD11b* Ly6G™). None of these populations
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Fig.1. L31mAb specifically recognizes CD8* DCs. Fixed and permeabilized B cell depleted BALB/c splenocytes were analyzed by multicolor flow cytometry (Fig.
S1). (A) Expression of Langerin, DEC205, and CD8 in CD11c high gated cells (Fig. S1, gate g). (B) RPMs (Fig. S1, gate j) were evaluated for Langerin, DEC205, MMR,
and CD68. (C-E) Langerin and DEC205 expression was analyzed in (C) plasmacytoid DCs (Fig. S1, gate k), (D) monocytes (Fig S1, gate n), and (E) granulocytes (Fig.

S1, gate ). One experiment representative of 3 is shown.

expressed significant Langerin, but granulocytes had low CD205
(Fig. 1 C, D, and E, respectively) (26). These data indicated that
Langerin/CD207 and DEC205/CD205 should be suitable mark-
ers to localize CD8" DCs in sections of intact spleen.

Most Langerin® DCs Are in the Splenic MZ but Lack Macrophage
Markers. CD8" DCs are thought to be restricted to the T cell area
of spleen because these cells colabel for DEC205 in cell suspen-
sions (10, 27), and DEC205 staining in tissue sections is limited
to the PALS (13, 28). Surprisingly, CD207* cells were observed
primarily in MZ, with some in RP and PALS (Fig. 2). In sections
through WP regions containing B cell areas, Langerin* cells
formed a ring around each WP nodule, separating the B cell area
from F4/80" RPM (Fig. 2A4). In sections containing T cell areas,
Langerin® cells also were found in the PALS (29), but the
dominant location was in the MZ surrounding rings of CD169*
MMMs (Fig. 2B).

At higher power, CD207* DCs (Fig. 2 C-G, red) were distinct
from, but interspersed with, SIGNR1/CD209b* MZMs (Fig. 2 E
and G, blue), just internal to F4/80" RPM (Fig. 2 C-E), and
surrounding CD169" MMMs (Fig. 2 F and G). Unexpectedly,
then, most Langerin/CD207* DCs were localized to the splenic
MZ, with smaller numbers in the RP and WP, but the cells were
distinct from F4/80", SIGNR1*, and CD169" macrophages.

Langerin™ Cells in Spleen Sections Express High CD8 but Variable
DEC205/CD205. To examine coexpression of Langerin with DC
markers in spleen tissue sections, we first considered CD11c
(Fig. 34). Langerin™ cells all colabeled for CD11c, both in the
MZ (Fig. 3A Upper) and in the PALS (Fig. 3A Lower). Many
CD11chigh cells lacked CD207 (Fig. 34) and likely represent
CD8~ CD207~ DCs.

When we double labeled for CDS8, tight coexpression of CD8
(green) and CD207 (red) was readily evident in the MZ (Fig. 3B
Upper), confirming the FACS data (Fig. 14 Upper Left). This
double labeling was more difficult to discern in the PALS
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because of the numerous CD8* T cells there (Fig. 3B Lower
Right).

DEC205 is not known to be present in the MZ, suggesting that
the DEC205 noted by FACS on Langerin™ cells (Fig. 1.4 Upper)
was too scarce to be detected in sections. However, DEC205 was
evident in PALS (Fig. 3C, red); there, staining for CD205 and
CD207 showed that many DEC205* cells expressed Langerin
(Fig. 3C Bottom). These results suggest that DEC205 expression
on most isolated CD8* DCs by FACS is too low to visualize in
sections with current methods, and that Langerin is a better
marker for CD8* CD11chieh DCs.

Langerin® CD8a* DCs Poorly Take up Substrates Injected Intrave-
nously. Large bloodborne particles (>75 kDa) are trapped in the
splenic MZ (16), and only cells located in the RP and MZ have
access to them. The localization of Langerin™ cells in the splenic
MZ prompted us to evaluate their ability to take up bloodborne
particles. Mice were injected iv. with different fluorescent
labeled substances, and 30 min or 3 h later we analyzed uptake
by flow cytometry. Large particles, like yellow-green polystyrene
(YG-PS), soluble BSA, and killed Escherichia coli or Staphylo-
coccus aureus Alexa 488 were taken up comparably by CD8" and
CD8~ DCs (Fig. 4). Nevertheless, only a small fraction (~3-
10%) of DCs were phagocytic and also took up small amounts,
whereas most RPMs more actively took up all labeled substrates

(Fig. 4).

