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Gastritis, peptic ulcer disease, and gastric cancer are a few of the diverse disease manifestations that have
been shown to be associated with infection by Helicobacter pylori. Why some individuals develop more severe
forms of disease remains largely unknown. In this study, 225 South Korean strains were genotyped for vacA and
then analyzed to determine if particular genotypes varied across disease state, sex, or cagA allele. Of these
strains, 206 strains carried an s1/i1/m1 allele, 11 strains carried an s1/i1/m2 allele, and 8 strains carried an
s1/i2/m2 allele. By using Fisher’s exact test, a statistical association between variations in the cagA and vacA
alleles was identified (P � 0.0007), and by using log linear modeling, this variation was shown to affect the
severity of disease outcome (P � 0.027). Additionally, we present evidence that variation within the middle
region of VacA contributes significantly to the distribution of vacA alleles across gender (P � 0.008) as well as
the association with disease outcome (P � 0.011). In this South Korean population, the majority of H. pylori
strains carry the vacA s1/i1/m1 allele and the CagA EPIYA-ABD allele. These facts may contribute to the high
incidence of gastric maladies, including gastric cancer.

Helicobacter pylori is a Gram-negative bacterium (28) that
chronically infects the gastric mucosa of over half of the
world’s population (15, 29) and is associated with the devel-
opment of chronic gastritis, gastric and duodenal ulcers, gastric
adenocarcinoma, and mucosa-associated lymphoid tissue
(MALT) lymphoma (6, 10, 14, 41). Given H. pylori’s high
prevalence, chronic persistence, and link to gastric cancer, it is
no wonder that gastric cancer is the second most common
cause of cancer-associated death (36), with the mortality rate
being especially high in East Asian countries such as China,
Japan, and South Korea (19).

H. pylori strains express various toxins that enable the bac-
teria to cause host cell damage. Included among these toxins
are cytotoxin-associated gene A (CagA) and vacuolating cyto-
toxin (VacA) (34). CagA has emerged as a major contributor
to disease severity, and there is a direct link between the
presence of CagA and an increased cancer risk (7, 17). CagA
induces various pathological changes by modulating host cell

signaling pathways, primarily after tyrosine phosphorylation at
the EPIYA motif (18–22, 35, 45, 54). Interestingly, CagA is
polymorphic, and the distribution of EPIYA motif combina-
tions differs geographically.

VacA is another important toxin that is produced and se-
creted by all H. pylori strains (4, 11) and was previously shown
to have various modes of action (12, 16, 27, 39, 49, 50, 52, 56).
Like CagA, VacA has been shown to contain a number of
polymorphisms. Currently, three polymorphic regions of vacA
have been identified: the signal (s), intermediate (i), and mid-
dle (m) regions. Each of these polymorphic regions has two
main types that divide them further into type 1 and type 2 (3,
43). The s region encodes the N-terminal signal sequence (30,
42), and polymorphisms in the s region affect the anion chan-
nel-forming efficiency of the toxin (30); the s1 type has an
increased ability to form membrane channels (30). Polymor-
phisms in the m region affect the cell tropism of the toxin (23);
the m1 type of VacA shows toxicity toward a broader range of
cells than the m2 type (1, 38). The i region, located between
the s and m regions, also displays two main polymorphisms
(43). The i1 type of VacA has stronger vacuolating activity than
the i2 type (43). Individually, the s1, i1, and m1 types have been
shown to be associated with more severe forms of H. pylori-
induced disease (5, 43).

Recently, we presented molecular epidemiological evidence
that there is a significant association between the development
of gastric cancer and infection with H. pylori strains carrying
the EPIYA-ABD cagA genotype in South Korea, which has
one of the highest rates of H. pylori colonization (51) and one
of the highest rates of gastric cancer in the world (17, 47).
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Given the mounting body of evidence that indicates that cagA
and vacA interact, herein we assess vacA polymorphisms across
various cagA alleles and in relation to disease development,
and we show a significant 3-way association between vacA,
cagA, and disease.

MATERIALS AND METHODS

Bacterial strains and culture conditions. The South Korean H. pylori clinical
isolates used in this study were previously described by Jones et al. (24) and
included 115 gastritis isolates, 55 gastric ulcer isolates, 54 duodenal ulcer isolates,
and 30 gastric cancer isolates with epidemiological data on age and gender. H.
pylori stocks preserved at �80°C were grown and expanded on antibiotic-sup-
plemented horse blood agar plates under microaerophilic conditions created by
an Anoxomat evacuation/replacement system (Spiral Biotech, Norwood, MA) as
previously described (9, 24).

vacA genotyping. The primers used for vacA genotyping and sequencing of the
i region are listed in Table 1. Chromosomal DNA of all 254 H. pylori strains was
isolated by using the Easy-DNA kit (Invitrogen, Carlsbad, CA). Four individual
PCRs were performed to identify the vacA genotype of each strain (Fig. 1). The
s region was identified by amplification with primers VA1-F and VA1-R. The s1
region produced a 259-bp amplicon, whereas the s2 region produced a 286-bp

amplicon (3). The m1 and m2 regions were determined by amplification with
primers VAG-F and VAG-R, yielding 567-bp and 642-bp products, respectively
(4). The i region was genotyped by using two independent PCRs with a universal
forward primer (VacF1) and different i region type-specific reverse primers (C1R
and C2R), as described previously by Rhead et al. (43). C1R and C2R specifically
anneal with the i1 and i2 vacA alleles, respectively (43).

Sequencing of 60 isolates from patients suffering from gastritis (24 isolates),
duodenal ulcers (10 isolates), gastric ulcers (8 isolates), and cancer (18 isolates)
was conducted to identify specific amino acid changes in the i1 allele. Sanger
dideoxy sequencing was performed at the Uniformed Services University Health
Science Biomedical Instrumentation Center (Bethesda, MD). The resulting
DNA sequences were analyzed by using Vector NTI, version 9.1 (Invitrogen,
Carlsbad, CA), and Sequencher 4.5 (Gene Codes Corp., Ann Arbor, MI).

Statistical analysis. Fisher’s exact test was used to analyze the association
between the vacA allele and disease state or cagA allele (based on the EPIYA
motif). Log linear modeling was used to assess higher-order associations. We fit
a saturated model using categorical variables representing vacA genotype, cagA
genotype, disease state, gender, and age categories. A backward-selection algo-
rithm identified higher-order associations among these variables, which were
statistically significant at the 5% level. Data were analyzed by using SPSS soft-
ware, version 14 or 16 (SPSS Inc., Chicago, IL), or SAS software, version 9.1
(SAS Institute Inc., Cary, NC).

Nucleotide sequence accession numbers. The sequences for the i1 regions of
vacA from 60 strains have been deposited in GenBank under accession numbers
GQ338184 to GQ338243 (see Table S1 in the supplemental material).

RESULTS

Sample acquisition and vacA genotyping. The strains used
for this study were previously used for the characterization of
the distribution of cagA alleles (24) and represent 260 strains
obtained from patients presenting with gastric maladies; 254 of
those strains have complete epidemiological data (see Table S1
in the supplemental material). The mean patient age was 51
years, with an age range of 14 to 86 years (Table 2). Within this
population, 49.6% (126 patients) were female, with an age
range of 21 to 86 years and a mean age of 52 years, and 50.4%
(128 patients) were male, with a mean age of 50 years and an

TABLE 1. Primer sequences

Primer Sequence (5�–3�) Reference

VA1-Fa ATGGAAATACAACAAACACAC 3
VA1-Ra CTGCTTGAATGCGCCAAAC 3
VAG-Fb CAATCTGTCCAATCAAGCGAG 4
VAG-Rb GCGTCAAAATAATTCCAAGG 4
C1Rc TTAATTTAACGCTGTTTGAAG 43
C2Rc GATCAACGCTCTGATTTGA 43
VacF1c,d GTTGGGATTGGGGGAATGCCG 43
VacR9d TGTTTATCGTGCTGTATGAAGG 43

a Part of the primer pair used to genotype the s region.
b Part of the primer pair used to genotype the m region.
c Part of the primer pair used to genotype the i region.
d Part of the primer pair used for i region sequencing.