Langerin® CD8a* MZ DCs Poorly Phagocytose Particles Injected
Intravenously. To further identify cells taking up bloodborne
particles, we looked in spleen sections for uptake of fluorescent
YG-PS (Fig. 5 A-C), Alexa 488-E. coli (Fig. 5D), and Alexa
488-S. aureus (Fig. SE) 30 min after i.v. inoculation. Sections
allowed an examination of macrophages that were not readily
released into cell suspensions. As illustrated for YG-PS in Fig.
5A Upper, bloodborne particles accumulated in cells of the MZ
but not the WP. However, the vast majority of Langerin™ cells
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Fig. 2.
(A) or CD169 (B), red for Langerin, and blue for B220. (Scale bar: 200 um.) (C-G) Higher magnification of splenic RP and MZ with Langerin™ cells in red. RPMs
were stained with F4/80 (C-E, green), MMMs with CD169 (F and G, green), and MZMs with SIGNR1 (E and G, blue). B220 (blue) delineates WP in C, D, and F. (Scale
bar: 100 um.)

were not labeled with fluorescent particles (Fig. 54). Likewise,
CDl1l1c* and CD8" MZ DCs rarely contained particles (Fig. 5B;
lower magnifications are in Fig. S2). In contrast, uptake of
YG-PS by RPMs, MMMs, and MZMs was readily evident (Fig.
5C and Fig. S3).

Similar results were obtained when the uptake of fluorescent
killed E. coli and S. aureus was analyzed by tissue sections.
Langerin® cells were rarely labeled with fluorescent bacteria
(Fig. 5 D and E Left), whereas RPMs and particularly MMMs
took up numerous fluorescent particles (Fig. 5 D and E Center
and Right). When subsequent time points were examined (e.g.,
3 h), only a few cells with fluorescent E. coli and S. aureus were
found, indicating that particles were actively digested (data not
shown), but the indigestible YG-PS particles persisted at least
48 h (the longest time point studied), again in MZ and RP
macrophages, not Langerin® DCs. Thus, the bulk of particle
clearance from the blood is by macrophages, not DCs, even
though both cell types are juxtaposed in situ.

Microbial Agonists Induce Marked Changes in the Localization of
Langerin. Previously, De Smedt et al. (19) reported that systemic
inoculation of LPS led to a redistribution of CD11c* DCs from
the MZ to the T cell area, whereupon the cells disappeared. To
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Langerin® cells predominate in the MZ and are distinct from macrophages. (A and B) Splenic sections of BALB/c mice were stained in green for F4/80

determine the response to microbial agonists, we injected either
poly(IC) (Fig. 6) or LPS (Fig. S4A4), the former a mimic for
double-stranded RNA and the latter a constituent of bacterial
cell walls. In the absence of microbial mimics, YG-PS beads
remained mainly in the MZ and RP (Fig. 6 and Fig. S44 Left),
and only a few particles were in WP, even 48 h after particle
injection (data not shown). Likewise, Langerin* cells remained
primarily in the MZ after particle injection (Fig. 6 and Fig. S44
Left). However, poly(IC) (Fig. 6) or LPS (Fig. S44), which
induced the phenotypic maturation of CD8" DCs during the first
12 h (Fig. S4B), led to a marked loss of Langerin from the MZ
and RP, whereas Langerin staining in PALS increased markedly
(Fig. 6 and Fig. S4A4 Middle); some cells in the PALS contained
single latex particles, consistent with transport by Langerin™ cells
from the MZ (Fig. 6 Center, arrowhead). By 48 h, Langerin
staining had disappeared (Fig. 6 and Fig. S44 Right). Further
studies will be required to determine whether these marked
changes in Langerin expression reflect movement of Langerin™
cells from MZ into PALS and then cell death.