FIG. 1. Genotyping of vacA polymorphic regions. (Top) Schematic representation of the vacA alleles, where an s1/i1/m1 allele is shown on the
top and an s2/i2/m2 allele is depicted on the bottom. The annealing positions (arrows) and names of the primers used in this study are shown.
(Bottom) PCR amplicons of each polymorphic region using the primers listed above the gel are depicted. The approximate size of the amplicon
is listed below each band.
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age range of 14 to 82 years. Of these samples, 11.8% were from
patients with cancer, 42.9% were from patients with peptic
ulcer disease (21.7% gastric ulcers and 21.3% duodenal ul-
cers), and 45.3% were from patients with gastritis (24).

Four different PCRs were conducted for each strain in order
to genotype vacA (Fig. 1 and see Table S1 in the supplemental
material). The s region was identified and differentiated by
amplification with primers VA1-F and VA1-R (3), and the m
region was determined by amplification with primers VAG-F
and VAG-R (4). The i region was genotyped by using two
independent PCRs using a universal forward primer (VacF1)
and one of two i region type-specific reverse primers (C1R for
the i1 type and C2R for the i2 type) as described previously by
Rhead et al. (43).

The distribution of vacA polymorphisms is shown in Table 2.

Of the 254 strains with complete epidemiological data, 225
strains were successfully genotyped for the vacA allele (Table
2 and see Table S1 in the supplemental material). The strains
that were not successfully genotyped for vacA failed to yield
PCR products or gave incorrectly sized bands and thus were
not further analyzed. The genotyped strains were obtained
from patients with a mean age of 50 years and an age range of
14 to 86 years. These patients included 111 females (49.3%),
with a mean age of 52 years and an age range of 21 to 86 years,
and 114 males (50.7%), with a mean age of 49 years and an age
range of 14 to 82 years. Of these 225 strains, 206 strains
(91.6%) carried an s1/i1/m1 vacA allele (mean patient age of
50 years and age range of 14 to 86 years). Of the strains
carrying the s1/i1/m1 allele, 96 (46.6%) were from female pa-
tients (mean age of 51 years and age range of 21 to 86 years),

TABLE 2. vacA-genotyped isolates and disease stateb

Parameter

Value

Total vacA-genotyped
isolates

Disease state of vacA-genotyped isolates

Gastritis Gastric ulcer Duodenal ulcer Gastric cancer

Overall total
No. of patients 254a 225 103 43 49 30
Age range (yr) 14–86 14–86 19–82 34–84 14–72 37–86
Mean age (yr) 51 50 49 55 45 58
No. of females 126 111 68 10 19 14

Age range (yr) 21–86 21–86 21–82 46–84 31–72 37–86
Mean age (yr) 52 52 49 57 51 61

No. of males 128 114 35 33 30 16
Age range (yr) 14–82 14–82 19–78 34–82 14–70 38–70
Mean age (yr) 50 49 47 54 41 55

Strains carrying s1/i1/m1
No. of patients 206 95 41 42 28
Age range (yr) 14–86 19–78 34–84 14–70 37–86
Mean age (yr) 50 48 55 43 58
No. of females 96 61 8 14 13

Age range (yr) 21–86 21–75 46–84 31–61 37–86
Mean age (yr) 51 49 57 48 60

No. of males 110 34 33 28 15
Age range (yr) 14–82 19–78 34–82 14–70 38–70
Mean age (yr) 49 47 54 41 56

Strains carrying s1/i1/m2
No. of patients 11 4 1 4 2
Age range (yr) 38–82 38–82 63 41–57 46–68
Mean age (yr) 54 54 NA 51 56
No. of females 9 4 1 3 1

Age range (yr) 38–82 38–82 63 48–57 68
Mean age (yr) 56 54 NA 54 NA

No. of males 2 0 0 1 1
Age range (yr) 41–44 0 0 41 46
Mean age (yr) 43 0 0 NA NA

Strains carrying s1/i2/m2
No. of patients 8 4 1 3 0
Age range (yr) 38–72 38–68 56 61–72 0
Mean age (yr) 57 51 NA 65 0
No. of females 6 3 1 2 0