Discussion

Our findings have used a new IgG anti-Langerin/CD207 mAb
(23) to visualize CD8" DCs more clearly than previously pos-

Idoyaga et al.


http://www.pnas.org/cgi/data/0812247106/DCSupplemental/Supplemental_PDF#nameddest=SF2
http://www.pnas.org/cgi/data/0812247106/DCSupplemental/Supplemental_PDF#nameddest=SF3
http://www.pnas.org/cgi/data/0812247106/DCSupplemental/Supplemental_PDF#nameddest=SF4
http://www.pnas.org/cgi/data/0812247106/DCSupplemental/Supplemental_PDF#nameddest=SF4
http://www.pnas.org/cgi/data/0812247106/DCSupplemental/Supplemental_PDF#nameddest=SF4
http://www.pnas.org/cgi/data/0812247106/DCSupplemental/Supplemental_PDF#nameddest=SF4
http://www.pnas.org/cgi/data/0812247106/DCSupplemental/Supplemental_PDF#nameddest=SF4
http://www.pnas.org/cgi/data/0812247106/DCSupplemental/Supplemental_PDF#nameddest=SF4
http://www.pnas.org/cgi/data/0812247106/DCSupplemental/Supplemental_PDF#nameddest=SF4

Fig. 3.

L31 anti-Langerin mAb localizes most CD8a " DCs to the MZ. (A) BALB/c spleen sections were stained for CD11c (green), Langerin (red), and B220 (blue).

Langerin® CD11c™* cells in the MZ (Upper) and T cell area (Lower). (B) CD8* DCs (green) costained for Langerin (red) in the MZ (Upper) and T cell area (Lower).
(C) Cryosections were stained for DEC205 (red), Langerin (green), and B220 (blue). (Bottom) Magnified region of Middle (white square). (Scale bar: 100 um.)

sible. This subset of CD11chigh DCs labels for CD8, CD205, and
CD207/Langerin by FACS but, relative to other markers, Lan-
gerin appears to be superior for localization studies in sections.
CDS8 and CD207 are clearly coexpressed on the same cells in the
MZ, but in the T cell area and RP CD207 is a better marker
because of abundant expression of CDS§ on adjacent CD207~ T
cells. Likewise, CD205 is currently a relatively weak marker for

Dendritic cells

tissue section staining, and it primarily labels cells in the T cell
area rather than the MZ. The drawback of Langerin is that it is
not expressed strongly on CD8* DCs in C57BL/6 mice (23, 30).

Our findings with CD207 impinge on 2 aspects of mouse
spleen function, the major organ for immunological studies in
this species. The first relates to the localization of CD8" DCs.
Previously, splenic CD8" DCs were thought to be localized to

Macrophages

PBS 30 min 3h PBS

30 min 3h

35

Fig.4. Weak phagocytosis of bloodborne substrates
by Langerin® CD8*" marginal zone DCs. Pseudodot
plots of CD19-depleted splenocytes 30 min or 3 h after

injecting BALB/c mice with PBS or different substrates,

indicated in the center as follows: YG-PS, BSA, E. coli,

or S. aureus. Dendritic cell (CD11ch) phagocytosis was

17 3 assessed in CD8*' and CD8~ subsets (Fig. S1, gate g);
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also, the uptake of bloodborne particles by red pulp
macrophages (Fig. S1, gate j) was evaluated.
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Langerin SIGNR1 CD11c B220

F4/80 SIGNR1

DEC205-rich T cell areas (20-22). However, we found that large
numbers of CD8* CD207" CD11lc* DCs are localized in the
MZ, with smaller numbers in RP and PALS. Previously, few
CD8* DC have been localized in the MZ (12, 31), and some
CD8* DCs are involved in the early uptake of Listeria mono-
cytogenes (32) and dying cells (33) injected i.v. Production of
large amounts of IL-12 is also a distinct feature of CD8* DCs
(34), and in situ analysis after injection of Toxoplasma gondii
extracts localized IL-12 production in the MZ (35). Nevertheless,
we found that CD207" MZ and RP DCs are readily distinguished
by molecular markers from the different populations of macro-
phages in these regions (i.e., F4/80" RPM, SIGNR1* MZM, and
CD169" MMM cells). Our findings apply to the steady state.

Control

SRR ML

Fig. 6.