Age range (yr) 38–72 38–68 56 61–72 0
Mean age (yr) 58 53 NA 67 0

No. of males 2 1 0 1 0
Age range (yr) 43–61 43 0 61 0
Mean age (yr) 52 NA 0 NA 0

a The total number of samples includes only the 254 that had complete epidemiological data for age and gender.
b There was a statistical association between the m allele and gender (P � 0.0233). NA, not applicable.
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and 110 (53.4%) were from male patients (mean age of 49
years and age range of 14 to 82 years). Eleven strains (4.9%)
carried an s1/i1/m2 vacA genotype and were from patients with
a mean age of 54 years and an age range of 38 to 82 years. Of
these strains, 9 (81.8%) were obtained from female patients
(mean age of 56 years and age range of 38 to 82 years), and 2
(18.2%) were obtained from male patients (mean age of 43
years and age range of 41 to 44 years). Eight strains (3.9%)
carried the s1/i2/m2 vacA allele and were obtained from pa-
tients with a mean age of 57 years and an age range of 38 to 72
years. Six of these strains (75.0%) were obtained from female
patients (mean age of 58 years with an age range of 38 to 72
years), and 2 (25.0%) were obtained from male patients (mean
age of 52 years and age range of 43 to 61 years). Of note,
neither s2 nor s1/i2/m1 vacA alleles were found.

Distribution of the vacA allele and gender. Statistical anal-
ysis of allele distributions showed a significant association be-
tween the vacA allele and gender (P � 0.0233). Patients that
carried non-s1/i1/m1 strains were 4.3 times more likely to be
female than male. This difference is likely driven by the m
region, since the distribution of any combination that con-
tained the m region compared to gender was statistically sig-
nificant (P � 0.005 for s/m and P � 0.0233 for i/m), whereas
the combination lacking m (P � 0.1672 for s/i) was not signif-
icant. Moreover, when the distribution of polymorphisms
within each region was analyzed alone versus gender, only the
distribution of the m polymorphisms was significant (P �
0.008). In fact, if a patient carried an m2 allele, they were 3.75
times more likely to be female than male. This finding com-
bined with the finding that the m1 allele appears to affect
toxicity toward a larger variety of cells (23) may contribute to
the finding that males are 1.5 to 2.5 times more likely to
develop gastric cancer than females (reviewed in reference 44).

Associations among vacA, cagA, and disease. Given the di-
versity of the identified roles of the VacA toxin, we assessed
whether the distribution of the vacA alleles had a direct impact
on disease state. First, the individual regions were assessed for
their impact on disease development. The distribution of poly-
morphisms in the m region and i region among disease states
was not statistically significant (P � 0.5397 and P � 0.7399,
respectively), and the distribution of polymorphisms in the s
region in relationship to disease state could not be determined
because only the s1 allele was found within this population.
Statistical analysis for two-way associations using SASS soft-
ware showed no statistical association between the distribution
of the vacA alleles and disease state (P � 0.7499). However,
log linear modeling taking into account age and gender did
reveal a two-way association between the vacA allele and dis-
ease only in the East Asian (EPIYA-ABD) strains (P � 0.030).
The majority of East Asian EPIYA-ABD CagA strains carry-
ing non-s1/i1/m1 vacA alleles were associated with duodenal
ulcers. Conversely, strains carrying non-s1/i1/m1 vacA alleles
and any other genotype of CagA were associated with gastritis.
A complete breakdown of the vacA allele and disease state is
provided in Table 2.

VacA was previously suggested to interact synergistically
with the H. pylori virulence factor CagA (2, 37). Thus, we next
analyzed whether there was any association between the dis-
tribution of vacA alleles, the distribution of cagA alleles, and
disease state. Of the 225 strains that were genotyped for the

vacA allele, 224 of these strains had previously been genotyped
for the cagA allele. Of these strains, 199 isolates (88.8%) can
be classified as East Asian (carrying an EPIYA-D motif), and
25 isolates (11.2%) were determined to be classified as West-
ern strains (carrying at least one EPIYA-C motif) (see Table
S1 in the supplemental material). Eight East Asian strains
carried an EPIYA motif other than a defined -ABD motif,
either incomplete or containing the addition of one or more
motifs, including -AABD, -BD, -BBD, and -ABAB*D, as well
as -AB*D, where a mutation within the EPIYA-B motif is
designated by the asterisk. Based on these distributions, the
strains were subdivided based on the presence of a complete
CagA EPIYA-ABD motif versus all other EPIYA motifs,
yielding 33 isolates that were determined to have “other geno-
types.”

When the distribution of the vacA alleles (s1/i1/m1, s1/i1/m2,
and si/i2/m2) was assessed among the distribution of cagA
alleles (EPIYA-ABD versus all other genotypes), a strong two-
way association was identified (P � 0.0007) (Fig. 2 and Table
3). People infected with strains carrying non-EPIYA-ABD
cagA alleles were associated with a two-times-higher probabil-
ity of carrying the s1/i1/m2 vacA allele and a 10-times-higher
probability of carrying the s1/i2/m2 vacA allele than people
infected with the EPIYA-ABD cagA allele (Table 3). When
combinations of the regions were compared, the distribution of
polymorphisms among the cagA alleles was statistically signif-
icant for every combination, s/m (P � 0.0006), i/m (P �
0.0007), and s/i (0.0019), and the distributions of individual
regions of vacA, m (P � 0.0019) and i (P � 0.0019), versus the
cagA allele were also statistically significant. Once again, the
distribution of polymorphisms in the s region among cagA
alleles could not be determined because only the s1 allele was
found within this population. This indicates that each of these
regions is important for the distribution of the vacA allele with
the cagA allele.

Given the strong correlation between the cagA allele and

FIG. 2. Schematic depiction of the distribution of the vacA geno-
types stratified by disease state and cagA allele within this South
Korean population. Shown is the distribution of vacA genotypes within
the four different disease states: gastritis, gastric ulcers, duodenal ul-
cers, and cancer. The shaded portions within the disease state and
vacA genotype subgroupings correspond to the isolates that carry a
cagA EPIYA-ABD motif.
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disease state that we previously observed (24), we next won-
dered if the vacA allele affected this distribution. Indeed, log
linear modeling revealed a significant three-way association
among vacA allele, cagA allele, and disease state (P � 0.027).
As with the case of gender, the distribution of any combination
that contained the m region when assessed via the distribution
of the cagA allele and disease state was statistically significant
(P � 0.004 for s/m and P � 0.025 for i/m), whereas the non-m
combination (P � 0.586 for s/i) was not significant. Moreover,
when the distribution of polymorphisms within each region was
analyzed individually, only the distribution of the m polymor-
phism (P � 0.011) was significant. A complete breakdown of
the strains based on disease state, vacA allele, and cagA allele
is provided in Table 4.

Sequence analysis of the intermediate type 1 region. The i
region was previously suggested to be the best indicator of
pathology caused by VacA, and the i1 type is more virulent

than i2 (2, 43). Two specific amino acid sequences, a phenyl-
alanine at position 178 in cluster A and a methionine at posi-
tion 254 in cluster C (Fig. 3), have been identified as markers
within the Taiwanese population, and a particular amino acid
substitution at position 231 in cluster B was previously sug-
gested to affect disease severity (46). Given these reasons, we
determined the i1 type amino acid sequence for 60 strains (18
from cancer patients, 8 from gastric ulcer patients, 10 from
duodenal ulcer patients, and 24 from gastritis patients) (Fig. 3).

Sequence analysis of the i1 type in our strains revealed that
a phenylalanine at position 178 in cluster A was present in
91.7% of the strains in the South Korean population. Addi-
tionally, the substitution of a methionine at position 254 in
cluster C was well conserved in the South Korean population:
98.3% of strains carried this substitution.

The substitution of a glycine for a serine at position 231 in
cluster B was previously suggested to be statistically linked to
disease development within the Taiwanese population (46).
However, at this site within strains among the South Korean
population, neither the distribution of the amino acids with
regard to disease (P � 0.8082) nor the distribution of glycine
compared to any other amino acid with regard to disease (P �
0.5214) was statistically significant. Additionally, there was no
statistical significance when the distribution of glycine was de-
termined with regard to individual disease states: gastritis (P �
0.7871), gastric ulcer (P � 0.4329), duodenal ulcer (P �
0.7287), or cancer (P � 0.2414). However, there was a statis-
tical association between the distribution of the glycine amino
acid and the distribution of cagA alleles (P � 0.0318).