F4/80 SIGNR1

Fig. 5. Polystyrene, E. coli, and S. aureus accumulate
in RP and MZ macrophages but not Langerin* cells. (A)
Cryosections of spleen were examined 30 min after the
injection of YG-PS. In addition to the green YG-PS,
primarily in the MZ, sections were stained with L31
mADb, followed by Alexa 555 anti-rat Ig (red) and Alexa
647 SIGNR1 (blue). (Lower) Magnified region of Upper
(*). MZ indicates marginal zone; T, T cell area. (Scale
bar: Upper, 150 um; Lower, 100 um.) (B) As in A, but
sections were stained with a-CD11c (Upper, red) or
a-CD8 (Lower, red) and Alexa 647 B220 (blue). (Scale
bar: 100 um.) (C) Asin A, but sections were stained with
a-F4/80 (Upper, red) or a-CD169 (Lower, red) and Alexa
647 a-SIGNR1 (blue). (Scale bar: 100 um.) (D and E) Mice
were inoculated with Alexa 488-labeled E. coli (D) or S.
aureus (E) i.v. for 30 min. Sections were stained with
a-Langerin (Left, red), a-F4/80 (Center, red), or
a-CD169 (Right, red), and Alexa 647-B220 (Left, blue)
or SIGNR1 (Center and Right, blue). (Scale bar: 100 um.)

Upon microbial stimulation, CD207 expression changes mark-
edly, first increasing in the PALS and then disappearing, imply-
ing movement of the corresponding cells to the PALS, followed
by their loss.

The second aspect of spleen function relates to the MZ and RP
as regions specialized for particle clearance from the blood (16,
17). Small vessels empty into the MZ (17) so that large blood-
borne particles gain access to phagocytes and seem precluded to
enter directly to the WP (36). Langerin® CD8* DCs are
therefore ideally placed to have access to particles trapped in the
MZ. Nevertheless, using polystyrene particles or bacteria, little
uptake was evident in CD207" DCs, whereas uptake in MZ
phagocytes was much stronger, particularly when tissue sections

Poly(IC) induces marked changes in Langerin expression. BALB/c mice were injected i.v. with YG-PS 30 min before inoculation of PBS (Left) or 50 ug of

poly(IC) i.p (Center and Right). At 12 h (Left and Center) or 48 h (Right) later, spleen sections were stained with L31 mADb, followed by Alexa 555 anti-rat Ig (red)
and Alexa 647 anti-B220 (blue). MZ indicates marginal zone; T, T cell area. (Scale bar: 200 um.)
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were examined. Previously, it had been reported and we con-
firmed that CD8* DCs take up dying cells (33), so different
populations of cells in the MZ and RP must express different
receptors for phagocytic uptake.

Our findings change the view of CD8" DCs as a subset that has
a major representation in the MZ, not just the T cell area, and
thus is positioned to capture bloodborne antigens. The assays we
used in this study primarily assess the level of particle scavenging
or clearance, a feature of macrophages, but do not allow an
assessment of the low levels of uptake that suffice for antigen
processing and presentation by DCs to T cells.

Materials and Methods

Mice. BALB/c mice (Harlan Sprague-Dawley) were maintained under specific
pathogen-free conditions. Animal care and experiments were conducted
according to the institutional guidelines of The Rockefeller University.

Reagents. All fluorochrome-labeled mAbs are listed in Table S1. a-Langerin
(L31) (23), a-DCIR2 (33D1) (10), «-DEC205 (NLDC145) (13, 14), and a-OLLAS tag
(37) were produced in house, purified on protein G (Pierce), and labeled with
Alexa 647 (Invitrogen) or EZ-Link Biotin (Pierce) per the manufacturer’s in-
structions. Other reagents were LIVE/DEAD Fixable Aqua Stain (Invitrogen),
DAPI (Sigma-Aldrich), poly(IC) (InvivoGen), and LPS (E. coli serotype 055:B5;
Sigma-—Aldrich).

Cell Preparation and Flow Cytometry. Spleens were digested 25 min at 37 °Cin
Hanks buffer (Gibco) with 400 units/mL Collagenase D (Roche) and 50 pwg/mL
DNasel (Roche). Atotal of 5mM EDTA (Gibco) was added for the last 5 min. Red
blood cells were lysed (BioWhittaker), and samples were passed through a
nylon mesh to remove undigested material. The cells were B cell-depleted
with «-CD19 magnetic beads and passed through LS columns (Miltenyi Biotec).
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