Sequence analysis of the i1 type revealed two additional
amino acid polymorphisms across strains among the South
Korean population. At position 151, the majority of the strains
carried a phenylalanine (37 strains) or a tyrosine (23 strains).
This distribution of amino acids at this position was not statis-
tically linked to disease (P � 0.3886) or the distribution of the
cagA allele (P � 0.6983). Additionally, polymorphism at posi-
tion 196 leads to either a serine or a leucine at this position.
The distribution of amino acids at this position had no statis-
tical association with the distribution of cagA alleles (P �
1.0000) or disease state (P � 0.0669).

DISCUSSION

The majority (92%) of the South Korean isolates analyzed in
this study carried the s1/i1/m1 vacA allele, which was previously
suggested to be the most virulent form of the toxin (3, 25,
31–33, 43). The finding that the majority of H. pylori strains in
this population carry the most toxic form of both VacA and
CagA may explain the high rate of severe gastric disease
among the South Korean population. When age and gender
were taken into account, a two-way association between the
distribution of vacA alleles and disease state was found for the
strains carrying EPIYA-ABD CagA. Non-s1/i1/m1 vacA alleles
were associated with duodenal ulcers within the population
carrying East Asian EPIYA-ABD CagA and with gastritis
within the population carrying any other genotype of CagA.

The distribution of the m alleles varied significantly across
gender and the cagA allele and had a significant impact on the
three-way association between the cagA allele and disease
state. This suggests that polymorphism within the m region is

TABLE 3. vacA genotype and cagA alleleb

Parameter

Value

vacA-
genotyped

isolates

vacA- and
cagA-

genotyped
isolates

cagA allele

EPIYA-
ABD

Other
genotypesa

Overall total
No. of patients 225 224 191 33
Age range (yr) 14–86 14–86 14–86 28–82
Mean age (yr) 50 50 50 49
No. of females 111 111 90 21

Age range (yr) 21–86 21–86 21–86 28–82
Mean age (yr) 52 52 52 50

No. of males 114 113 101 12
Age range (yr) 14–82 14–82 14–82 33–81
Mean age (yr) 49 49 49 49

Strains carrying s1/i1/m1
No. of patients 206 205 180 25
Age range (yr) 14–86 14–86 14–86 28–81
Mean age (yr) 50 50 50 47
No. of females 96 96 82 14

Age range (yr) 21–86 21–86 21–86 28–61
Mean age (yr) 51 51 52 46

No. of males 110 109 98 11
Age range (yr) 14–82 14–82 14–82 33–81
Mean age (yr) 49 49 49 49

Strains carrying s1/i1/m2
No. of patients 11 11 8 3
Age range (yr) 38–82 38–82 41–68 38–82
Mean age (yr) 54 54 52 58
No. of females 9 9 6 3

Age range (yr) 38–82 38–82 41–68 38–82
Mean age (yr) 56 56 56 58

No. of males 2 2 2 0
Age range (yr) 41–44 41–44 41–44 NAc

Mean age (yr) 43 43 43 NA

Strains carrying s1/i2/m3
No. of patients 8 8 3 5
Age range (yr) 38–72 38–72 54–72 38–68
Mean age (yr) 57 57 62 53
No. of females 6 6 2 4

Age range (yr) 38–72 38–72 54–72 38–68
Mean age (yr) 58 58 63 56

No. of males 2 2 1 1
Age range (yr) 43–61 43–61 61 43
Mean age (yr) 52 52 NA NA

a Indicates any other genotype besides EPIYA-ABD, including Western
strains and EPIYA-AABD, -BD, -BBD, and -ABAB*D, as well as -AB*D, where
a mutation within the EPIYA-B motif is designated by *.

b There is a statistical two-way association between the distribution of cagA
alleles and the distribution of vacA alleles (P � 0.0007).

c NA, not applicable.
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the major contributor to the association of the vacA allele, the
cagA allele, and disease state within this population. This is in
concordance with a previously reported meta-analysis that
found that the m1 region increased the risk for gastric cancer in
Latin American (odds ratio [OR] � 3.59) and African (OR �
10.18) populations (48). The increased tropism of the m1 allele
(38) combined with the finding that patients infected with H.
pylori strains carrying the m2 allele are more likely to be female
may explain why males are overall more likely to develop
gastric cancer (reviewed in reference 44). To our knowledge,
this is the first time that the m allele distribution has been
linked to gender. To determine the role that the m allele has in
the association between gender and disease state, populations
where the m2 allele is more prevalent, such as in regions of China

(40) and Poland (26), should be analyzed. However, it should be
noted that this region alone is not a good predictor of disease for
the South Korean population, since two of the strains that carried
the m2 allele were obtained from cancer patients (Table 2).

Previous work with Western strains suggested that the i
region of vacA is the major determinant of vacuolating activity
and is the most important region for disease development (2,
13, 43). However, we found that within this population of
predominantly East Asian strains, the i region was not a major
determinant of disease state. This may indicate that the i re-
gion is more important within the context of strains that ex-
press the Western cagA allele or that there are other factors
that mask the importance of this region in East Asian isolates.

Three clusters within the i1 region where sequence differ-

TABLE 4. vacA allele, cagA allele, and disease stateb

Parameter

Value

vacA- and cagA-genotyped
isolates

Disease state of vacA-genotyped isolates

Gastritis Gastric ulcer Duodenal ulcer Gastric cancer

Overall total
No. of patients 224 103 42 49 30
No. of EPIYA-ABD isolates 192 83 38 40 30
No. of isolates of other genotypesa 32 20 4 9 0
No. of females 111 68 10 19 14

No. of females with strains carrying EPIYA-ABD 90 57 8 11 14
No. of females with strains carrying other genotypesa 21 11 2 8 0

No. of males 113 35 32 30 16
No. of males with strains carrying EPIYA-ABD 101 26 30 29 16
No. of males with strains carrying other genotypesa 12 9 2 1 0

Strains carrying s1/i1/m1
No. of patients 205 95 40 42 28

No. of patients with strains carrying EPIYA-ABD 180 81 37 34 28
No. of patients with strains carrying other genotypesa 25 14 3 8 0

No. of females 96 61 8 14 13
No. of females with strains carrying EPIYA-ABD 82 55 7 7 13
No. of females with strains carrying other genotypesa 14 6 1 7 0

No. of males 109 34 32 28 15
No. of males with strains carrying EPIYA-ABD 98 26 30 27 15
No. of males with strains carrying other genotypesa 11 8 2 1 0

Strains carrying s1/i1/m2
No. of patients 11 4 1 4 2

No. of patients with strains carrying EPIYA-ABD 8 1 1 4 2
No. of patients with strains carrying other genotypesa 3 3 0 0 0

No. of females 9 4 1 3 1
No. of females with strains carrying EPIYA-ABD 6 1 1 3 1
No. of females with strains carrying other genotypesa 3 3 0 0 0

No. of males 2 0 0 1 1
No. of males with strains carrying EPIYA-ABD 2 0 0 1 1
No. of males with strains carrying other genotypesa 0 0 0 0 0

Strains carrying s1/i2/m2
No. of patients 8 4 1 3 0

No. of patients with strains carrying EPIYA-ABD 3 1 0 2 0
No. of patients with strains carrying other genotypesa 5 3 1 1 0

No. of females 6 3 1 2 0
No. of females with strains carrying EPIYA-ABD 2 1 0 1 0
No. of females with strains carrying other genotypesa 4 2 1 1 0

No. of males 2 1 0 1 0
No. of males with strains carrying EPIYA-ABD 1 0 0 1 0
No. of males with strains carrying other genotypesa 1 1 0 0 0

a Indicates any other genotype besides EPIYA-ABD, including Western strains and EPIYA-AABD, -BD, -BBD, -ABAB*D, as well as -AB*D strains, where a
mutation within the EPIYA-B motif is designated by *.

b There is a statistical three-way association between the distribution of cagA alleles, the distribution of vacA alleles, and disease state (P � 0.027).
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ences occur have been reported: clusters A, B, and C (43).
Amino acid substitutions (tyrosine to phenylalanine in cluster
A and asparagine to methionine in cluster C) are conserved
and predicted to serve as a marker for Taiwanese VacA (46).
Also, the substitution of a glycine for a serine at the ninth amino
acid in cluster B was statistically linked to disease development in
the Taiwanese population (46). The amino acid substitutions

within clusters A and C were also conserved in the South Korean
isolates, indicating that these substitutions are likely a marker of
East Asian VacA. No correlation between the ninth amino acid
substitutions in cluster B and disease severity was identified for
our South Korean population, which suggests that this amino acid
does not play a role in disease progression or is important in
combination with another virulence factor.

FIG. 3. Amino acid alignment of the i1 type of VacA. This amino acid alignment is from 60 South Korean strains of various disease states: 24
from gastritis (G) patients, 10 from duodenal ulcer (DU) patients, 8 from gastric ulcer (GU) patients, and 18 from gastric cancer (CA) patients.
The abbreviations listed after the strain correspond to the disease state of the strain. The three defined clusters of the i1 region, clusters A, B, and
C, are indicated.
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Two additional positions within the i1 region that showed
polymorphism were identified: positions 151 and 196. Nei-
ther the phenylalanine nor the tyrosine found at position
151 was linked to disease state or the distribution of the
cagA allele. While the distribution of the amino acids at
position 196 had no statistical association with the cagA
allele or disease, there was a trend toward significance:
�78% of strains from cancer patients and 100% of strains
from gastric ulcer patients carry a serine at this position.
This suggests that additional populations should be assessed
to determine if a serine at position 196 has an impact on
disease development and severity.

Previously reported studies have identified an association
between vacA and cagA that appears to affect H. pylori toxicity
and disease severity (55, 57). Basso et al. found that increasing
numbers of CagA EPIYA-C motifs impacted cancer risk and
that i region polymorphisms of VacA were a major indicator
for the development of peptic ulcers (5). Additionally, infec-
tion with strains carrying CagA and s1/m1 VacA results in
highly active corpus gastritis (33), which is linked to the devel-
opment of gastric cancer (31–33). In our study, log linear
modeling, taking into consideration age and gender, identified
a two-way association between the vacA allele and disease state
for East Asian (CagA EPIYA-ABD) strains. Not surprisingly,
since the majority of these strains carried both CagA EPIYA-
ABD and vacA s1/i1/m1, the majority of cancer strains (28 out
of 30) carry this combination. This suggests that the role of the
vacA allele could differentially affect disease progression based
on other virulence factors. This could be due to the finding that
VacA acts as an immune modulator (16, 52) and perhaps
changes the immune response to the immunogenic CagA. Like
CagA, VacA was found to disorganize the cytoskeleton of
gastric epithelial cells, leading to increased cell spreading and
growth (39). Thus, this phenotype may help compensate for
the presence of a less virulent cagA allele or synergistically
contribute to severe gastric maladies in conjunction with East
Asian CagA. Evidence suggests that the combination of CagA
and VacA may dampen the effect of each protein alone, pos-
sibly leading to an increased survival of infected host cells (2).
This perhaps occurs through CagA preventing VacA-induced
apoptosis (37, 56) or by inhibiting the autophagy pathway in-
duced by VacA (50).

CagA and VacA are the two best-studied virulence factors of
H. pylori. Interestingly, both toxins exhibit a high degree of
polymorphism, and it is becoming increasingly evident that
these polymorphisms, alone and in concert, affect H. pylori-
induced disease. Indeed, the finding that the majority of South
Korean H. pylori strains carry the most toxic forms of CagA
and VacA may explain the reason for the high prevalence of
gastric disease and mortality of patients with gastric cancer in
South Korea. However, the reason why only a portion of the
population develops gastric cancer still remains unclear. Other
bacterial virulence factors as well as multiple host, dietary, and
environmental factors have been indicated as being partici-
pants in H. pylori-induced disease (reviewed in references 8
and 53). Further study is required to determine which factors
are involved and what role they have in the development of H.
pylori-induced gastric cancer.
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